当前位置:文档之家› 信令详解1

信令详解1

信令详解1
信令详解1

第一章信令详解

第一节空中信道的描述

空中接口有两种逻辑信道类型:一类是业务信道,用来处理话音和数据业务;一类是信令信道,负责控制功能。

逻辑信道可以分为三种范畴:

●广播信道(BCH):包括BCCH、FCCH和SCH信道,它们携带的信息目标是小区

内所有的手机,所以它们是单向的下行信道。

●公共控制信道(CCCH):包括RACH、PCH、AGCH和CBCH,前一个是单向上

行信道,后者是单向下行信道。

●专用控制信道(DCCH):包括SDCCH、SACCH、FACCH、TCH/F、TCH/H,这

些是信令和业务信道(包括它们的随路信令信道)一次只能为唯一的MS服务,因

而它们是双向信道。

其中业务信道仅是TCH信道,而其他的信道均为信令信道。

一、广播信道仅用在下行链路上,由BTS至MS。它们用在每个小区的TS0上作为标

频,在一些特殊的情况下,也可用在TS2,4或6上,这些信道包括BCCH、FCCH

和SCH。为了通信,MS需要于BTS保持同步,而同步的完成就要依赖FCCH和

SCH逻辑信道。

1、频率校正信道FCCH:FCCH信道上不含任何信息,它的突发脉冲是由全0字符构

成的,它的作用是使MS可以定位并解调出同一小区的其它信息。

2、同步信道SCH:在FCCH解码后,MS接着要解出SCH信道消息,它给出了MS需

要同步的所有消息及该小区的的标示信息如祯号(需22比特)和BSIC号(需6比特)。

3、广播控制信道BCCH:MS在空闲模式下为了有效的工作需要大量的网络信息。而

这些信息都将在BCCH信道上来广播。信息基本上包括小区的所有频点、邻小区的

BCCH频点、LAI(LAC+MNC+MCC)、CCCH和CBCH信道的管理、控制和选择

参数及小区的一些选项。

所有这些消息被称为系统消息(SI)在BCCH信道上广播,在BCCH上系统消息有八种类型TYPE 1、2、2bis 、2ter、3、4、5、7和8。

二、公共控制信道包括AGCH、PCH、CBCH和RACH,除了CBCH用在标频上的TS1

上,其余的都在TS0上,这些信道不是供一个MS专用的,而是面向这个小区内

所有的移动台的。在下行方向上,由PCH、AGCH和CBCH来广播寻呼请求、专

用信道的指派和短消息。在上行方向上由RACH信道来传送专用信道的请求消息。

1、寻呼信道PCH:当网络想与某一MS建立通信时,它就会在PCH信道上根据MS

所登记的LAC号向所有具有该LAC号的小区进行寻呼,MS的标示为TMSI或IMSI。

2、接入许可信道AGCH:当网络收到处于空闲模式下MS的信道请求后,就将给之分

配一专用信道,AGCH通过根据该指派的描述(所分信道的描述,和接入的参数),向所有的移动台进行广播,看属于谁的。

3、小区广播控制信道CBCH:它用于广播短消息和该小区一些公共的消息(如天气和

交通情况),它通常占用SDCCH/8的第二个子信道。

4、随机接入信道RACH:当MS想与网络建立连接时,它会通过RACH信道来广播它

所需的服务信道,请求消息包括建立的原因(如呼叫请求、位置更新请求、及短消

息请求等等)和一个用来区别不同MS请求的参考随机数。

三、专用控制信道包括SDCCH、SACCH、FACCH、TCH,它们被载在标频除TS0外

的其它时隙上,这些信道被用于某一个具体的MS上

1、独立专用控制信道SDCCH:SDCCH是一种双向的专用信道,它主要用于传送建立

连接的信令消息、位置更新消息、短消息、用户鉴权消息、加密命令及应答及各种

附加业务。

2、慢速随路控制信道SACCH:SACCH是一种伴随着TCH和SDCCH的专用信令信道。

在上行链路上它主要传递无线测量报告和第一层报头消息(包括TA值和功率控制级别);在下行链路上它主要传递系统消息type5、5bis 、5ter、6及第一层报头消息。

这些消息主要包括通信质量、LAI号、CELLID、邻小区的标频信号强度等信息、

NCC的限制、小区选项、TA值、功率控制级别。

3、业务信道TCH:TCH专用信道主要传送业务消息,其一、在两个用户间传递话音消

息(全速率为13kbit/s,半速率为5.6kbit/s),其二移动台需要传送文章、书画等数据消息

4、快速随路控制信道FACCH:FACCH信道用于象SDCCH一样广播信令消息,但是

当信令消息时间十分紧张时,SDCCH没有充分的时间需470ms,此时可利用偷祯的

方式,占用20ms的TCH信道来传送信令,如在系统执行越局切换时。

第二节系统消息的描述

MS为了能得到或提供各种各样的服务通常需要从网络来获得许多消息。这些在无线接口广播的消息被称做系统消息,可共分为12种类型:type1、2、2bis、2ter、3、4、5、5bis、5ter、6、7、8。

每个系统消息都由不同的元素组成,如以下阐述:

●当前网络、位置区和小区的识别消息

●小区供切换的测量报告消息和小区选择的进程消息

●当前控制信道结构的描述消息

●该小区不同的可选项的消息

●关于邻小区BCCH频点的分配

系统消息在两种逻辑信道中传送,BCCH或SACCH信道。手机在不同的模式下通过不同的逻辑信道来收听系统消息

●在空闲模式下,用BCCH信道(传送系统消息1 至4及7、8)

●在通信模式下,用SACCH信道(传送系统消息5和6)

系统消息的主要内容如下:

●SI type1 control RACH+cell allocation (TC=0,若系统采用跳频,1.88秒一次)

●SI type2 control RACH+BCCH allocation(TC=1,1.88秒一次)

●SI type2bis control RACH+ ext BCCH allocation(TC=5,1.88秒一次)

●SI type2ter extension BCCH allocation(TC=4或5,1.88秒一次)

●SI type3 control RACH+LAI+cell info(TC=2且TC=6,1.88秒两次)

●SI type4 control RACH+cell info(CBCH)(TC=3且TC=7,1.88秒两次)

●SI type5 BCCH allocation

●SI type5bis BCCH allocation extention

●SI type5ter BCCH allocation extention

●SI type6 LAI+cell information

●SI type7 cell reselection parameters(TC=7,1.88秒一次)

●SI type8 cell reselection parameters(TC=3,1.88秒一次)

其中TC为循环序号

BCCH信道是一个小容量的信道,每51复祯(235ms)仅有四祯(一个BLOCK)传送一个23字长Lapdm的消息。

系统消息的结构是有五大部分组成:

●L2 Pseudo length (L2 伪长度):第一期MS的解释在消息中字节长度(第一期和第

二期MS兼容)

第三节信令流程的描述

一、同步过程

当手机开机后,会去扫描所有的无线信道并在3秒至5秒内测量它们的信号强度,将30个信号最强载频存储下来,然后调制到信号强度最强的载频上,通过扫描它的FCCH 突发脉冲来判断它是否是一BCCH频点,若是的话会继续去收听它的SCH突发脉冲,看是否能对之进行解调,若能通过解出的BSIC号,看是否是被SIM卡禁止的若可以接入,则继续收听BCCH广播,看该小区是否被禁止接入,若允许接入则根据小区选择准则C1算法,看是否满足C1大于0的要求,若完全通过则该小区则被选为服务小区,若其中一步失败则对次强信道进行同样的流程。

二、手机空闲状态下的工作

当手机进入空闲模式下后,手机先对该服务小区的系统消息进行按TC顺序进行分析,若是GSM900M的话,将会系统接受SYSTEM INFORMA TION TYPE 1、TYPE2、TYPE3、TYPE4;若是GSM1800M的话,则会系统接受TYPE1、TYPE2、TYPE2 BIS、TYPE3、TPPE4;若是双频网络的话会系统接受TYPE1、TYPE2、TYPE2 BIS、TYPE2 TER、TYPE3、TPPE4;每个系统消息相隔一个51复祯,中间还要根据noofMultiFrameBetweenPaging参数所定义的时长到所指定的寻呼块来接受系统的寻呼消息(一般在寻呼业务量大的地方,或邻小区多的地方该值定义的较小,即定义了手机不连续接受的时长,该值越大,在该服务区的手机就越省电,如市区可定义为2即手机在102祯内收听一次寻呼消息,郊区可定义为4或6),在手机完成对系统消息的测量后,就进入休息状态,仅在指定的寻呼块内受听寻呼消息并同时测量邻小区的BCCH的接收电平,在30秒左右的时间内又将会去收听系统消息,来判断小区重选的进程。

现对手机发起呼叫的流程进行分析:

1、MS通过RACH信道先发起一channel request 消息(8bits),其中包括请求信道原因

及一个随机参考值,来等待AGCH信道的指派,此时MS在物理信道TS0上等待BSC给它分配无线资源。(BSC管理的仅是逻辑信道资源,而BTS则完成逻辑信道和物理信道的对应)。

2、BTS在对channel request 消息进行分析后,再附上对MS到BTS间传输时延的估计

作为初始化TA值及接收电平等,向BSC发出channel required的消息。

3、BSC则通过对基站送来的channel required进行分析,来判断它所需要的无线资源,

对于不同原因引起的信道请求记入相应的子计数器中(如位置更新请求、寻呼应答请求、呼叫重建请求、紧急呼叫请求、IMSI ATTA TCH/DETTACH、全/半速率TCH请求)。根据请求的信道,BSC若现有该信道资源就发出channel activation的命令将该信道激活(其中初始化TA值由BSC提供),此时系统就认为该资源以分配出去,若此时无SDCCH信道但有TCH信道而系统允许早期分配模式,则可激活TCH信道作信令信道用。

4、在BSC发出channel activation后,当该CELL有可用的信令资源时,即向BSC发

出channel activation ack的响应,该消息中有对此信道的描述,如时隙号等等。若系

统资源以被分配出去,则CELL向BSC发出ImmediateassignmentReject,拒绝的原因有如MSC话务关闭、无线资源缺乏、TA值超出界限、信道激活无应答、BSC话务超载等,在收到该消息后BSC可决定在一定的时间内不许给该MS分配信令资源(可在信令资源紧张的地区加大该限时器)。

5、若BSC收到了信道激活的回应,就会按照该消息所提供的被激活信道的信息来发出

Immediate assign command(其中包含分配给该MS的信道描述,初始TA值、初始最大发射功率、及有MS信道请求时的8bit的内容、及BTS收到信道请求时的TDMA 祯号和跳频表),MS将收到的分配指令与与自身发出的信道请求相比较,以做出正确的响应,这条消息将在AGCH信道上发出。

6、当MS收到立即指派命令后,就将它的收发配置调整到指定信道上来,按照BSC指

定的TA值和初始化最大发射功率(可参照参数msTxPwrMaxCCH所定义的)开始传输信令。MS在所分配上的新的SDCCH/TCH信道上所做的第一件事情是发送一个SABM祯建立异步平衡模式(服务接入点类别SAPI=0),用于建立证实模式下的信令消息连路层连接这是第一个第三层消息,在GSM规范中SABM祯带有一个不重要的信令消息,用于对MS正确性的确认,为了避免一些MS同时发送内容一样的信道请求(此时BSS只会应答其中之一,而此时两个MS却同时响应到同一专用信道上),BTS在收到SABM后就会向MS发一个UA祯,来核对该MS的一个特征信息,如MS收到的UA祯的特征信息与SABM祯发出的不一样,它就放弃这个信道,开始重新接入过程,只有核对一致的MS留在这个信道上,特征信息来自MS的接入。

7、在BTS收到SABM祯后会同时向BSC发出establish indication消息,它会携带在

MM cm_service_request中。

8、BSC收到establish indication消息后,就会向MSC发出complete layer3 info.(该消息

是一CM 业务请求消息),用来申请与MSC建立SCCP层连接,该消息中带有申请CM业务的原因如移动主叫、紧急呼叫、位置更新及短消息业务等;并带有密钥序列号;带有该MS的一些物理消息如发射功率等级、支持加密算法否、伪同步的能力及短消息的能力等,并有该MS的识别号。在MSC收到此消息后,即向BSC发出connection confirmed消息,若无资源则发出SCCP refused消息,至此接入过程结束,MS与MSC 之间的信令链路已经建立,MSC以能够控制RR管理的传输特性,BSS处于监视传输质量和随时准备切换的运行状态。

9、当收到MS的CM业务请求消息后,MSC/VLR应以肯定答复Authentication

request(鉴权请求)或CM service accept(CM 业务接受),当然也可以发出CM业务拒绝,它是一个DTAP消息。系统在鉴权请求消息中包含一个随机数(RAND),共128bit,SIM卡上的用户密钥Ki与这个随机数经手机的A3算法,产生一个32bit 的应答数SRES m(与此同时MS还要将Ki和RAND再通过A8算法得出一64bit 的Kc,并将它保存在SIM卡内,以后按系统指令决定是否激活加密传输),MS再通过Authentication RESPONSE消息将它送回系统,因Ki值作为用户数据存在VLR 或HLR中,在系统一侧也会进行与MS相同的算法,产生一个SRES数和Kc存在VLR中,系统则会将这两个值相比较,若相同则MSC会给MS发一个MM service accept消息,若不同则鉴权失败,系统会拒绝MS的继续接入。此时鉴权过程结束。

注:一般在MSC/VLR和HLR/AUC都可执行A3和A8算法,但MSC/VLR算起来比较麻烦,而HLR/AUC存有Ki值算起来简单的多而且可以很好的解决保密性和漫游的的问题,但却增加了HLR 至MSC的信令量,因而每次计算,HLR/AUC都会将这三个结果值送到MSC/VLR中,即RAND,

SRES和KC,以被选用。

10、此时MSC会向BSC发一条BSSMAP Ciphering Mode Command的消息,在该消息

中包含着密钥Kc,BSC接着会向MS发出RR Ciphering Mode Command来通知MS 进入加密模式(这时基站也进入解密的模式下),MS收到该指令后就会转入加密模式的发送与接收,并向系统发出发出RR Ciphering Mode COMPLETE 消息。是否采用加密由系统决定,产生加密码的算法称为A5算法,它是利用Kc(64比特)值和当前脉冲串的祯号(22比特)进行计算的,以产生一个114比特的加密序列来和114比特的无线脉冲码进行异或操作。因而网络端的KC一定要与MS端的KC 值一样,为了防止它们不一样,GSM定义了一个CKSN(加密钥序列号),包含在鉴权请求消息中,将于KC一同存在SIM卡中,同时也存于MSC/VLR中,当MS 初始接入时,都把CKSN一起送到MSC/VLR中,MSC/VLR将它与上一次使用的CKSN号进行校验,如果不一至,则在加密之前要进行鉴权过程,若CKSN=0则表示没有分配KC。

注:使用TMSI的目的是为了尽量减少在空中接口上使用IMSI,TMSI是由LAI和临时分给指定用户的一组数字组成(TIC),大多数无线接入是在MS已经注册的LAC中进行,因此TIC就足以对应一个MS,而LAI是一个隐含值,只有MS需要执行位置更新时才要使用完整的TMSI。TMSI是由MSC/VLR 管理,当MS首次在一个LAC中注册时才分配给它,并在离开该LAC时注销,TMSI的注销是自动的,当MS收到新的TMSI时自动取代原TMSI 。

11、在鉴权加密过程完毕之后,系统要向MS发出CM SERVICE ACCEPT消息或TMSI

REALLOCA TION(TMSI 的重新分配),此时MS开始进入呼叫建立过程,它的向系统发出的第一个呼叫控制消息是SETUP消息,该消息包含着被叫号码和所需业务等许多内容(对于数据业务这种说明可以比较长而且详细,对于补充业务还可以包含各种附加的信息),此时MSC就能够根据它来进行呼叫接续。当MSC收到SETUP消息后要分析出用户的请求并根据本身的能力(是否有该项业务,主叫用户原来注册的业务,以及网络本身的资源能力等等)核对是否能接纳这种需求,若某些项目不能通过,则向MS发出RELEASE COMPLETE (释放完成)的消息,呼叫建立就此失败,以后MS再将底层的连接释放掉,然后转入空闲状态。若可以通过,则MSC就向被叫端发出IAM消息,并向MS发出CALL PROCEEDING(呼叫继续)的消息表示主叫用户的呼叫请求已经通过了核对,呼叫正在进行之中。注:MSC在向被叫端送出IAM消息不用很久就会收到该网络发回的有关呼叫建立的报告,若成功MSC则会收到ACM(地址完成)消息,如果因某种原因(如对端占线或线路拥塞等等)呼叫建立失败MSC则会收到RELESASE(释放)消息。

12、在MSC向MS发出CALL PROCEEDING消息后,它就要根据业务请求,来激活

后续分配,即分配给用户TCH话音信道的流程。此时,MSC要向BSC发出ASSIGNMENT REQUEST 消息,要求BSC来给此次呼叫分配TCH话音信道。13、B SC在收到MSC的信道请求后,如果本身有资源的话就会向BTS发出Channel

Activation for TCH (请求激活TCH信道)的消息,该消息发出的也会启动本身的一个计时器TchnAcK,若该BTS尚有可用资源时,就会向BSC发出channel activation ack的响应,该消息中有对此信道物理信息必要的描述。若此时已无资源则返回RESOURCE FAILER的消息,而系统允许排队(要根据BSCQUEUEINGOPTION所指示的方法有ALLOWED/MSC 决定、FORCED/是由O&M驱使的、NOT ALLOWED)的话,则BSC向MSC发出QUEUING INDICATION(排队指示)的消息,并将指派请求消息放入队列同时打开T11定时器,如定时器超时则向MSC 发出CLEAR REQUEST消息。其中立即指派请求,BSC内切换,BSC间切换是不

许排队的,仅TCH资源请求(即指派请求和小区内部切换)允许根据内部优先级的的指示来按优先顺序给相应的请求分配在规定时间内被释放掉的信道,若排队长度或等候时间超出要求则请求将被拒绝。

14、在BSC收到BTS发出channel activation ack的响应后,就按照BTS所提供的该信

道的物理信息将它放在ASSIGNMENT COMMAND(指派命令)消息中(该消息中包含着信道类别如话音/数据的指示,信道的速率和类别及话音解码算法和透明传输指示时器,分配优先级以及CIC电路识别码)通过SDCCH信道发给MS。

15、在MS收到基站发来的ASSIGNMENT COMMAND消息后,将会就将收发信配置

调整到该TCH信道上,通过FACCH信道(此后传递信令,将都采用该信道形式,其实它就是利用的TCH信道,唯一不同是将TCH突发脉冲的标识位由0改为1,这种形式被称为偷祯)向系统发出SABM消息,系统在收到该消息后,会向BSC 发出ESTABLISH INDICA TION(建立指示消息),同初始分配信令信道一样,需系统再发回一条UA的证实祯。

16、当MS收到UA祯,并通过FACCH信道向系统发出ASSIGNMENT COMMPLETE

(分配完成)消息(其中带有呼叫请求的原因,CIC号,小区识别号,被选信道的速率和类型,选择的加密算法等等),若因无线接口失败、无线接口消息失败或因干扰和硬件问题无法识别指派信息等原因MS无法占用该指定的信道,MS就会向系统发出ASSIGNMENT FAILURE(指派失败),若因干扰等原因MS未收到系统发给它的指派命令或系统未收到MS的响应导致在BSC未收到MS返回的消息,则系统将该信道释放掉。

17、在BSC收到分配完成的信令后,一方面向MSC发出ASSIGNMENT COMPLETE

消息,一方面向BTS发出RF CHANNEL RELEASE(无线信道释放)消息,要求将以前占用的SDCCH信令信道资源释放掉,当BTS完成了信令信道的释放后,将发给BSC一条RF CHANNEL RELEASE ACK消息,BSC收到此消息后就认为该信道已返回到空闲状态下,该资源可以用于分配给新的信道请求。

18、此时如果MSC收到被叫端发回的ACM(ADDDRESS COMPLETE 地址完成)消

息后,它的反应是将ALERTING(待命)消息发给该MS(该消息可由MS翻译成回铃音),该消息属DTAP消息类别,若系统不应答而主叫也没有终止的动作,通过一定的时间,网络端会终止呼叫。

19、如此时被叫摘机,MSC会收到被叫端发回的ANSWER(应答)消息,此时主叫被

叫链路接通,MSC将发给MS一条CC协议中的CONNECT(接通)消息,MS收到该消息后将停止待命指示,接着向系统返回CC协议中的CONNECT ACKNOWLEDGE(接通确认),当系统收到此消息时,就开始记费。如被叫端是数据设备,在收到SETUP指示后可直接进入CONNECT 状态。这时呼叫建立过程完毕,双方进入通话或传送数据业务阶段。

20、若主叫先挂机时,则MS利用FACCH信道向MSC发出Disconnect(拆线)消息,在

MSC收到该消息后,则向被叫端发出RELEASE MESSAGE来通知对方通信终止,端到端的连接到此结束。但至此呼叫并未完全结束,因为系统与MS之间仍需保持一定的任务,如送收费指示等,当系统认为与MS之间的连接已无必要时,则向MS发出RELEASE(释放)消息,在MS收到该消息后会向系统发出RELEASE COMPLETE(释放完成消息),表呼叫已结束。

21、在MSC收到MS的释放完成消息后(或由于无线接口消息失败,无线链路失败或

因设备故障等原因导致呼叫进程非正常性释放而向系统发出CLEAR REQUEST消息)而发出CLEAR COMMAND消息(该消息中携带着此次呼叫清除的原因,如因

切换完成而清除因位置更新完成而清除等等),来释放所有信令链路.

22、B SC收到该命令后,一方面向MS发出RELEASE CHANNEL(释放信道)的消息,

表示将所有底层链路释放掉要求MS返回空闲模式下,随后即向BTS发出Deactivate SACCH消息来将要求释放下行的随路信令(即要求停止双方之间的信令联系),BTS 在收到此消息后即向BSC发出Deactivate SACCH ACK消息,同时开始释放SACCH 信道并将T3109定时器启动,在MS察觉到CT值等于0后即向BTS发出DISC消息,表示无线链路已拆除,MS已返回到空闲状态下即此时BSC端的计数器

RADIOLINKTIMEOUT无线链路超时值也已减为0,BTS收到DISC(拆线)消息后一方面向BSC发出RELEASE INDICA TION消息,一方面向MS发出UA的证实祯.(

23、B SC收到RELEASE INDICATION消息后,将定时器T3109复位,并启动定时器

T3111, ,随即并向BTS发出RF CHANNLE RELEASE(此时将T3111复位)要求释放TCH资源(此时才释放物理信道资源是为了给呼叫重建留有时间)当收到BTS返回的RF CHANNLE RELEASE ACK消息时,BSC就认为该信道资源已空闲可用于再分配了. 此时它还要将向MSC发出CLEAR COMPLETE消息,表无线链路已清除完毕.

24、M SC收到此消息后,则会通过发RLSD和收RLC来完成对SCCP连接的释放.到此

该信令流程已彻底完毕.

现针对北电计数器对信令进行分析

1.在收到channel request,和channel requried将此值将被记入计数器C1026、C1027。

2.在BSC收到channel requried将它记入计数器C1191的相应子计数器,TCH信道作信令

信道用时将1051/2加1。

3.在BSC发出channel activation后要同时启动两个记时器,分别为TimmAck(发channel

activation和收和channel activation ack 的限时,为系统自己定义的,不可人为改动),T3101(在发channel activation 和收establish indication的限时)。若BSC收到ImmediateassignmentReject消息时,此被记入计数器C1036中,导致的原因被记入计数器C1161的子计数器中。在TimmAck的时间内未受到信道激活证实的消息,系统都会启动一T3122的限时器,在它规定的时间内不接受该MS的信道请求。

4.在BSC发出Immediate assign command消息时这将被记入计数器C1192相对应的子计

数器中。

5.在BSC收到establish indication消息,会根据不同的建立原因将相应的C1193的子计数

器加一。同时将T3101复位,若在T3101规定的时间内仍未收到该消息,则记做T3101溢出,计数器C1163/5加一.

6.MSC向BSC发出connection confirmed消息,BSC收到后将计数器C1104加1,若无资

源则发出SCCP refused消息,计数器C1106加1。

7.在BSC收到ASSIGNMENT REQUEST消息后,则将根据不同的接入原因会被记入计

数器C1191相应的子计数器中。

8.,计数器C1039加1

9.在BSC 发ASSIGNMENT COMMAND此时计数器C1051/0加1,BSC同时启动定时器

T3107(发ASSIGNMENT COMMAND时启动,收ASSIGNMENT COMPLETE时复位),建议在信道资源紧张的地区可适当减小该值。

10.在系统在收到MS返回的SABM消息后,会向BSC发出ESTABLISH INDICA TION(建

立指示消息),此时计数器1193相应的子计数器加1。

11.BSC收到ASSIGNMENT COMMPLETE消息后将计数器C1050加1并将T3107复位若

收到MS的ASSIGNMENT FAILURE(指派失败),BSC在收到该消息后就将计数器C1055加1。系统未收到MS的响应导致在BSC的定时器T3107时限内未收到MS返

回的消息,则系统将T3107复位记入计数器C1087。

12.在系统完成BTS完成了信令信道的释放后,发给BSC一条RF CHANNEL RELEASE

ACK消息,BSC收到此消息后就记入计数器C1163/20。

路测信令讲解

1.某地主要由4173、4081小区覆盖,上述两个小区及相邻小区同属于LAC:13588。D T测试过程中,MS当前服务小区为4173,当检测到有Level 更强的邻区时,BSC指示MS切换(发起DL:HANDOVER COMMAND),此时发生了连续的三次切换失败(UL:HANDOVER FAILU RE)。虽然本例中经历了连续三次切换失败,MS仍然没有掉话(MS还在发送测量报告),但是对连续的切换失败应该给予很大的重视。导致连续的切换失败的原因可能是目标小区的T CH信道拥塞,也可能是目标小区的BCCH载频与TCH载频的发射功率没有调平,导致BCCH 与TCH的Level值相差很大而造成切换失败。 第三层信令消息流程: DL:HANDOVER COMMAND UL:HANDOVER ACCESS UL:HANDOVER COMPLETE UL:MEASUREMENT REPORT UL:HANDOVER FAILURE DL:SYSTEM INFORMATION TYPE 5 从切换的两个小区来看,4173向4081切换,是不同步切换,所以BSC应该在MS发出U L:HANDOVER ACCESS消息后,接着发出DL:PHYSICAL INFORMATION,指示MS切换至目标小区的Timing Advance,即MS与切换目标小区的距离。同时,在MS发出UL:HANDOVER COM PLETE之后,再发一条DL:PHYSICAL INFORMATION。在本例中BSC没有发出这两条消息,这也是导致发生切换失败的原因之一。 2.MS呼叫失败. 经检查信令发现有立即指派拒绝(immediate assignment reject)消息系统发现无可 用信道.很可能是因为系统拥塞引起的 3.一次正常的LAR&RAU信令流程如下: Direction Type Layer 3 Message UL RR Channel Request DL RR Immediate Assignment UL MM Location Updating Request UL RR Classmark Change UL RR GPRS Suspension Request DL MM Authentication Request UL MM Authentication Response DL MM Identity Request UL MM Identity Respone DL MM Location Updating accept UL MM TMSI Realocation Complete DL RR Channel Release UL GPRS MM Routing Area Update Request UL RR Channel Request

VoLTE信令流程详解

V o L T E信令流程详解 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

V O L T E信令流程 VOLTE是基于SIP协议的语音通话,所有与IMS交互的信令全部为SIP信令,在理解VOLTE信令方面必须对SIP信令进行了解,EPC只是做为业务承载体。由于SIP信令是以加密方式传输,SIP信令只有在CN侧和终端侧才能解码,基站CDL无法记录SIP信令,同时CDL无法解码较多NAS层直传消息,所以本文中的信令说明部分不结合CDL信令进行说明注册流程及重要信令详解 SIP提供了发现机制,如果用户要发起和另一个用户的会话,SIP必须发现可到达目的用户的当前主机,注册将记录地址URI和一个或者多个联系地址相关联,这样才能进行呼叫等业务。 严格意义上说,SUBSCRIBE和NOTIFY过程不属于注册过程,但由于该过程在注册完成后紧跟着出现,所以本文将该过程放在注册流程中进行说明。用户的注销过程与注册过程相似,主要就是注销请求中,expire值为0,所以本文中不再进行单独说明,注销过程无SUBSCRIBE信令,是因为UE注册时已有SUBSCRIBE。 信令说明如下: UE进行Attach,建立QCI=9的默认承载,并使用IMSAPN建立PDN连接; 建立立QCI=5的默认承载,用于传送SIP信令; UE通过QCI=5的默认承载向IMS发起注册请求; P-CSCF通过HSS获知用户信息不在数据库中,便向终端代理回送401Unauthorized质询信息,其中包含安全认证所需的令牌; 终端将用户标识和密码根据安全认证令牌加密后,再次用REGISTER消息报告给P-CSCF服务器; P-CSCF将REGISTER消息中的用户信息解密,验证其合法后,IMS核心网将该用户信息登记到数据库中,并向终端返回成功响应消息200OK; 用户向IMS订阅注册事件包 服务器应答订阅成功 IMS服务器发送notify消息,由于订阅的用户已经注册,所以IMS服务器回应 Notify消息中,状态为active,同时携带XML信息 终端发送Notify200表示接收成功 注册过程测试信令载图如下: 注销过程测试信令截图如下: ActivateDefaultEPSBearerContextRequest(QCI=5) 该信令是用于建立QCI=5的默认承载,所有SIP信令都通过QCI=5的承载传输,该信令的内容已在该信令前的RRC重配置中附带下来。 主要说明如下: 该信令中主要是关注QCI等级,必须是QCI=5,才能传输SIP信令,ERABID=6 REGISTER(1STSipRegisterRequest)®ISTER401(Unauthorized) REGISTER信令是用于网络注册,建立关联 主要说明如下: 这是用户的第一个REGISTERREQUST信令,所以鉴权方面部分内容为空,需要网络回应后才能补齐 REGISTER401信令是用于向终端回送401Unauthorized质询信息,其中包含安全认证所需的令牌,令牌对应用户第一个REGISTERREQUST信令中鉴权摘要为空的部分,并指明算法,主要说明如下:

(完整版)LTE路测问题分析归纳汇总

LTE路测问题分析归纳汇总 一、Probe测试需要重点关注参数 无线参数介绍 ?PCC:表示主载波,SCC:表示辅载波,目前LTE(R9版本)都采用单载波的,到4G(R10版本)有多载波联合技术就表示辅载波。 ?PCI:物理小区标示,范围(0-503)共计504个。 ?RSRP:参考信号接收电平,基站的发射功率,范围:-55 < RSRP <-75dbm。?RSSQ:参考信号接收质量,是RSRP和RSSI的比值,当然因为两者测量所基于的带宽可能不同,会用一个系数来调RSRQ=N*RSRP/RSSI。 ?RSSI:接收信号强度指示,表示UE所接收到所有信号的叠加。 ?SINR:信噪比,是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值,Average SINR>20 ?Transmission mode:传送模式,一共有8种,TM1表示单天线传送数据,TM2表示传输分集(2个天线传送相同的数据,在无线环境差(RSRP和SINR差)情况下,适合在边缘地带),TM3表示开环空间复用(2个天线传送不同的数据,速率可以提升1倍),TM4表示闭环环空间复用,TM5表示多用户 mimo,TM6表示rank=1的闭环预编码,TM7表示使用单天线口(单流BF),TM8表示双流BF。Transmission mode=TM3。

?Rank Indicator:表示层的意思,rank1表示单层,速率低,rank2表示2层,速率高。Rank Indicator = Rank 2 ?PDSCH RB number:表示该用户使用的RB数。这个值看出,该扇区下大概有几个用户。(20M带宽对应100个RB,15M带宽对应75个RB,10M带宽对应50个RB,5M带宽对应25个RB,3M带宽对应15个RB,1.4M带宽对应6个RB)多用户可以造成速率低原因之一。 ?PDCCH DL Grant Count:下行时域(子帧)调度数,PDCCH DL Grant Count >950。例如:上下行时域调度数的算法:一个无线帧是10ms,1s就有100个无线帧, 按5ms的转换周期,常规子帧上下行配比1:3,特殊子帧3:9:2来计算,每秒下行满调度数=3*100*2=600。每秒上行满调度数=1*100*2=200. 按5ms转换周期,常规子帧上下行配比1:3,特殊子帧10:2:2来计算,每秒下行满调度数=(3+1)*100*2=800。每秒上行满调度数=1*100*2=200;特殊子帧10:2:2时DwPTS也可以用来做下载。 ?PCC MAC :下行MAC层速率:客户要求:PCC MAC>85Mbps。 ?Serving and Neighbor cells 这里最好是只显示serving cell,如果显示了neighbour cell,那么neighbour cell 的RSRP与serving cell的RSRP 相差15 dbm。 ?SRS:探测参考信号 天线测量介绍 ?TX antenna 2表示基站有2个发射天线。

cds测试软件第三信令详细分析

第三层(Layer 3)信令 第三层信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,系统信息总共有8个类型,Type1—4只出现在待机状态下,Type5—8只出现在通话状态下: 1、System Information Type1 小区广播信息,有该小区自身的频点,RACH的一些参数设置,祥见上图。 2、System Information Type2

待机模式下小区的测量频点,(同频段,移动网有两个频段,GSM900和DCS1800), 在通话模式下有另外定义的测量频点,也就是说一个小区可以在待机时做测量频点,而通话时不做测量频点,允许小区重选而不允许切换,反之也可以只允许切换不允许小区重选也可以,不过通常情况下待机和通话时的测量频点是一致的。 3、System Information Type2ter 待机模式下小区的测量频点,(异频段,移动网有两个频段,GSM900和DCS1800), 4、System Information Type 3

小区广播信息,可以看到ATT、T3212、ACC、CRO、CRH以及ACCMIN等,祥见上图5、System Information Type 4

小区广播信息,在这里可以看到小区的CRH、CRO、ACCMIN、MAXRET、CB、CBQ、PT 等一些参数的设置值,祥见上图。 6、System Information Type 5

激活模式下服务小区测量频点,(同频段,移动网有两个频段,GSM900和DCS1800) 只有服务小区有做该小区的测量频点,才会测量到该小区的信号,否则在邻区列表中不会看到该小区,也不会切换。在我们平时路测当中,经常遇到强信号不切换,如果做了测量频点,可以很明了地看到有一个强的邻区信号,但是要是没有做测量频点的话就比较隐性。 7、System Information Type 5ter 激活模式下服务小区的测量频点,(异频段,移动网有两个频段,GSM900和DCS1800)8、System Information Type 6

(整理)华为CDMA信令流程详解.

1 信令分析 在分析问题时,请参照正确的流程,逐步检查到底哪一条消息没有收到,并且分析上一条消息里面携带的内容,从而定位原因所在。 1.1 主被叫呼叫建立流程 1.1.1正常信令 在分析接入问题时,请参照上图所示正确的流程,逐步检查到底哪一条消息没有收到,且分析上一条消息里面携带的内容,从而定位原因所在 【注】Abis-BTS setup消息里面,携带了接入的小区、扇区、walsh码、频点。 关键点1:BSC向MSC发送CM Service Request后,是否收到Assignment Request。如果没有收到MSC发的Assignment Request,等到6s后定时器超时,基站会给手机发送release order.这种情况是A1接口失败。 关键点2:BTS是否向BSC发送Abis-BTS Setup Ack。Abis如有问题,如误码高、信令链路带宽不足等,将会体现为Abis无法建链成功,话统原因“指配资源失败” 关键点3:是否发送ECAM(扩展信道指配消息)消息。如Abis正常建链,但却没有发送ECAM消息,在话统里面会体现为“指配资源失败”,可能原因是walsh、CE、power不足。 关键点4:是否在F-DSCH发送order message,如没有收到,说明捕获业务信道前导帧

失败。 关键点5:是否发送Assignment complete。如发送表明呼叫建立成功。如没有收到,在话统里面体现为“信令交互失败”。 被叫流程与主叫几乎完全一致,被叫中的Paging Response相当于主叫的origination message。 1.1.2典型异常信令 1、A1接口失败。 2、传输误码率高导致指配资源失败

TD-LTE测试内容和信令解析

TD-LTE测试内容和信令解析 1.测试内容 现阶段通常涉及到的测试按测试模式来分可分为室外测试与室内测试,按测试内容来分通常可分为覆盖测试与业务测试。由于室外与室内的覆盖测试及业务测试大部分操作都相同,所以本节以室外测试为例,介绍覆盖测试与业务测试的操作流程。 1.1覆盖测试 覆盖测试主要是通过CNT测试软件了解记录覆盖区域的信号强度、信号质量、信干噪比(SINR)。 1.1.1覆盖测试操作 通常进行覆盖测试时终端处于空闲状态,测试时先按上述文档介绍的内容进行正确的设备连接,开始记录测试文件,然后按既定路线进行路测,记录路线上的信号覆盖情况。 1.1.2覆盖测试关注指标 进行覆盖测试时,我们通常关注以下三个问题。第一,测试路段是哪个小区覆盖;第二,该路段覆盖信号强度如何;第三,该路段覆盖信号质量如何。 首先,从测试软件的LTE Cell Information窗口我们可以看到当前的主覆盖小区,如下图。 图15 LTE Cell Information窗口 正确导入小区信息数据后,我们可以在上图窗口中看到当前服务小区的名称,CellID和PCI,这些参数都能标识当前为终端提供服务的是哪个小区。更进一步,我们打开测试软件主菜单Presentation->LTE->LTE Server Cell Information窗口可以看到更详细的服务小区信息,如下图。

图16 LTE Server Cell Information窗口 确认了主服务小区之后,我们可以看到该小区在测试路段的覆盖强度,就是参数RSRP(参考信号接收功率),在图15和图16的两个窗口中均可以看到这个参数,更直观的方法,则是在MAP窗口通过路测覆盖图显示出来,如下图所示。 图17 RSRP覆盖图 现阶段道路覆盖要求RSRP尽量保持在-110dbm以上,为保证业务质量,作为优化的目标,我们尽可能的通过调整,使RSRP尽量保持在-105dbm以上。 对于覆盖路段的信号质量,目前软件不能采样较合适的参数直观显示。由于LTE小区间的干扰对信号质量影响较大,我们可以通过LTE Cell Information窗口的邻区信息间接获知信号质量的大概情况。根据LTE道路覆盖的要求,除正常的切换带外,最好LTE Cell Information 窗口只显示一个服务小区的信息(该窗口对邻区信号的显示有一定阀值控制,当主服务小区较邻区信号强很多的时候邻区信号不显示)。若该窗口中显示了几个小区的信号(如下图),信号强度相差不大,则表示该路段信号覆盖不纯净,信号质量较差。另外,对处于业务状态的终端,我们可以通过下行的BLER或上行的发射功率间接认识该处无线环境的信号质量。

WCDMA信令分析(详细解释层三信令及涉及常用参数)-信令解码

呼叫信令详解(前后台) 呼叫流程信令图 起呼过程分四个阶段:RRC连接建立,直传信令连接建立,RAB建立,震铃接通建立RRC连接 直传信令连接建立(含鉴权和加密)

RAB建立过程

振铃,接通 RRC建立过程 (1)UE 在取得下行同步后,向NodeB发送SYNC_UL,接收到NodeB 回应的FPACH 信息后,在RACH 信道上向RNC 发送RRC Connection Request 消息,发起RRC 连接建立过程。 (2)RNC 准备建立RRC 连接,分配建立RRC 连接所需要的资源,并发送一条Radio Link Setup Request 消息给NodeB。 (3)NodeB 配置物理信道,在新的物理信道上准备接收UE 消息,并给RNC 发送一条

Radio Link Setup Response 响应消息。 (4)RNC 通过ALCAP 协议,建立Iub 数据传输承载。Iub 数据传输承载通过AAL2 的绑定标识与DCH 绑定在一起。建立Iub 数据传输承载需要NodeB 确认。 (5)(6)通过Downlink Synchronisation 和Uplink Synchronisation. 控制帧,NodeB 与RNC 为Iub 数据传输承载建立同步,此后NodeB 开始DL 发送。(7)RNC 在FACH 信道上发送RRC Connection Setup 消息给UE。 (8)UE 在DCCH 上发送RRC Connection Setup Complete 消息给RNC,RRC 连接建立完成 建立初始直传/上下行直传 (9)UE 在DCCH 上给RNC 发送一条Initial Direct Transfer(CM Service Request)消息,该消息包括了UE 请求的业务类型等信息,例如12.2K语音业务。 (10)RNC 发起初始到CN 的信令连接,并发送一条Initial UE Message 消息给CN,通知CN 关于UE 请求的业务等内容。 通过初始直接传输过程后,可使用该信令连接传输UE 和CN 之间的NAS 消息。 (11)CN 发送RANAP 消息Direct Transfer (Authentication Request)到RNC,要求对UE 进行鉴权。 (12)RNC 发送RRC Downlink Direct Transfer(Authentication Request)消息给UE。NAS 消息由UTRAN 透明的传输到UE (13)UE 发送RRC Uplink Direct Transfer Message(Authentication Response)消息给RNC,告知网络侧UE 已经按照鉴权要求完成了鉴权。 (14)RNC 发送RANAP 消息Direct Transfer 给CN,将UE 的NAS消息转发给CN。NAS 消息被透明的传输到UTRAN。 安全模式控制 (15)CN 发送RANAP 消息Security Mode Command 给RNC,要求终端进行安全模式控制。 (16)RNC 在下行DCCH 上发送RRC Security Mode Command 给UE,开始/重启加密过程。 (17)UE 成功应用新的加密方式后,在上行DCCH 上发送RRC SecurityMode Complete 给RNC (18)RNC 发送RANAP 消息Security Mode Complete 给CN,双方完成安全模式控制。建立RAB (19)(20)(21)(22)上行和下行的直接传输过程,NAS 要求传输数据, UE 向网络侧说明Bearer Capability 以及Called Number 等内容。 (22)CN 向RNC 发送RANAP 消息Common ID,告知RNC 该UE 的IMSI。 (23)CN 向RNC 发送RANAP 消息Radio Access Bearer Assignment Request ,发起RAB

信令内容解析

CELL SETUP REQUEST value NBAP-PDU ::= initiatingMessage : { procedureID { procedureCode 5, ddMode tdd }, criticality reject, messageDiscriminator common, transactionID longTransActionId : 1, value CellSetupRequestTDD : { protocolIEs { { id 124, criticality reject, value Local-Cell-ID : 0 }, { id 25, criticality reject, value C-ID : 14021 }, { id 43, criticality reject, value ConfigurationGenerationID : 1 }, { id 280, criticality reject, value UARFCN : 10080 }, { id 23, criticality reject, value CellParameterID : 110 }, {

id 131, criticality reject, value MaximumTransmissionPower : 330 }, { id 279, criticality reject, value TransmissionDiversityApplied : FALSE }, { id 274, criticality reject, value SyncCase : 1 }, { id 394, criticality reject, value Synchronisation-Configuration-Cell-SetupRqst : { n-INSYNC-IND 1, n-OUTSYNC-IND 20, t-RLFAILURE 50 } }, { id 359, criticality reject, value ConstantValue : 0 }, { id 384, criticality reject, value ConstantValue : 0 }, { id 381, criticality reject, value ConstantValue : 0 }, { id 287, criticality reject, value TimingAdvanceApplied : no }

LTE 空口信令流程详解

LTE空口信令流程详解以及相关优化案例汇总1、附着信令流程 1.1 、Attach附着信令流程 (统计时延:红色的为开始和结束信令) EPS MM Attach request EPS MM Unknown(0x0734) UL CCCH rrcConnectionRequest DL CCCH rrcConnectionSetup UL DCCH rrcConnectionSetupComplete DL DCCH rrcConnectionReconfiguration DL DCCH dlInformationTransfer UL DCCH rrcConnectionReconfigurationComplete EPS MM Security protected NAS message EPS MM Authentication request EPS MM Authentication response EPS MM Unknown(0x077B) UL DCCH ulInformationTransfer DL DCCH dlInformationTransfer EPS MM Security protected NAS message EPS MM Security mode command EPS MM Security mode complete EPS MM Unknown(0x0790) UL DCCH ulInformationTransfer DL DCCH ueCapabilityEnquiry UL DCCH ueCapabilityInformation DL DCCH securityModeCommand DL DCCH rrcConnectionReconfiguration UL DCCH rrcConnectionReconfigurationComplete EPS MM Security protected NAS message EPS MM Attach accept EPS SM Activate default EPS bearer context request EPS SM Activate default EPS bearer context accept EPS MM Attach complete EPS MM Unknown(0x072D) UL DCCH ulInformationTransfer DL DCCH rrcConnectionReconfiguration UL DCCH rrcConnectionReconfigurationComplete

LTEvolte投诉处理流程大全(SEQ使用方法+信令分析详解+投诉案例处理)-1120

处理流程以及数据提取方法一、投诉处理流程 二、SEQ提取数据方法 VOLTE用户投诉处理(支持实时和历史记录详单) 1、登录后,SQM》投诉用户单据查询 2、投诉用户单据查询-跟踪号码 输入号码136XXXX0505

3、投诉用户单据查询-数据查询结果(均可钻取详单) 4、投诉用户会话跟踪-创建跟踪任务(提取信令) 5、投诉用户会话跟踪-实时跟踪结果 6、信令详单提取

7、语音质量单据查询(这功能暂时我们没权限) 可针对单号码进行语音、视频质量查询,查询单号码某次通话过程中GM\S1-U口丢包情况、是否存在单通、单通时长,同时可以通过5S分片具体定位丢包时间点。

三、VOLTE根据信令分析 TD-LTE__VoLTE-SIP完整信令解析 对关键流程的解释如下表所示: 1)主叫发INVITE消息,触发主叫RRC建立过程,INVITE消息中包含被叫方的号码,主叫方支持的媒体类型和编码等。

2)主叫建立SRB2信令无线承载,QCI9默认承载和QCI5 SIP信令无线承载。例如在本例中,信令无线承载SRB-ID=2;QCI=9的默认承载的eps-BearerID=5,DRB-ID=3;QCI=5的SIP信令承载的eps-BearerID=6,DRB-ID=4 3)核心网侧收到主叫的INVITE消息以后,给主叫发送INVITE的应答消息,INVITE 100表示正在处理中。 4)核心网向处于空闲态的被叫发INVITE消息,由于被叫处于空闲态,所以核心网侧触发寻呼消息,寻呼处于空闲态的被叫用户 5)被叫建立SRB2信令无线承载,QCI9默认承载和QCI5 SIP信令无线承载 6)核心网在QCI5 RB承载上,给被叫用户发送INVITE消息 7)被叫对INVITE消息的响应 被叫收到寻呼但未收到INVITE请求,核心网问题 8)被叫方通知主叫方,自己所支持的媒体类型和编码。 9)主叫建立QCI1的数据无线承载,用于承载语音数据,使用UM方式。例如本例中,eps-BearerID=7,DRB-ID=5。关键参数包括头压缩参数,TTI Bundling,SPS。DRX参数也会按照语音业务的要求进行重新配置。 10)被叫建立QCI1的数据无线承载。例如本例中QCI1承载的eps-BearerID=7,DRB-ID=5。 11)核心网通知主叫终端的SM层,建立QCI=1的承载,例如:eps-BearerID=7 12)主叫收到被叫的INVITE 183消息 被叫上发sip183后,在激活EPS承载之前,终端上报了1条A3测报,激活EPS后,发生切换重配置消息中释放了QCI=1的DRB。起呼时MME进行激活EPS承载流程过程中,恰好发生S1切换时,由于EPS承载建立未完成,MME在切换准备阶段,对下发到目标小区的切换准备的请求消息中不携带QCI=1的VOLTE专载,导致VOLTE专载源小区完成的情况下,在目标小区被释放,切换完成后呼叫中断,重配置消息释放DRB承载,无线网与核心网配合问题 13)核心网通知被叫终端的SM层,建立qci=1的承载 14)主叫收到INVITE 183消息以后,发送确认消息PRACK,启动资源预留过程, 15)被叫收到主叫的PRACK以后,返回PRACK 200响应,启动资源预留过程, 16)主叫收到被叫的PRACK 200以后,发送UPDATE消息,标明资源预留成功。

无线侧简单QACT信令分析流程

无线侧简单QCAT信令分析流程 一、软件安装部分 1、安装软件介绍 双击安装QCAT.06.30.22.00,安顺序要求下一步安装到结束就可以。安装结束后在电脑程序中查询QCAT单击就可以进入软件,软件可以同时打开多个。 2、软件页面介绍 打开软件后出现的页面如下:

第一次打开软件时需要在配置页面设置信令类型按颜色显示,方便分析,具体如下: 在Configuration中持续点击Use Friendly Viewer Colors待出现下拉菜单时由默认的false 改成true。 按上图1到4步骤打开测试数据,其中测试数据可以同时打开多个,也可以一次打开1次,主要看电脑性能。

打开测试数据后默认状态会显示数据所有信令,需要按点击上图1位置对多余信令进行筛选,图2为需要显示的信令,按需选择;也可以通过图3位置输入代码查找相应的信令。Packets页面信令栏解释: #:信令编号 Time :信令记录时间 Type:信令代码 Description:信令名称 Subtitle:信令具体名称 Direction: BS<<>>MS(下行) Size:信令大小 二、问题分析部分 1、确认丢包位置 调取0x1569 IMS RTP Packet Loss信息可以查看丢包时间点及个数,正常RTP包20ms 一个,从人耳感知来讲1s以上丢包就有可能会感觉出现模糊或颤音断续丢字等现象,因此着重关注连续出现丢包数大于50个的,以下为0x1569 IMS RTP Packet Loss信息: 2016 Jan 14 21:45:15.036 [37] 0x1569 IMS RTP Packet Loss Version = 4 Number Lost = 126 Sequence Number = 25726 SSRC = 69F9C823

GSM路测信令分析宝典

目录 一、第三层信息(GSM Layer 3 )的分类 2 1. CC层 3 2、MM层 3 3、RR层4 二、接续流程 5 2.1、移动主叫流程 5 2.1.1、信道请求Channel Request(Rach)MS→BTS7 2.1.2 申请信道Channel Required( BTS→BSC) 8 2.1.3 信道激活Channel Activation (BSC→BTS) 8 2.1.4信道激活证实Channel Activation ACK(BTS→BSC)8 2.1.5 立即指配命令immediate assignment (BSC→BTS)8 2.1.6 立即指配immediate assignment (BTS→MS) AGCH 8 2.1.7 CM业务请求CM service request (MS→BTS→BSC→MSC)9 2.1.8 无编号确认UA(SDCCH)9 2.1.9 鉴权Authentication Request MSC→BSC→BTS→MS9 2.1.10 TMSI再分配命令TMSI Reallocation10 2.1.11 建立Setup10 2.1.12呼叫接续Call Proceeding 10 2.1.13指配请求Assigment Activation BSC→BTS11 2.1.14 信道激活Assigment Activation ACK BTS→BSC11 2.1.15 分配命令Assigment Command11 2.1.16 SABM(设置异步平衡模式)Layer2 (FACCH)11 2.1.17 建立指示Establish Indication BTS→BSC12 2.1.19 分配完成Assigment Complete12 2.21振铃提醒Alerting 12 2.22连接Connect12 2.1.24测量报告Measurement Report12 2.1.25撤销连接Disconnect12 2.1.26 释放Release13 2.1.27 释放完成Release Complete13 2.1.28 清除命令Clear command13 2.1.29 释放信道Channel Release13 2.1.30 DEACTIVE_SACCH(慢速随路控制信道)13 2.1.31 DISC13 2.1.32 UA13 2.1.33 释放指示13 2.1.34 RF信道释放13 2.1.35 RF信道释放确认13 2.1.36 清除完成13 2.1.37 SCCP释放13 2.1.38 SCCP释放确认13 2.2、手机被叫流程的区别14 三、第三层(Layer 3)信令详解16 1、System Information Type1 16

LTE信令解析

AttachAttempt 附着尝试 UE发送Attach Request消息请求附着到数据业务。AttachSuc 附着成功 UE发送Attach Request消息后,在45秒内发送Attach Complete消息,表示附着数据业务成功。 AttachFail 附着失败 UE发送Attach Request消息后,在45秒内未发送Attach Complete消息,表示附着数据业务失败。 DetachAttempt 去附着尝试 UE发送Detach Request消息或基站发送Detach Request消息请求去附着到数据业务。 DetachSuc 去附着成功 "以下情况表示UE去附着数据业务成功: UE向基站发送Detach Request消息后,在15秒内收到基站发出的Detach Accept消息。基站向UE发送Detach Request消息后,在15秒内收到UE发出的Detach Accept消息" RRCSetupReq RRC(Radio Resource Control)连接建立请求 UE发送RRC Connection Request消息请求建立RRC连接。 RRCSetupSuc RRC连接建立成功 MS发出RRC Connection Request,并且2.5s 内UE发出RRC Connection Setup Complete,则触发该事件。 RRCSetupFail RRC连接建立失败 MS发出RRC Connection Request,并且2.5s 内UE没有发出RRC Connection Setup Complete,或者收到RRC Connection Reject,则触发该事件。 ERABSetupAttempt ERAB(Evolved Radio Access Bearer)建立尝试如果RRC Connection Reconfiguration消息中包含特定的信元(“drb-ToAddModList”或“drb-ToAddModifyList”),并且不包含信元“mobilityControlInfo”,表示ERAB建立尝试。ERABSetupSuc ERAB建立成功 ERABSetupAttempt事件发生后,UE在1秒内收到RRC Connection Reconfiguration Complete消息,并且消息中的信元“RRC-TransactionIdentifier”值与信元“RRC Connection Reconfiguration”信元值相同,则表示ERAB建立成功。 ERABSetupFail ERAB建立失败 "以下情况表示ERAB建立失败:ERABSetupAttempt事件发生后,1秒内UE没有收到RRC Connection Reconfiguration Complete消息。 ERABSetupAttempt事件发生后,UE收到RRCConnectionReestablishmentRequest消息。" ERABNormalRel ERAB正常释放 "以下情况表示ERAB正常释放: UE收到Deactivate Eps Bearer Context Request消息后,收到了RRC Connection Reconfiguration消息,且消息中有信元“drb-ToReleaseList”。 UE收到Deactivate Eps Bearer Context Request消息后,收到了RRC Connection release 消息。 UE收到MME的DETACH REQUEST消息,或者向网络侧主动发出DETACH REQUEST消息后收到RRC release消息。 UE没有收到DEACTIVATE EPS BEARER CONTEXT REQUEST消息和MME的DETACH REQUEST消息,也没有向网络侧主动发出DETACH REQUEST消息,但收到了RRCConnection release消息并且前4s没有APP层速率传输。" ERABAbnormalRel ERAB异常释放 "以下情况表示ERAB异常释放: UE没有收到DEACTIVATE EPS BEARER CONTEXT REQUEST消息和MME的DETACH REQUEST消息,也没有向网络侧主动发出DETACH REQUEST消息,但收到了RRCConnectionReconfiguration消息,且其中有信元“drb-ToReleaseList”。 UE没有收到DEACTIVATE EPS BEARER CONTEXT REQUEST消息和MME的DETACH REQUEST消息,也没有向网络侧主动发出DETACH REQUEST消息,但收到了

信令流程与GT翻译对应关系详解

信令流程与GT翻译详解 MSC与HLR、MSC间进行通信,用到MTP、SCCP、TCAP、CAP各层协议栈,其中MTP层只识别各设备的信令点,SCCP层只识别MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC等各个网元的设备识别码(俗称设备号),IMSI、MSISDN等。所以如果要实现MSC与HLR、MSC、SCP(智能网)等网元的通讯(信令流程传递的过程)。就要把SCCP层识别的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC设备识别码、IMSI、MSISDN翻译成相应网元信令点,实现个网元之间的通信和业务通信,即所谓的GT翻译(GT指向)。如下图所示即各个网元间的协议通信模型。 下面用位置更新流程中使用的IMSI,被叫分析流程中使用的MSISDN以及在各网元传递消息时使用的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC识别码,结合信令流程特点分析各网元间的GT翻译(即把各类转换成相应设备的信令点)是如何实现的。

图1:新用户开机位置更新与相关号码GT 翻译对应关系流程分析 1、新用户第一次开机,收到该小区的广播消息中携带的LAI+CGI 值,向网络侧发起位置更新请求消息,消息中携带IMSI 号码,LAI+CGI 信息。 2、MSC/VLR 根据手机上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI (IMSI 号码对HLR 信令点的GT 翻 译) 、MSC 根据IMSI 翻译出的HLR 信令点向HLR 请求识别号,IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR 识别码,并建立该移动台IMSI 、MSISDN 号码与 MSC/VLR 识别码的对应关系。以便进行语音呼叫。(即移动台完成了HLR 里的位置登记) 图2 :跨局位置更与相关号码对应关系流程分析 1、移动台漫游到MSC/VLR (2)局,收到该小区BCCH 信道广播消息中携带的LAI+CGI 值,发现与本移动台存储的LAI 值不符,触发位置更新请求,向MSC/VLR (2)请求位置更新,消息中携带该移动台的IMSI 号码 2、MSC/VLR (2)根据移动台上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI 、MSC (2)向HLR 请求该用户的用户MSC/VLR IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR (2 )识别码,并建立该移动台IMSI 、MSISDN 号码与(2)识别码的对应关系。以5、HLR 把该MSC/VLR (2)识别号码翻译成MSC/VLR (2)的信令点,找到该MSC/VLR (2),向MSC/VLR 插入该用户的用户数据。并在消息中携带该HLR 的识别号。 6、MSC/VLR (2)把HLR 识别号码翻译成HLR 信令点,向HLR 发送插入数据响应消息8、HLR 5、HLR 把该MSC/VLR 翻译成MSC/VLR 的信令点,找到该MSC/VLR ,向MSC/VLR 插入该用户的用户数据(HLR 中需要做的MSC/VLR 识别号与 MSC/VLR 信令点的GT 翻译) 7、HLR 根据记录的MSC/VLR (1)识别号,翻译成MSC/VLR (1)的信令点,向MSC(1)发送删除用户数据的消息。消息中携带HLR 识别号。

层3信令分析及详解

Layer 3信令分析及流程详解汇编

Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter,5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、2bis、2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示: 上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1

说明:系统信息类型1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0. 对于GSM1800情况点不同。由于频点太多,不用位图,而用别的编码方式,FORMAD-IND=?来描述编码方式,后面跟一串编码比特来表示。 第二、RACH控制参数,描述的两个数据为;ACC、EC,ACC称为接入控制等级,分为0-9与11-15,0-9表示普通级,所有移动台被定义为0-9,11-15为优先级,10表示EC,如果此位取0,表示所有移动台允许进行紧急呼叫,取1时,只有11-15优先级的移动台可以进行紧急呼叫。 CB——小区禁止标志,用一个比特表示。

相关主题
文本预览
相关文档 最新文档