当前位置:文档之家› 级数判别法

级数判别法

级数判别法
级数判别法

级数判别法

基本定理:正项级数收敛的充要条件是:

∑∞

=1

n n a

的部分和数列

}{n S 有界。

1、 比较判别法:设

∑∞=1

n n a 和∑∞

=1

n n b

是两个正项级数,且存在

0>N ,使当N n >时,有不等式n n b a ≤,则:

1:∑∞

=1n n b

收敛

∑∞

=?1

n n

a 收敛。

2:∑∑∞

=∞

=?10

1

n n n n b

a 发散发散。

2、 比较判别法极限形式:设

∑∞

=1

n n

a 和

∑∞

=1

n n

b 是两个正项级数,且

λ=+∞→n n

n b a lim

,则:

1:当+∞<<λ0时,∑∞

=1

n n

a 和

∑∞

=1

n n b

具有相同的敛散性。

2:当0=λ时,∑∞=1

n n b 收敛∑∞

=?1n n

a 收敛。 ○

3:当+∞=λ时,∑∞=1

n n b 发散∑∞

=?1

n n

a 发散。

3、 比较判别法II :设有两正项级数

∑∑∞

=∞

=10

1

n n

n n b a 和,)0,0(≠≠n n b a 满足:

n

n n n b b a a 1

1++≤,则:

1:∑∞

=1

n n b

收敛

∑∞

=?1

n n

a 收敛。 ○

2:∑∞

=1

n n

a

发散∑∞

=?

1

n n b

发散。

4、 比值判别法(达朗贝尔):设

∑∞

=1

n n a

为正项级数,则:

1°若当n 充分大时有:

11

<≤+q a a n n ,则级数∑∞

=1n n a 必收敛。

2°若当n 充分大时有:

11

≥+n n a a ,则级数∑∞=1

n n a 必发散。

5、 达朗贝尔判别法的极限形式:设

∑∞

=1

n n a

为正项级数,且

2111lim lim

λλ==+∞→+∞→n n n n n n a a

,a a ,+∞≤2,1λ,则:

1°:当11

<λ时,级数∑∞

=1n n

a 收敛。 2°:当

12>λ时,级数∑∞

=1

n n

a 发散。

6、 根值判别法(Cauchy ):设

∑∞

=1

n n a

为正项级数,则:

1°:若当n 充分大时,有1<≤q a n

n ,则级数∑∞

=1

n n

a 必收敛。

2°:若当n 充分大时,有1≥n

n a ,则级数∑∞

=1

n n

a 必收敛。

7、 Cauchy 判别法的极限形式:设为正项级数

∑∞

=1

n n a

,且

λ=∞

→n n n a lim ,+∞≤λ,则:

1°:当

1<λ时,级数∑∞

=1

n n a 必收敛。 2°:当1>λ时,级数∑∞

=1

n n a 发散。

8、 Cauchy 积分判别法:设

)(x f 是定义在),1[+∞上的非负单调下降函数,)(n f a n =,),,2,1( =n ,

令:

?=x

dt t f x F 1

)()(,则级数∑∞

=1

n n

a 与数列)}({n F 具有相同的敛散性。

9、 Cauchy 同敛判别法:设正项级数

∑∞

=1

n n a

的通项

n a 单调下降,则级数∑∞

=1

n n

a 与

∑∞

=0

22

k k

k

a 同敛散。

10、拉贝(Raabe )判别法:设

∑∞

=1

n n a

为正项级数,那么

1°:若当n 充分大时,存在实数1>p ,使

n p

a a n n -≤+11,则级数∑∞

=1n n a 收敛。

2°:若当n 充分大时,存在实数1≤p ,使

n p

a a n n -≥+11,则级数∑∞=1

n n a 发散。

11、拉贝判别法的极限形式:设为正项级数

∑∞

=1

n n

a ,且p a a n n

n n =-

+∞

→)1(lim

1

,+∞≤p ,则 1°:当

1>p 时,级数收敛。

2°:当

1

12、 高斯判别法:设

∑∞

=1

n n

a 为正项级数,且

μ

θ+++-=111n n p a a n

n n ,其中

n θ为有界,0>μ,则:

1°:当

1>p ,时级数收敛。

2°:当

1≤p 时,级数发散。

13、 对数判别法:设有正项级数

∑∞

=1

n n a

,则当n 充分大时有:

1°:

1ln 1

ln

>≥p n a n

,则∑∞

=1

n n

a 收敛。 2°::

1ln ln

1

≤n

n

a ,则∑∞

=1

n n

a 发散。

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

对数判别法

一个比拉阿比判别法更精细的正项级数判别法 摘要:本文用级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法,笔者称之为“对数判别法”。 关键词:比较判别法 级数判别法的极限形式 拉格朗日中值定理 对数判别法 目前较常用而又精细的正项级数判别法是拉阿比判别法,然而此判别法有时精确度仍然不够。以下本文就以级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法——“对数判别法”。 我们先看级数∑ ∞ =3ln 1 n p n n 的敛散性:当1>p 时级数收敛;当1≤p 时级数发散。这个结论可用柯西积分判别法证明(具体证明请参见邓东皋、尹小玲编著《数学分析简明教程》),本文不再细述。 先考虑发散的情况。由比较判别法有:设数列}{n u 是正项数列,若n 足够大时,有 n n n n u u n n ln ) 1ln()1(1++< + 成立,则∑∞ =1 n n u 发散。 为了应用方便我们来寻求像拉阿比判别法那样的“极限形式”: n n n n u u n n ln )1ln()1(1++<+n n n u n nu n n ln ln )1ln(1)1(1-+< -+?+, 由拉格朗日中值定理知,对任意n ,存在)1,(+∈n n n ξ,使得 n n n ξ1 ln )1ln(= -+, 故 n n n n u u n n ln ) 1ln()1(1++<+1]1)1([ln 1 <-+?+n n n u n nu n ξ, 要使n 足够大时有1]1)1([ ln 1 <-++n n n u n nu n ξ成立,只需

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔 2)若、‘1,。0)的敛散性推导得出的。这在分析教材 中都有介绍。 在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结 论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d 用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。 例‘讨论几兴dx的敛散性 解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”, 考虑极限31imx了 工一。+ 一Inx 、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十 。___3___.,~~,、,,‘,_ 送里入~丁丈1,d~U,砍原积分收双。悦 分析讨论:能否取入一告呢?‘ 由极限lim、奋 x~。+ 一InX V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+ 怎样确定入呢?我们考虑极限limx‘ x~。十 Inx 侧丁~1jm,要使该极限值为有限,而O<久

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文

关于数项级数敛散性的判别法 摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法 1 引言 设数项级数 ++++=∑∞ =n n n a a a a 211 的n 项部分和为: 12n S a a =++ +1 n n i i a a ==∑ 若n 项部分和数列{} n S 收敛,即存在一个实数S,使 lim n n S S →∞ =. 则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞ 是否存在.从而由数列的柯西(Cauchy )收敛准则, 可得到级数的柯西(Cauchy )收敛准则[1]:

数项级数1 n n a ∞ =∑收敛0,N N ε+ ??>?∈,对,n N p N + ?>?∈有 12n n n p a a a ε ++++++<. 2 正项级数敛散性判别法 设数项级数1n n a ∞ =∑为正项级数(n a ≥0).则级数的n 项部分和数列{}n S 单调递 增,由数列的单调有界公理,有 定理2.1[1] 正项级数1n n u ∞ =∑收敛?它的部分和数列{}n S 有上界. 由定理2.1可推得 定理2.2 [2] :设两个正项级数1 n n u ∞=∑和1 n n v ∞ =∑,存在常数c 0 >及正整数N ,当n >N 时有 n u ≤c n v ,则 (i )若级数1 n n u ∞=∑收敛,则级数1 n n v ∞ =∑也收敛; (ii )若级数1 n n u ∞=∑发散,则级数1 n n v ∞ =∑也发散. 一般常及其极限形式: 定理2.2’(比较判别法的极限形式) [2] :设1 n n u ∞=∑和1 n n v ∞ =∑是两个正项级数且有 lim n n n u v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散; (ii )若 λ=0,级数1 n n v ∞ =∑收敛,则级数1 n n u ∞ =∑也收敛; (iii )若 λ=+∞,级数1 n n v ∞=∑发散,则级数1 n n u ∞ =∑也发散. 由比较判别法可推得:

08第八讲 积分判别法

数学分析第十二章数项级数积分判别法 第八讲

数学分析第十二章数项级数 定理12.9(积分判别法) 积分判别法由于比式和根式判别法的比较对象是几何级数,局限性较大,所以还需要建立一些更有效的判别法. 设[1,)f +∞为上非负减函数,+1()d f x x 与反常积分∞ ?同时收敛或同时发散. 证由假设[1,)f 为+∞上非负减函数, f 在[1, A ]上可积,于是 对任何正数A ,那么正项级数()f n ∑

数学分析第十二章数项级数-≤≤-=?1()()d (1),2,3,. n n f n f x x f n n 依次相加可得1 122 1()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?若反常积分收敛,有 111()(1)()d (1)()d . m m m n S f n f f x x f f x x +∞==≤+≤+∑?? 根据定理12.5, 级数()f n ∑收敛. 则由(12)式左边, 对任何正整数m ,

数学分析第十二章数项级数反之, 若()f n ∑为收敛级数, 一正整数m (>1)有 -≤≤=∑?11()d (). (13)m m f x x S f n S 1 0()d , 1.A n f x x S S n A n ≤≤<≤≤+?因为f (x )为非负减函数, 法, 可以证明+1()()d f n f x x 与∞∑? 是同时发散的.112 21()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?则由(12)式右边,对任故对任何正数A ,都有111.2,()d .f x x +∞ ?根据定理反常积分收敛用同样方

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结 摘要:本文简要阐述了常数项级数敛散性判别法。由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。 关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点 无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。 1 级数收敛的概念 给定一个数列{un},称 u1+u2+...+un+ (1) 为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。若部分和数列{Sn}有极限S,即,则称级数(1)收敛。若部分和数列{Sn}没有极限,则称级数(1)发散。 注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。 借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。例如,由性质(1)和当|q|0时,01,则发散。 当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。 例2:判别级数的敛散性。 解:因为 由比值判别法知级数收敛。 2.3 根植判别法

级数审敛法小结

级数审敛法小结 不好意思,又要打扰大家一下了,针对本学期期中考试而言,大致分为两大部分:级数,常微分方程。其中级数(应该都已经讲完了)占得比重相对少些大概有45%左右,还希望大家能抽空复习一下,毕竟这一章的内容有些难度.下面的内容是从一些资料书中总结的一些小内容,希望大家能抽空看一下,谢谢. 首先:针对常数项级数而言要明白它的分类:正项级数,任意项级数(其中,包含特殊的交错级数).对于不同的级数,他们有不同的审敛法. 第一节:正项级数 (当然我们有时也会遇到一些负项级数,他们的判断敛散性的方法和正项级数相同,只是需要我们在运用前,把他们所有的项全部变成正的就可以了) (注意以下方法要求大家在判断出Un的极限为0的时候用哦,若Un的极限不为0,级数发散。) A.定义法(注意这个方法适用于所有的级数,但不一定解得出.): 首先,了解一个充要条件:∑∞ Un收敛?部分和数列{Sn}有界,针对 n =1 这个东西,用的地方不多后面会有介绍。 B.比较审敛法:(这里首先强调一下这里介绍的方法完全是针对 正项级数而言,不能滥用)。对于比较审敛法,也许不要按书上的用起来会更方便一点。简单一句话:我们的目的就是要

找要判断的级数的等价无穷小,或是证明这个级数是一个已知收敛级数的高阶无穷小也可。(当然这是证明级数收敛时用的,这里就要求我们要有能一眼猜出级数敛散性的能力,下面会教大家如何第一眼就可以看出绝大多数级数的敛散性) 例1:设k ,m 为正整数,.0,000 >>b a (这里主要是保证以下的 多项式恒为正)是推导出级数 ∑ ∞ =--++++++1 1 10110......n k k k m m m b n b n b a n a n a 收敛的充要条件。 解:设k k k m m m n b n b n b a n a n a u (1) 101 10+++++= --。取m k n n v -= 1,因为0 0lim b a v u n n n = ∞ →,所以 ∑∑∞ =∞ =1 1 ,n n n n v u 具有相同的敛散性,由Vn 收敛的充要条件是k-m>1, 所以所求级数的收敛的充要条件是k-m>1. (这是一个简单的例题,可是他说明了两个问题:1,凡是一般项Un 是有理分式的,我们一眼就能看出级数是否收敛例如级数 ∑ ∞ =---+1 3 2 3 5 5 23) ()12()1(n n n n n n 是收敛的,这因为分子的最高次幂是13,分母 的是15,15-13=2>1 ,故收敛。(至于解题时,我们可以模仿本 题构造Vn 去做)2,这个例题的解法具有一般性。设0→n u ,我 们只需要找到Un 的一个同阶无穷小或是等价无穷小Vn ,如果Vn 的敛散性我们已经掌握,问题解决。 大家可以试着用等价无穷小的方法接一下以下几题: (1));1tan( )3(,,)cos 1(),2(,,sin )1(13 2 2 2112-+??? ? ??-??? ??∑∑∑∞ =∞=∞ =n N n n a n n a n a n

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

(完整版)《高数》积分判别法

积分判别法 若在[1,∞)上f 减, 非负, 则∑f (n )收敛??∞1f 收敛. 此时?∞1f ≤∑f (n )≤?∞1f + f (1). 证 ?21f ≤f (1) = f (1), ?32f ≤f (2)≤?21f , … ,?+1n n f ≤f (n )≤?-n n f 1, 相加得?+11n f ≤∑-n k k f 1)(≤?n f 1+ f (1). 令n →∞得证. 注. 条件可改为x 充分大时f 减, 非负. 例1(p 级数)∑p n 1当且仅当p > 1时收敛. 证一. p > 0时用积分判别法; p ≤0时由必要条件. 证二 p ≤1时由n -p ≥n -1得发散, p >1时用积分判别法. *证三 p ≤1时由n -p ≥n -1得发散. p > 1时按下列方法加括号: 括号内的项数依次为1, 2, 4, 8, 16, …, 则由1141447141,21223121--=<++=<+p p p p p p p p Λ, … 及比较判别法知加括号后的级数收敛, 故p 级数也收敛. △∑∑∞=∞ =32ln ln 1 ,ln 1n p n p n n n n n , … . 备考. 设f (x ) = (x ln p x )-1 (x ≥2), 则p ≥0时显然f 减. 而p < 0时对充分大的x , f 仍减[p < 0时f ' (x ) = - (x ln p x )-2 ln p -1x (ln x + p )< 0 (x > e -p ), 故可直接应用积分判别法得∑(n ln p n )-1当p > 1时收敛, p ≤1时发散. △∑)1(~ )1(23n n n +. △)1(~ 1n n n ∑-.△)1(~ )1(q q p p n n n ∑++.△∑sin n 1 (~n 1). △∑n n 1 (n n a =n 1→0, 或n n 10) (n n a a 1+=1+n a , 或n n a =n n a ! →0). △∑n n n ! (n n a a 1+→e 1或n n a →e 1(上 册p.40.4(5)). △∑)2()1(n n n n Λ+(n n a a 1+= (1 +n 1)n 4)22)(12()1(2e n n n →+++<1). △∑n ln 1(n ln 1>n 1或1-n a n →∞). △∑p n )(ln 1(1 -n a n →∞). △∑p n n ln (p ≤1时1-n a n →∞,发散; p >1时取q 使p >q >1,, 则q n n a -→0或a n ≤n -q , 收敛). △∑(n a - 1) (a >1) (由 x a x 1-→ln a (x →0)知n a - 1 = O(n 1). p.16.1 (9)类似). *△∑2121)1ln 2(+-++n n n n n (≤n n n n n 21)2(2121≤+-). *△∑n n ln ln )(ln 1(∵x x ln )ln (ln 2→0(x → ∞), ∴n 充分大时(ln n ) ln ln n = exp(ln ln n )2 < e ln n = n , 发散). 例2. 证明: 若a n > 0, ∑a n 收敛, 则∑1+n n a a 与∑a n a n +1收敛. [与∑a n 比较]. 例3(p.16.9(4). 考察∑∞=3)ln (ln )(ln 1n q p n n n 的收敛性. 解 设f (x ) = x (ln x )p (ln ln x ) q , 则f ' (x ) = ln p -1 x (ln ln x ) q -1((ln x + p ) ln ln x + q ), x 充分大时?p , q , f ' (x ) > 0, 故可用积分判别法. ??∞∞==3ln 3ln )(u u du x f dx I q p . p >1时取r 使p >r >1, 由u r u u q p ln 1→0知I 收敛. p =1时I =?∞3ln ln q t dt , 当且仅当q >1时收敛. p <1时由u u u q p ln 1

2016考研数学:无穷级数的敛散性判断方法

2016考研数学:无穷级数的敛散性判断方法无穷级数是高等数学的重要章节,是考研数学一和数学三的必考内容,其主要考点包括两个方面,一个是关于无穷级数的收敛或发散的判断,另一个是无穷级数的求和。关于级数的敛散性(即收敛或发散)判断,由于其方法较多,很多同学在学习和复习中感到有些困惑,为了帮助大家掌握好这些方法,文都网校的蔡老师对其做些分析总结,供各位参考,下面首先对用无穷级数的部分和来判断级数的敛散性方法做些分析。 一、通过部分和来判断级数的敛散性

通过无穷级数的部分和来判断级数的敛散性,是判断敛散性的最基本方法之一,因为按照级数收敛性的定义,收敛就是指其部分和的极限存在;对于正项级数而言,由于其部分

和是单调增加的数列,所以只要其部分和是有界的,则部分和数列就是收敛的,因此级数就是收敛的. 无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。 一、交错级数的敛散性判别法 对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。

从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;

如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。 正项级数是无穷级数的一种基本类型,其敛散性的判断方法有多种,包括:比较判别法、比值判别法、根值判别法(数一要求)等,在不同的条件下,需要根据具体情况使用不同的判别法,下面我们来分析一下比较判别法及其典型题型,供广大考生参考。 一、正项级数的比较判别法 正项级数的比较判别法是一种基本的、常用的判别法,其基本用法如下:

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

级数判别法

级数判别法 基本定理:正项级数收敛的充要条件是: ∑∞ =1 n n a 的部分和数列 }{n S 有界。 1、 比较判别法:设 ∑∞=1 n n a 和∑∞ =1 n n b 是两个正项级数,且存在 0>N ,使当N n >时,有不等式n n b a ≤,则: ○ 1:∑∞ =1n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∑∞ =∞ =?10 1 n n n n b a 发散发散。 2、 比较判别法极限形式:设 ∑∞ =1 n n a 和 ∑∞ =1 n n b 是两个正项级数,且 λ=+∞→n n n b a lim ,则: ○ 1:当+∞<<λ0时,∑∞ =1 n n a 和 ∑∞ =1 n n b 具有相同的敛散性。 ○ 2:当0=λ时,∑∞=1 n n b 收敛∑∞ =?1n n a 收敛。 ○ 3:当+∞=λ时,∑∞=1 n n b 发散∑∞ =?1 n n a 发散。 3、 比较判别法II :设有两正项级数 ∑∑∞ =∞ =10 1 n n n n b a 和,)0,0(≠≠n n b a 满足: n n n n b b a a 1 1++≤,则: ○ 1:∑∞ =1 n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∞ =1 n n a 发散∑∞ =? 1 n n b 发散。 4、 比值判别法(达朗贝尔):设 ∑∞ =1 n n a 为正项级数,则: 1°若当n 充分大时有: 11 <≤+q a a n n ,则级数∑∞ =1n n a 必收敛。 2°若当n 充分大时有: 11 ≥+n n a a ,则级数∑∞=1 n n a 必发散。 5、 达朗贝尔判别法的极限形式:设 ∑∞ =1 n n a 为正项级数,且 2111lim lim λλ==+∞→+∞→n n n n n n a a ,a a ,+∞≤2,1λ,则: 1°:当11 <λ时,级数∑∞ =1n n a 收敛。 2°:当 12>λ时,级数∑∞ =1 n n a 发散。 6、 根值判别法(Cauchy ):设 ∑∞ =1 n n a 为正项级数,则:

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

(整理)广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

数项级数的敛散性判别法

第六讲 数项级数的敛散性判别法 §1 柯西判别法及其推广 比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设 1 n n u ∞=∑,1 n n v ∞ =∑都是正项级数,存在0c >,使 (1,2,3,...)n n u cv n ≤= (i ) 若 1 n n v ∞ =∑收敛,则 1 n n u ∞ =∑也收敛;(ii ) 若 1 n n u ∞ =∑发散,则 1 n n v ∞ =∑也发散. 比较原理II (极限形式)设 1 n n u ∞ =∑,1 n n v ∞ =∑均为正项级数,若 lim (0,)n n n u l v →∞=∈+∞ 则 1 n n u ∞=∑、1 n n v ∞ =∑同敛散. 根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它 级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设 1 n n u ∞ =∑为正项级数, (i )若从某一项起(即存在N ,当n N > 1q ≤<(q 为常数), 则 1 n n u ∞ =∑收敛; (ii 1≥,则1 n n u ∞ =∑发散. 证(i )若当n N > 1q ≤<,即n n u q ≤,而级数 1 n n q ∞ =∑收敛, 根据比较原理I 知级数 1 n n u ∞ =∑也收敛. (ii ) 1≥,则1n u ≥,故l i m 0n n u →∞ ≠,由级数收敛的必要条件知 1 n n u ∞ =∑

发散.定理证毕. 定理2(柯西判别法2) 设 1 n n u ∞ =∑ 为正项级数,n r =, 则:(i )当1r <时,1 n n u ∞ =∑收敛;(ii ) 当1r >(或r =+∞)时,1 n n u ∞ =∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性 23123(1)()()()357 21 n n n +++ +++;n n n e ∞ -∑n=1 (2) n n x α∞ ∑n=1 (3) (α为任何实数,0x >). 解 (1) 因为11 2 n r ==<,所以原级数收敛. (2) 因为lim n n n r e →∞===∞,所以原级数发散. (3) 对任意α,n r x ==.当01x <<时收敛;当1x >时发散;当1x =时, 此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1 α- ≤时,即1α ≥-时发散. 例2 判别级数11[(1)]3 n n n n ∞ =+-∑的敛散性. 解 由于 (1)lim 3 n n n n →∞-== 不存在,故应用定理2 无法判别级数的敛散性.又因为 (1)1133 n q -==≤=< 由定理1(柯西判别法1)知原级数收敛. 例3(98考研)设正项数列{}n a 单调减少,且1(1)n n n a ∞ =-∑发散,试问级数111n n n a ∞ =?? ?+?? ∑是否收敛?并说明理由.

相关主题
文本预览
相关文档 最新文档