提高超声成像的分辨率
- 格式:pdf
- 大小:6.24 MB
- 文档页数:10
552IEEETRANSACTIONSONIMAGEPROCESSING,VOL.18,NO.3,MARCH2009
LowBit-RateImageCompressionviaAdaptive
Down-SamplingandConstrainedLeast
SquaresUpconversion
XiaolinWu,SeniorMember,IEEE,XiangjunZhang,andXiaohanWang
Abstract—Recently,manyresearchersstartedtochallengealong-standingpracticeofdigitalphotography:oversamplingfollowedbycompressionandpursuingmoreintelligentsparsesamplingtechniques.Inthispaper,weproposeapracticalap-proachofuniformdownsamplinginimagespaceandyetmakingthesamplingadaptivebyspatiallyvarying,directionallow-passprefiltering.Theresultingdown-sampledprefilteredimagere-mainsaconventionalsquaresamplegrid,and,thus,itcanbecompressedandtransmittedwithoutanychangetocurrentimagecodingstandardsandsystems.Thedecoderfirstdecompressesthelow-resolutionimageandthenupconvertsittotheoriginalresolu-tioninaconstrainedleastsquaresrestorationprocess,usinga2-Dpiecewiseautoregressivemodelandtheknowledgeofdirectionallow-passprefiltering.Theproposedcompressionapproachofcollaborativeadaptivedown-samplingandupconversion(CADU)outperformsJPEG2000inPSNRmeasureatlowtomediumbitratesandachievessuperiorvisualquality,aswell.Thesuperiorlowbit-rateperformanceoftheCADUapproachseemstosuggestthatoversamplingnotonlywasteshardwareresourcesandenergy,anditcouldbecounterproductivetoimagequalitygivenatightbitbudget.
IndexTerms—Autoregressivemodeling,compressionstandards,imagerestoration,imageupconversion,lowbit-rateimagecom-pression,sampling,subjectiveimagequality.
I.INTRODUCTIONOVERthepasthalfcentury,theprevailingengineering
practiceofimage/videocompression,asexemplifiedby
allexistingimageandvideocompressionstandards,istostart
withadense2-Dsamplegridofpixels.Compressionisdoneby
transformingthespatialimagesignalintoaspace(e.g.,spaces
ofFourierorwaveletbases)inwhichtheimagehasasparserep-
resentationandbyentropycodingoftransformcoefficients.Re-
cently,researchersintheemergingfieldofcompressivesensing
challengedthewisdomofwhattheycalled“oversamplingfol-
lowedmassivedumping”approach.Theyshowed,quitesur-
prisingly,itispossible,atleasttheoretically,toobtaincompact
signalrepresentationbyagreatlyreducednumberofrandom
samples[1].
ManuscriptreceivedMarch12,2008;revisedNovember05,2008.CurrentversionpublishedFebruary11,2009.Theassociateeditorcoordinatingthere-viewofthismanuscriptandapprovingitforpublicationwasProf.BrunoCar-pentieri.TheauthorsarewiththeDepartmentofElectricalandComputerEngineering,McMasterUniversity,Hamilton,ONL8S4K1Canada(e-mail:xwu@ece.mc-master.ca;zhangxj@grads.ece.mcmaster.ca;wangx28@mcmaster.ca).Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.DigitalObjectIdentifier10.1109/TIP.2008.2010638Inthispaper,weinvestigatetheproblemofcompactimage
representationinanapproachofsparsesamplinginthespa-
tialdomain.Thefactthatmostnaturalimageshaveanexpo-
nentiallydecayingpowerspectrumsuggeststhepossibilityof
interpolation-basedcompactrepresentationofimages.Atyp-
icalscenecontainspredominantlysmoothregionsthatcanbe
satisfactorilyinterpolatedfromasparselysampledlow-resolu-
tionimage.Thedifficultyiswiththereconstructionofhighfre-
quencycontents.Ofparticularimportanceisfaithfulreconstruc-
tionofedgeswithoutlargephaseerrors,whichisdetrimentalto
perceptualqualityofadecodedimage.
Toanswertheabovechallenge,wedevelopanewimagecom-
pressionmethodologyofcollaborativeadaptivedown-sampling
andupconversion(CADU).TheCADUapproachputsanem-
phasisonedgereconstructionfortheperceptualimportanceof
edgesandalsotoexploittheanisotropyofedgespectrum.In
theCADUencoderdesign,wechoosenottoperformuneven
irregulardownsamplingofaninputimageaccordingtolocal
spatialorfrequencycharacteristics.Instead,westicktocon-
ventionalsquarepixelgridbyuniformspatialdownsampling
oftheimage.Consequently,theresultinglow-resolutionimage
canbereadilycompressedbyanyofexistingimagecompres-
siontechniques,suchasDCT-basedJPEGandJPEG2000.Yet
thesimpleuniformdown-samplingschemeismadeadaptiveby
adirectionallow-passprefilteringsteppriortodown-sampling.
Theotherpurposeofthispreprocessingistoinduceamecha-
nismofcollaborationbetweenthespatialuniformdown-sam-
plingprocessattheencoderandoptimalupconversionprocess
atthedecoder.
TheCADUdecoderfirstdecompressesthelow-resolution
imageandthenupconvertsittotheoriginalresolutionincon-
strainedleastsquaresrestorationprocess,usinga2-Dpiece-
wiseautoregressivemodel(PAR)andbyreversingthedirec-
tionallow-passprefilteringoperationoftheencoder.Two-di-
mensionalautoregressivemodelingwasaknowneffectivetech-
niqueofpredictiveimagecoding[2],[3].FortheCADUde-
coder,thePARmodelplaysaroleofadaptivenoncausalpre-
dictor.WhatisnovelanduniqueoftheCADUapproachisthat
thepredictorisonlyusedatthedecoderside,andthenoncausal
predictivedecodingisperformedincollaborationwiththepre-
filteringoftheencoder.
Fig.1presentsablockdiagramoftheproposedCADU
imagecompressionsystem,summarizingtheaboveideasand
depictingthecollaborationbetweentheencoderanddecoder.
TheCADUimagecompressiontechnique,althoughoper-
atingondown-sampledimages,obtainssomeofthebestPSNR
1057-7149/$25.00©2009IEEE