当前位置:文档之家› 高考数学基础题题库(立体几何101--200)

高考数学基础题题库(立体几何101--200)

高考数学基础题题库(立体几何101--200)
高考数学基础题题库(立体几何101--200)

高考数学基础题题库

上犹中学数学教研组收集整理

立体几何(101—200)

101. C B A '''?是△ABC 在平面α上的射影,那么C B A '''∠和∠ABC 的大小关系是 ( ) (A) C B A '''∠<∠ABC (B) C B A '''∠>∠ABC

(C) C B A '''∠≥∠ABC

(D) 不能确定

解析:D

一个直角,当有一条直角边平行于平面时,则射影角可以等于原角大小,但一般情况不等.

102. 已知: 如图, △ABC 中, ∠ACB = 90?, CD ⊥平面α, AD , BD 和平面α所成的角分别为30?和45?, CD = h , 求: D 点到直线AB 的距离。

解析:1、先找出点D 到直线AB 的距离, 即过D 点作 DE ⊥AB , 从图形以及条件可知, 若把DE 放在△ABD 中不易求解。

2、由于CD ⊥平面α, 把DE 转化到直角三角形中求解, 从而转化为先求DE 在平面α内的射影长。

解: 连AC , BC , 过D 作DE ⊥AB , 连CE , 则DE 为D 到直线AB 的距离。 ∵CD ⊥α

∴AC , BC 分别是AD , BD 在α内的射影。

∴∠DAC , ∠DBC 分别是AD 和BD 与平面α所成的角 ∴∠DAC = 30?, ∠DBC = 45? 在Rt △ACD 中, ∵CD = h , ∠DAC = 30? ∴AC =

3h

在Rt △BCD 中

∵CD = h , ∠DBC = 45?

∴BC = h ∵CD ⊥α, DE ⊥AB ∴CE ⊥AB 在Rt △ACB 中

AB AC BC h =+=222

S AC BC AB CE =

?=121

2

· ∴CE AC BC

AB

h h h h =

?==323

2

·

∴在Rt △DCE 中,

DE DC CE h h h =+=+=2222327

2

(

) ∴点D 到直线AB 的距离为

7

2

h 。 103. 已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和α相交,并且和a 、b 、c 三条直线成等角. 求证:l ⊥α

证法一:分别在a 、b 、c 上取点A 、B 、C 并使AO = BO = CO .设l 经过O ,在l 上取一点P ,在△POA 、△POB 、△POC 中,

∵ PO 公用,AO = BO = CO ,∠POA =∠POB =∠POC , ∴ △POA ≌△POB ≌△POC

∴ PA = PB = PC .取AB 中点D .连结OD 、PD ,则OD ⊥AB ,PD ⊥AB , ∵ D OD PD =

∴ AB ⊥平面POD ∵ PO ?平面POD . ∴ PO ⊥AB . 同理可证 PO ⊥BC

∵ α?AB ,α?BC ,B BC AB = ∴ PO ⊥α,即l ⊥α

若l 不经过O 时,可经过O 作l '∥l .用上述方法证明l '⊥α, ∴ l ⊥α.

证法二:采用反证法

假设l 不和α垂直,则l 和α斜交于O . 同证法一,得到PA = PB = PC .

过P 作α⊥'O P 于O ',则O C O B O A '='=',O 是△ABC 的外心.因为O 也是△ABC 的外心,这样,△ABC 有两个外心,这是不可能的. ∴ 假设l 不和α垂直是不成立的. ∴ l ⊥α

若l 不经过O 点时,过O 作l '∥l ,用上述同样的方法可证l '⊥α, ∴ l ⊥α

评述:(1)证明线面垂直时,一般都采用直接证法(如证法一),有时也采用反证法(如证法二)或同一法.

104. P 是△ABC 所在平面外一点,O 是点P 在平面α上的射影. (1)若PA = PB = PC ,则O 是△ABC 的____________心.

(2)若点P 到△ABC 的三边的距离相等,则O 是△ABC _________心. (3)若PA 、PB 、PC 两两垂直,则O 是△ABC _________心.

(4)若△ABC 是直角三角形,且PA = PB = PC 则O 是△ABC 的____________心. (5)若△ABC 是等腰三角形,且PA = PB = PC ,则O 是△ABC 的____________心. (6)若P A 、PB 、PC 与平面ABC 所成的角相等,则O 是△ABC 的________心;

解析:(1)外心.∵ P A =PB =PC ,∴ OA =OB =OC ,∴ O 是△ABC 的外心.

(2)内心(或旁心).作OD ⊥AB 于D ,OE ⊥BC 于E ,OF ⊥AC 于F ,连结PD 、PE 、PF .∵ PO ⊥平面ABC ,∴ OD 、OE 、OF 分别为PD 、PE 、PF 在平面ABC 内的射影,由三垂线定理可知,PD ⊥AB ,PE ⊥BC ,PF ⊥AC .由已知PD =PE =PF ,得OD =OE =OF ,∴ O 是△ABC 的内心.(如图答9-23) (3)垂心.

(4)外心.(5)外心

(6)外心.P A 与平面ABC 所成的角为∠P AO ,在△P AO 、△PBO 、△PCO 中,PO 是公共边,∠POA =∠POB =∠POC =90°,∠P AO =∠PBO =∠PCO ,∴ △P AO ≌△PBO ≌△PCO ,∴ OA =OB =OC ,∴ O 为△ABC 的外心.

(此外心又在等腰三角形的底边高线上).

105. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上. 求证:C B C A '⊥'

分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了. 证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' . ∴ C B '⊥平面AD C ',而A C '?平面AD C ' ∴ C B '⊥C A '

106. 已知异面直线l 1和l 2,l 1⊥l 2,MN 是l 1和l 2的公垂线,MN = 4,A ∈l 1,B ∈l 2,AM = BN = 2,O 是MN 中点.① 求l 1与OB 的成角.②求A 点到OB 距离.

分析:本题若将条件放入立方体的“原型”中,抓住“一个平面四条线”的图形特征及“直线平面垂直”的关键性条件,问题就显得简单明了. 解析:(1)如图,画两个相连的正方体,将题目条件一一标在图中. OB 在底面上射影NB ⊥CD ,由三垂线定理,OB ⊥CD ,又CD ∥MA ,

∴ OB ⊥MA 即OB 与l 1成90° (2)连结BO 并延长交上底面于E 点. ME = BN , ∴ ME = 2,又 ON = 2 ∴ 22==OE OB . 作AQ ⊥BE ,连结MQ .

对于平面EMO 而言,AM 、AQ 、MQ 分别为垂线、斜线、斜线在平面内的射影,由三垂线逆定理得MQ ⊥EO .

在Rt △MEO 中,22

22

2=?=?=

EO MO ME MQ . 评述:又在Rt △AMQ 中,62422=+=+=MQ AM AQ ,本题通过补形法使较困难的问题变得明显易解;求点到直线的距离,仍然是利用直线与平面

垂直的

关键条件,抓住“一个面四条线”的图形特征来解决的. 107. 已知各棱长均为a 的正四面体ABCD ,E 是AD 边的中点,

连结CE .求CE 与底面BCD 所成角的正弦值. 解析:作AH ⊥底面BCD ,垂足H 是正△BCD 中心, 连DH 延长交BC 于F ,则平面AHD ⊥平面BCD , 作EO ⊥HD 于O ,连结EC , 则∠ECO 是EC 与底面BCD 所成的角 则EO ⊥底面BCD .

a a DF HD 3

3233232=?==

a a a HD AD AH 3

6322

2

2

=-=-=

a a AH EO 66362121=?==

,a CE 2

3= ∴ 322

366

sin ===∠a a EC EO ECO 108. 已知四面体S -ABC 中,SA ⊥底面ABC ,△ABC 是锐角三角形,H 是点A 在面SBC 上的射影.求证:H 不可能是△SBC 的垂心.

分析:本题因不易直接证明,故采用反证法.

证明:假设H 是△SBC 的垂心,连结BH ,并延长交SC 于D 点,则BH ⊥SC ∵ AH ⊥平面SBC ,

∴ BH 是AB 在平面SBC 内的射影 ∴ SC ⊥AB (三垂线定理)

又∵ SA ⊥底面ABC ,AC 是SC 在面内的射影 ∴ AB ⊥AC (三垂线定理的逆定理)

∴ △ABC 是Rt △与已知△ABC 是锐角三角形相矛盾,于是假设不成立. 故H 不可能是△SBC 的垂心.

109. 已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在的平面,且GC =2.求点B 到平面EFG 的距离.

解析:如图,连结EG 、FG 、EF 、BD 、AC 、EF 、BD 分别交AC 于H 、O . 因为ABCD 是正方形,E 、F 分别为AB 和AD 的中点,故EF ∥BD ,H 为AO 的中点.

BD 不在平面EFG 上.否则,平面EFG 和平面ABCD 重合,从而点G 在平面的ABCD 上,与题设矛盾. 由直线和平面平行的判定定理知BD ∥平面EFG ,所以BD 和平面EFG 的距离就是点B 到平面EFG 的距离. ——4分 ∵ BD ⊥AC , ∴ EF ⊥HC . ∵ GC ⊥平面ABCD ,

A

B

C

H

D

S

∴ EF ⊥GC , ∴ EF ⊥平面HCG .

∴ 平面EFG ⊥平面HCG ,HG 是这两个垂直平面的交线. ——6分

作OK ⊥HG 交HG 于点K ,由两平面垂直的性质定理知OK ⊥平面EFG ,所以线段OK 的长就是点B 到平面EFG 的距离. ——8分 ∵ 正方形ABCD 的边长为4,GC =2, ∴ AC=42,HO =2,HC =32. ∴ 在Rt △HCG 中,HG =

()

2222322

=+.

由于Rt △HKO 和Rt △HCG 有一个锐角是公共的,故Rt △HKO ∽△HCG .

∴ OK =

1111

222

22=

?=?HG GC HO . 即点B 到平面EFG 的距离为

11

11

2. ——10分 注:未证明“BD 不在平面EFG 上”不扣分.

110. 已知:AB 与CD 为异面直线,AC =BC ,AD =BD . 求证:AB ⊥CD .

说明:(1)应用判定定理,掌握线线垂直的一般思路.

(2)思路:欲证线线垂直,只需证线面垂直,再证线线垂直,而由已知构造线线垂直是关键. (3)教学方法,引导学生分析等腰三角形三线合一的性质构造图形,找到证明方法. 证明:如图,取AB 中点E ,连结CE 、DE ∵AC =BC ,E 为AB 中点.

∴CE ⊥AB

同理DE ⊥AB ,又CE ∩DE =E , 且CE ?平面CDE ,DE ?平面CDE .

∴AB ⊥平面CDE 又CD ?平面CDE ∴AB ⊥CD .

111. 两个相交平面α、β 都垂直于第三个平面γ ,那么它们的交线a 一定和第三个平面垂直. 证明:在γ 内取一点P ,过P 作PA 垂直α 与γ 的交线;过

P 作PB 垂直β 与γ 的交线. ∵ α⊥γ 且β⊥γ ∴ PA ⊥α且PB ⊥β ∴ PA ⊥a 且PB ⊥a ∴ a ⊥γ

112. 在立体图形P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB ,Q 是PC 中点. AC ,BD 交于O 点.

(Ⅰ)求二面角Q -BD -C 的大小: (Ⅱ)求二面角B -QD -C 的大小. 解析:(Ⅰ)解:连QO ,则QO ∥PA 且QO =21

PA =2

1AB ∵ PA ⊥面ABCD ∴ QO ⊥面ABCD 面QBD 过QO , ∴ 面QBD ⊥面ABCD

故二面角Q -BD -C 等于90°.

(Ⅱ)解:过O 作OH ⊥QD ,垂足为H ,连CH .

∵ 面QBD ⊥面BCD ,

又∵ CO ⊥BD

C

B

H

Q

O

CO ⊥面QBD

CH 在面QBD 内的射影是OH ∵ OH ⊥QD ∴ CH ⊥QD

于是∠OHC 是二面角的平面角. 设正方形ABCD 边长2,

则OQ =1,OD =2,QD =3. ∵ OH ·QD =OQ ·OD

∴ OH =

3

2.

又OC =2

在Rt △COH 中:tan ∠OHC =

OH OC =2·3

2

=3 ∴ ∠OHC =60°

故二面角B -QD -C 等于60°.

113. 如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,

求证:A 'E ⊥平面A 'BC

解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。 解: ∵FG ∥BC ,AD ⊥BC ∴A 'E ⊥FG ∴A 'E ⊥BC

设A 'E=a ,则ED=2a 由余弦定理得:

A 'D 2

=A 'E 2

+ED 2

-2?A 'E ?EDcos60°

A

B

C D F

E G

A '

=3a

2

∴ED 2

=A 'D 2

+A 'E 2

∴A 'D ⊥A 'E

∴A 'E ⊥平面A 'BC

114. α、β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ,②α⊥β,③n ⊥β,④m ⊥α.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并证明它.

解析:m ⊥α,n ⊥β,α⊥β?m ⊥n (或m ⊥n ,m ⊥α,n ⊥β?α⊥β) 证明如下:过不在α、β内的任一点P ,作PM ∥m ,PN ∥n

过PM 、PN 作平面r 交α于MQ ,交β于NQ .

MQ PM PM m PM m ⊥?⊥??

??

⊥αα//,

同理PN ⊥NQ .

因此∠MPN +∠MQN = 180°, 故∠MQN = 90°?∠MPN = 90° 即α⊥β?m ⊥n .

115. 已知:a =βα ,α⊥γ,β⊥γ,b ∥α,b ∥β. 求证:a ⊥γ且b ⊥γ.

解析:在a 上任取一点P ,过P 作PQ ⊥r . ∵ β⊥r , ∴ β?PQ , ∵ α⊥r , ∴ α?PQ , ∴ PQ 与a 重合,故a ⊥r . 过b 和点P 作平面S ,

则S 和α交于PQ 1,S 和β交于PQ 2, ∵ b ∥α,b ∥β

∴ b ∥PQ 1,且b ∥PQ 2. 于是PQ 1和PQ 2与a 重合, 故b ∥a , 而a ⊥r , ∴ b ⊥r .

116. 已知PA ⊥矩形ABCD 所在平面,且AB =3,BC =4,PA =3,求点P 到

CD 和BD 的距离.

解析:∵ PA ⊥平面ABCD ,AD ⊥CD ,且CD ?平面ABCD . ∴ PD ⊥CD (三垂线定理).在Rt △PAD 中,PD =22AD PA +=

2243+=5.

又作PH ⊥BD 于H ,连结AH ,由三垂线定理的逆定理, 有AH ⊥BD .这里,PH 为点P 到BD 的距离. 在Rt △ABD 中,AH =

BD AD AB ?=5

12

在Rt △PAH 中,PH =22AH PA +=2

2

5123??

? ??+=5369

117. 点P 在平面ABC 的射影为O ,且PA 、PB 、PC 两两垂直,那么O 是△ABC 的( )

(A) 内心 (B) 外心 (C) 垂心

(D) 重心

解析:由于PC ⊥PA ,PC ⊥PB ,所以PC ⊥平面PAB ,

∴ PC ⊥AB .

又P 在平面ABC 的射影为O ,连CO ,则CO 是PC 在平面ABC 的

射影,根据

三垂线定理的逆定理,得:CO ⊥AB ,

同理可证AO ⊥BC ,O 是△ABC 的垂心,答案选C .

118. 如图02,在长方体ABCD -A 1B 1C 1D 1中,P 、Q 、R 分别是棱AA 1、BB 1、BC 上的点,PQ ∥AB ,C 1Q ⊥PR ,求证:∠D 1QR =90°.

证明:∵ PQ ∥AB ,AB ⊥平面BC 1,

∴ PQ ⊥平面BC 1,QR 是PR 在平面BC 1的射影.

根据三垂线定理的逆定理,由C1Q⊥PR得C1Q⊥QR.

又因D1C1⊥平面BC1,则C1Q是D1Q在平面B1C的射影,根据三垂线定理,由C1Q⊥QR得QR⊥D1Q.∴∠D1QR=90°

119.在空间四边形ABCD中, 已知AC⊥BD, AD⊥BC, 求证: AB⊥CD。

解析:1、条件AC⊥BD, AD⊥BC, 可以看作斜线AD, AC与平面BCD内的直线的位置关系, 从而联想到用三垂线定理或其逆定理证明命题。

2、如何找斜线在平面内的射影, 显然是过A点作直线垂直于平面BCD, 这样斜线与直线的位置关系, 通过射影与直线的位置关系判定。

证明:过A点作AO垂直于平面BCD于O

连BO, CO, DO

∵AO⊥平面BCD, AC⊥BD

∴CO⊥BD

∵AO⊥平面BCD, AD⊥BC

∴DO⊥BC

∴O为△BCD的垂心

∴BO⊥CD

∴AB⊥CD

120.如图, 在空间四边形SABC中, SA⊥平面ABC, ∠ABC = 90?, AN⊥SB于N, AM⊥SC于M。求证: ①AN⊥BC;

②SC⊥平面ANM

解析:①要证AN⊥BC, 转证, BC⊥平面SAB。

②要证SC⊥平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SC⊥AM, SC⊥AN。要证SC⊥AN, 转证AN⊥平面SBC, 就可以了。

证明:

①∵SA⊥平面ABC

∴SA⊥BC

又∵BC⊥AB, 且AB SA = A

∴BC⊥平面SAB

∵AN?平面SAB

∴AN⊥BC

②∵AN⊥BC, AN⊥SB, 且SB BC = B

∴AN⊥平面SBC

∵SCC平面SBC

∴AN⊥SC

又∵AM⊥SC, 且AM AN = A

∴SC⊥平面ANM

121.已知如图,P?平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC

解析:要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。显然BC中点D,证明AD垂直平PBC即可

证明:取BC中点D 连结AD、PD

∵PA=PB;∠APB=60°

∴ΔPAB为正三角形

同理ΔPAC为正三角形

设PA=a

在RT ΔBPC 中,PB=PC=a BC=2a

∴PD=2

2a 在ΔABC 中 AD=

22BD AB -

=

2

2a ∵AD 2+PD 2

=2

2

2222???

? ??+???? ??a a

=a 2

=AP

2

∴ΔAPD 为直角三角形 即AD ⊥DP 又∵AD ⊥BC ∴AD ⊥平面PBC ∴平面ABC ⊥平面PBC

122. 如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于这个平面。 已知:β⊥α,γ⊥α,β γ=a 求证:a ⊥α

解析:利用线面垂直的性质定理 证明:设α β=AB ,α γ=CD

在平面β内作L1⊥AB , 在平面γ内作L1⊥CD , ∵α⊥β∴L1⊥α 同理L2⊥α

∴L1//L2 ∴L1//β ∴L1//a ∴a ⊥α

113. 已知SA 、SB 、SC 是共点于S 的且不共面的三条射线,∠BSA=∠

ASC=45°,∠BSC=60°,求证:平面BSA ⊥平面SAC

解析:先作二面角B-SA-C 的平面角,根据给定的条件,在棱S 上

取一点P ,分别是在两个平面内作直线与棱垂直 证明:在SA 上取一点P 过P 作PR ⊥SA 交SC 于R 过P 作PQ ⊥SA 交SB 于Q

∴∠QPR 为二面角B-SA-C 的平面角设PS=a ∵∠PSQ=45°,∠SPQ=90° ∴PQ=a ,SQ=2a 同理PR= a ,SR= 2a ∵∠PSQ=60°,SR=SQ=2 a ∴ΔRSQ 为正三角形则RQ=2 a ∵PR 2

+PQ 2

=2a 2

=QR 2

∴∠QPQ=90°

∴二面角B-SA-C 为90° ∴平面BSA ⊥平面SAC

114. 设S 为ABC ?平面外的一点,SA=SB=SC ,γβα2,2,2=∠=∠=∠ASC BSC ASB ,若

γβα222sin sin sin =+,求证:平面ASC ⊥平面ABC 。

解析:(1)把角的关系转化为边的关系

(2)利用棱锥的性质(三棱锥的侧棱相等,则顶点在底面上的射影为底面三角形的外心)

证明:设D 为AB 的中点

SB SA = α=∠∴A S D SA

AB

SA AD 2sin ==

α 同理SC

AC

SB BC 2sin ,2sin ==γβ

SC SB SA == 且γβα222sin sin sin =+

222AC BC AB =+∴

即ABC ?为ABC Rt ?且S 在平面上的射影O 为ABC ?的外心 则O 在斜边AC 的中点。

⊥∴SO 平面ABC

?SO 平面SAC

∴平面ASC ⊥平面ABC

115. 两个正方形ABCD 和ABEF 所在的平面互相垂直,求异面直线AC 和BF 所成角的大小.

解析:作BP ∥AC 交DC 延长线于P ,则∠FBP (或补角)就是异面直线BF 和AC 所成的角,设正方形边长为a ,a PF 6=

在△BPF 中,由余弦定理得2

1

cos =

∠FBP ,异面直线AC 和BF 成60°角. 116. 二面角α-a -β的值为θ(0°<θ<180°),直线l ⊥α,判断直线l 与平面β的位置关系,并证明你的结论.

解析: 分两种情况,θ=90°,θ≠90°.

当θ=90°时,l ∥β或l ?β,这个结论可用反证法证明; 当θ≠90°时,l 必与β相交,也可用反证法证明.

117. 已知平面α⊥平面β,交线为AB ,C ∈α,D ∈β,34===BC AC AB ,E 为BC 的中点,AC ⊥BD ,BD =8.

①求证:BD ⊥平面α; ②求证:平面AED ⊥平面BCD ;

③求二面角B -AC -D 的正切值.

解析:①AB 是AC 在平面β上的射影,由AC ⊥BD 得AB ⊥BD .∵ α⊥β.∴ DB ⊥α.

②由AB =AC ,且E 是BC 中点,得AE ⊥BC ,又AE ⊥DB ,故AE ⊥平面BCD ,因此可证得平面AED ⊥平面BCD .

③设F 是AC 中点,连BF ,DF .由于△ABC 是正三角形,故BF ⊥AC .又由DB ⊥平面α,则DF ⊥AC ,∠BFD 是二面角B -AC -D 的平面角, 在Rt △BFD 中,3

4

tg ==

∠BF BD BFD . 118. 如图,△ABC 和△DBC 所在的两个平面互相垂直,且AB =BC =BD ,∠ABC = ∠DBC =120°,求

(1) A 、D 连线和直线BC 所成角的大小; (2) 二面角A -BD -C 的大小

解析:在平面ADC 内作AH ⊥BC ,H 是垂足,连HD .因为平面ABC ⊥平面BDC .所以AH ⊥平面BDC .HD 是AD 在平面BDC 的射影.依题设条件可证得HD ⊥BC ,由三垂线定理得AD ⊥BC ,即异面直线AD 和BC 形成的角为90°.

在平面BDC 内作HR ⊥BD ,R 是垂足,连AR .HR 是AR 在平面BDC 的射影,∴ AR ⊥BD ,∠ARH 是二面角A -BD -C 的平面角的补角,设AB =a ,可得,

a AH 2

3

=

,a BH HR 4323==, ∴ 2tg ==

∠HR

AH

ARH . ∴ 二面角A -BD -C 的大小为π-arctg2.

119. 正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1,CC 1的中点,求异面直线AE 和BF 所成 角的大小.

解析:取DD 1的中点G ,可证四边形ABFG 是平行四边形,得出BF ∥AG , 则∠GAE 是异面直线AE 与BF 所成的角.连GF ,设正方体棱长

为a ,

a D B GE 211==,a AG AE 2

5=

=. D

A

B

C

C

D

G A

A 1

C 1

D 1

B

B 1E

F

在△AEG 中,由余弦定理得

5

12

52522

45452cos 2

2

2

=??-+=??-+=∠AE AG GE AE AG GAE

∴ 5

1arccos

=∠GAE . 120. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起,使点A 在平面BCD 上的射影A ′落在BC 上,求二面角A-BD-C 的大小的余弦值.

在Rt △AA ′O 中,∠AA ′O=90°,

121. 已知:如图12,P 是正方形ABCD 所在平面外一点,PA=PB=PC=PD=a ,AB=a . 求:平面APB 与平面CPD 相交所成较大的二面角的余弦值.

分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.

解:因为AB∥CD,CD 平面CPD,AB 平面CPD.

所以AB∥平面CPD.

又P∈平面APB,且P∈平面CPD,

因此平面APB∩平面CPD=l,且P∈l.

所以二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.

因为AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,

所以AB∥l.

过P作PE⊥AB,PE⊥CD.

因为l∥AB∥CD,

因此PE⊥l,PF⊥l,

所以∠EPF是二面角B-l-C的平面角.

因为PE是正三角形APB的一条高线,且AB=a,

因为 E ,F 分别是AB ,CD 的中点, 所以 EF=BC=a . 在△EFP 中,

122. 在四面体ABCD 中,AB =AD =BD =2,BC =DC =4,二面角A -BD -C 的大小为60°,求AC 的长. 解析:作出二面角A -BD -C 的平面角

在棱BD 上选取恰当的点

AB =AD ,BC =DC

解:取BD 中点E ,连结AE ,EC ∵ AB =AD ,BC =DC ∴ AE ⊥BD ,EC ⊥BD

∴ ∠AEC 为二面角A -BD -C 的平面角 ∴ ∠AEC =60° ∵ AD =2,DC =4 ∴ AE =3,EC =15

∴ 据余弦定理得:AC =5318 .

123. 河堤斜面与水平面所成角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿着这条直道从堤角向上行走到10米时,人升高了多少(精确到0.1米)? 解析: 已知 所求

2017年高考立体几何大题(理科)

2017年高考立体几何大题(理科)1、(2017新课标Ⅰ理数)(12分) 如图,在四棱锥P-ABCD中,AB//CD,且90 ∠=∠=. BAP CDP (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,90 ∠=,求二面角A-PB-C的余弦值. APD

2、(2017新课标Ⅱ理)(12分) 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂 直于底面ABCD ,o 1 ,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成 角为o 45,求二面角M AB D --的余弦值.

3、(2017新课标Ⅲ理数)(12分) 如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD⊥平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.

4、(2017理)(本小题14分) 如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD,AB=4.

(I)求证:M为PB的中点; (II)求二面角B-PD-A的大小; (III)求直线MC与平面BDP所成角的正弦值.

5、(2017理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其部)以AB 边所在直线为旋转轴旋转120?得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

(完整版)高考数学基础练习题

1. 若集合}12,52,2{2 a a a A +-=,且A ∈-3,则=a . 2. 设集合}3,1,1{-=A ,}4,2{2++=a a B ,}3{=B A I ,则实数=a . 3. 设全集R U =,}0|{>=x x A ,}1|{>=x x B ,则=) (B C A U I . 4. 命题“若b a ,都是偶数,则b a +是偶数”的逆否命题是 . 5. “2>x ”是“2 11≥q p ,则q p ∧为 (真/假),q p ∨为 (真/假). 7. 若命题012,:2>+∈?x R x p ,则该命题的否定p ?为 . 8. 已知集合}20|{},40|{≤≤=≤≤=y y Q x x P ,下列从P 到Q 的各种关系f 不是函数的是( ) .A x y x f 21:=→ .B x y x f 3 1:=→ .C x y x f 3 2:=→ .D x y x f =→: 9. 下列各组函数中表示同一函数是( ) .A x x f =)(与 2)()(x x g = .B x )(=x f 与 33)(x x g = .C ||)(x x x f =与 ?????<->=) 0()0()(22x x x x x g .D 11)(2--=x x x f 与 )1(1)(≠+=t t t g 10. 已知函数x x f 32)(-=,则:=)0(f ,=)3 2 (f . =)(m f .=-)12(a f . 11. 设函数???????<≥-=)0(1)0(211)(x x x x x f ,若a a f =)(,则实数=a . 12. 函数)1lg()(-=x x f 的定义域是 . 13. 函数211)(x x f +=)(R x ∈的值域是 . 14. 下列函数)(x f 中,满足“对任意),0(,21+∞∈x x ,当时21x x <,都有)()(21x f x f >”的是( )

2018年高考立体几何大题练习

1.(14分)如图,在底面是正方形的四棱锥P ABCD -中,PA ⊥面ABCD ,BD 交AC 于点,E F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG //平面PBD ,并说明理由; (Ⅲ)当二面角B PC D --的大小为23 π时,求PC 与底面ABCD 所成 角的正切值。 2.(本小题满分14分) 如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在, 确定点E 的位置. 1 A B C O A 1 B 1

3.如图1,在直角梯形ABCD 中,AD //BC ,D 2 π ∠BA = ,C 1AB =B =,D 2A =,E 是D A 的中点, O 是C A 与BE 的交点.将?ABE 沿BE 折起到1?A BE 的位置,如图2. (I )证明:CD ⊥平面1C A O ; (II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 4.(2016·兰州诊断)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB ∥ CD ,=21AB BC CD ==,,顶点1D 在底面ABCD 内的射影恰为点C (1)求证:1AD ⊥BC ; (2)若直线1DD 与直线AB 所成的角为3 π ,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦值.

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

2020高考数学基础题精练试题

1.053log 4 2 +=. 2 . 2.复数Z 满足条件z +︱z ︱i +=2,则z 是 3 4 i + . 3. 若o 为平行四边形ABCD 的中心,124,6,AB e BC e BO ==u u u r u u u r u u u r r r 则等于 1223e e -+u r u u r . 4. 若集合{}21, A a =-,{}4,2= B ,则“2a =-”是“{}4=B A I ” 的 充分不必要 条件(填充要性). 5. 已知定义在区间[0,1]上的函数y=f(x)图象如右图所示对满足 1201x x <<<的任意1x 、2x ,给出下列结论: (1)2121()()f x f x x x ->- (2)2112()()x f x x f x >? (3) 1212()()()22 f x f x x x f ++< 其中正确结论序号是 (2)、(3) (把所有正确结论序号都填上). 6. 已知函数22()cos 23sin cos sin (0)f x x x x x ωωωωω=+?->,且)(x f 图象相邻两 对称轴间的距离不小于 2 π , (1)求ω的取值范围; (2)设a 、b 、c 是ABC ?的三内角A 、B 、C 所对的边,3=a ,且当ω最大时1)(=A f , 求ABC ?周长的取值范围。 答案:(1)01ω<≤;(2)(23,33] 7. 如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a,E 为棱CC 1上的的动点. (1)求证:A 1E ⊥BD ; (2)当E 恰为棱CC 1的中点时,求证:平面A 1BD ⊥平面EBD ; (3)在(2)的条件下,求BDE A V _1. 答案:(1)、(2)略 (3)314 a E A B D C 1 A 1 B 1 D 1 C

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

2014高考理科立体几何大题练习

2014高考理科立体几何大题练习

1.如图1,在Rt ABC ?中,90C ∠=?,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ?沿DE 折起到1 A DE ?的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ; (Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1 A B 的长度最小,并求出最小值. 2.如图,四棱锥ABCD P -中,底面 ABCD 为正方形,PD PA =,⊥PA 平面PDC , E 为棱PD 的中点. (Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. A B C D E 图图 A B C D E

E C 1 B 1A 1C B A 4. 如图,在直三棱柱111ABC A B C -中,90BAC ∠=?,1 2,AB AC AA ===E 是BC 中点. (I )求证:1//A B 平面1 AEC ; (II )若棱1AA 上存在一点M ,满足11 B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.

E D A B C P 5.如图,在三棱锥P-ABC 中,PA=PB=AB=2, 3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点. (Ⅰ)求证:DE‖平面PBC ; (Ⅱ)求证:AB ⊥PE ; (Ⅲ)求二面角A-PB-E 的大小. 6..如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

高考文科数学基础题试大全

高考文科数学基础题试大全

————————————————————————————————作者:————————————————————————————————日期:

高考数学部分知识点汇编 一.集合与简易逻辑 1.注意区分集合中元素的形式. 如:{|lg }x y x =—函数的定义域; {|lg }y y x =—函数的值域;{(,)|lg }x y y x =—函数图象上的点集. 2.集合的运算及性质: ①任何一个集合A 是它本身的子集,记为A A ?. ②空集是任何集合的子集,记为A ??. ③空集是任何非空集合的真子集; 注意点:当A B ?,在讨论的时候不要遗忘了A =?的情况 ④含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -. 3.命题: 1)会判断充分性必要性 已知x a α≥:,1|1x β-<:|.若α是β的必要非充分条件,则实数a 的取值范围是0≤a 在△ABC 中,“C b B c cos cos =”是“△ABC 是等腰三角形”的( A ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 2)推出关系转化为子集问题 已知a R ∈,命题:p 实系数一元二次方程2 20x ax ++=的两根都是虚数;命题:q 存在复数z 同时满足 2z =且1z a +=.[来源学科网] 试判断:命题p 和命题q 之间是否存在推出关系?请说明你的理由 二.函数 1.函数的三要素:________,__________,________, 注意:求函数的定义域或值域,最后结果一定要用 表示。 2.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0>且1≠;零指数幂的底数0≠);实际问题有意义; 3.已知两个函数,若求它们的和函数或积函数,除了用运算求解析式外,最后的定义域必须是原两个函数定义域的 集。 函数22()log (43)log (2)f x x x =---的定义域是___ .3 (,2)4 3.求值域常用方法: (1)常用函数的值域。(看图像,读值域)

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

高三数学基础训练题集1-10套

高三数学基础训练一 一.选择题: 1.复数,则在复平面内的对应点位于 A.第一象限B.第二象限C.第三象限D.第四象限 2.在等比数列{an}中,已知,则 A.16 B.16或-16 C.32 D.32或-32 3.已知向量a =(x,1),b =(3,6),ab ,则实数的值为( ) A. B. C.D. 4.经过圆的圆心且斜率为1的直线方程为( ) A. B. C.D. 5.已知函数是定义在R上的奇函数,当时,,则( )A.B.C. D. 6.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比 赛得分的中位数之和是 A.62 B.63 C.64 D.65 7.下列函数中最小正周期不为π的是 A.B.g(x)=tan() C. D. 8.命题“”的否命题是 A. B.若,则 C. D. 9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视 图为正三角形,尺寸如图,则该几何体的侧面积为 A.6 B.24 C.12 D.32

10.已知抛物线的方程为,过点和点的直线与抛物线没有公共点,则实数的取值范围是 A.B. C.D. 二.填空题: 11.函数的定义域为. 12.如图所示的算法流程图中,输出S的值为. 13.已知实数满足则的最大值为_______. 14.已知,若时,恒成立,则实数的取值范围______ 三.解答题: 已知R. (1)求函数的最小正周期; (2)求函数的最大值,并指出此时的值.

高三数学基础训练二 一.选择题: 1.在等差数列中, ,则其前9项的和S9等于 ( ) A.18 B.27 C.36 D.9 2.函数的最小正周期为 ( ) A. B. C. D. 3.已知命题p: ,命题q :,且p是q的充分条件,则实数的取值范围是:( ) A.(-1,6) B.[-1,6] C. D. 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。。。,153~160号)。若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是 ( ) A.4 B.5 C.6 D.7 5.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是( ) A. B. C.24 D.48 6.在右图的程序框图中,改程序框图输出的结果是28,则序号①应填入的条件是 ( ) A. K>2 B. K>3 C.K>4 D.K>5 7.已知直线l与圆C:相切于第二象限,并且直线l在两坐标轴上的截距之和等于,则直线l与两坐标轴所围城的三角形的面积为( ) A.B.C.1或3D. 8.设是两个平面,.m是两条直线,下列命题中,可以判断的是( )A.B. C.D..

近年高考理科立体几何大题总汇编

近几年高考理科立体几何大题汇编 1.(2018年III卷)如图,边长为2的正方形 ABCD所在的平面与半圆弧CD所在平面垂直,M是 CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC 体积最大时,求面MAB与面MCD所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD中,底 面ABCD为矩形,PA⊥平面ABCD,E为PD的中 点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD= 3,求三棱锥E-ACD的体积.

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图

三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面 AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, DF为折痕把DFC ⊥. △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

2020年高考数学模拟试题带答案

2020年高考模拟试题 理科数学 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1、若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为 A.5 B.4 C.3 D.2 2、复数在复平面上对应的点位于 A第一象限B第二象限C第三象限D第四象限 3、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点 到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 A. 14 17B.13 16 C.15 16 D. 9 13 4、函数的部分图象 如图示,则将的图象向右平移个单位后,得到的图象解析式为 A. B. C. D. 5、已知,,,则 A. B. C. D. 6、函数的最小正周期是 A.π B. π 2C. π 4 D.2π 7、函数y=的图象大致是A.B.C.D. 8、已知数列为等比数列,是是它的前n项和,若,且与2的等差中 项为,则 A.35 B.33 C.31 D.29 9、某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有 A.24种 B.18种 C.48种 D.36种 10如图,在矩形OABC中,点E、F分别在线段AB、BC 上,且满足,,若 (),则 A.2 3 B . 3 2 C. 1 2 D.3 4 11、如图,F1,F2分别是双曲线C:(a,b>0)的左右 焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交 于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若 |MF2|=|F1F2|,则C的离心率是 A. B. C. D. 12、函数f(x)=2x|log0.5x|-1的零点个数为 A.1 B.2 C.3 D.4 二、填空题:本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上 13、设θ为第二象限角,若,则sin θ+cos θ=__________ 14、(a+x)4的展开式中x3的系数等于8,则实数a=_________ 15、已知曲线在点处的切线与曲线相切,则a= ln y x x =+()1,1() 221 y ax a x =+++

相关主题
文本预览
相关文档 最新文档