当前位置:文档之家› 燃气轮机工作原理

燃气轮机工作原理

燃气轮机工作原理
燃气轮机工作原理

燃气轮机工作原理

当您来到机场看到从事商业运营的喷气飞机时,一定会注意到为飞机提供动力的巨大发动机。大部分商用喷气飞机都采用涡轮风扇发动机,这种发动机属于一个大类,叫做燃气轮

机。

您可能从未听说过燃气轮机,其实在您意想不到的各种场所都会出现它的身影。例如,您看到的许多直升机,大量的小型发电厂,甚至M-1坦克,它们使用的都是燃气轮机。在

本文中,我们将看一看燃气轮机到底有哪些能力让它们如此受欢迎。

涡轮机的种类很多:

您可能听说过蒸汽涡轮机。大部分发电厂使用煤、天然气、石油,甚至核反应堆来产生蒸汽。通过一台巨大、设计精密的多级涡轮机,蒸汽带动输出轴旋转,输出轴再带动发

电机,从而产生电力。

水电站大坝使用水力涡轮机(水轮机)产生动力,这种涡轮机的工作原理与蒸汽涡轮机相同。由于水的密度要远远大于空气,而且流动速度慢,因此水电站使用的涡轮机与蒸

汽涡轮机完全不同,不过,二者的基本原理是一致的。

风力涡轮机,也被称为“风磨”,是一种以风为动力的涡轮机。由于风的速度较慢,而且重量很轻,因此风力涡轮机看上去一点儿也不像蒸汽涡轮机或水力涡轮机,不过,它

们的基本原理是一致的。

燃气轮机也是相同原理的延伸。它采用压缩气体转动涡轮。所有现代燃气轮机,都是通过燃烧丙烷、天然气、煤油或喷气燃料等,自己产生压缩气体。燃料燃烧产生的热量使

得空气膨胀,热空气高速冲出,带动涡轮旋转。

那么,为什么M-1坦克要使用1,500马力的燃气轮机,而不使用柴油发动机呢,事实

上,与柴油机相比,涡轮机有两大优势:

燃气轮机的功率重量比远优于往复式发动机。也就是说,涡轮发动机的输出功率与自

身重量的比率非常好。

在相同输出功率下,燃气轮机的体积要小于往复式发动机。燃气轮机的主要劣势在于,与同体积的往复式发动机相比,它的造价昂贵。由于涡轮机的转速快,而且工作温度高,因此从工程和材料的角度看,燃气轮机的设计和制造都是一个很棘手的问题。此外,燃气轮机空转时消耗的燃料更多,而且要求负载恒定,不要有波动。这一点使得燃气轮机成为建造横贯大陆的喷气式飞机,以及发电厂的首选,同时也可以解释为什么汽车上不使用燃

气轮机。

从理论上讲,燃气轮机极其简单。它由三个部分组成:

压缩器——将进气压缩成高压气体

燃烧区——燃烧燃料,产生高压高速气体

涡轮机——从来自燃烧区的高压高速气体中提取能量下图是轴流燃气轮机的总体构

造图,这种发动机经常在直升机上使用,用来带动直升机的旋翼,例如:

在这种发动机中,空气被压缩器从右侧吸入。压缩器基本上是一个锥形圆柱,其上安装有小型风扇叶片,叶片呈排排列(图上共有八排叶片)。假设淡蓝色代表处于正常气压的空气,那么,当空气被吸入到压缩级时,空气压力会急剧升高。在某些发动机中,气压

可以升高30倍。压缩器产生的高压空气用深蓝色表示。高压空气进入燃烧区,燃烧区内有一圈燃料喷射器,喷射器将燃料稳定喷出。燃料一般采用煤油、喷气燃料、丙烷或天然气。吹灭一只蜡烛非常容易,如果您这样想,那么您会发现燃烧区设计上的难题——进入燃烧区的是高压空气,时速高达数百公里,而您却想让

火焰在这样的环境条件下持续燃烧。解决这一难题的部件叫做“火焰稳定器”(有时也叫做“罐”)。火焰稳定器是一个中空带孔的部件,由重金属制成。以下是火焰稳定器的截面图:

燃料喷射器在右侧。压缩空气通过小孔进入。废气从左侧排出。在上图中您会发现,在火焰稳定器的内、外部还各包着一个圆筒,它们引导压缩空气进入火焰稳定器的小孔。

发动机的左边是涡轮部分。这张图包括两组涡轮。其中第一组涡轮直接驱动压缩器。涡轮、轴和压缩器共同作为一个独立的单元转动:

最左边是最后的涡轮级,图中只显示了其中一组叶片。这组涡轮驱动输出轴。最后的涡轮级和输出轴共同构成一个完全独立的、靠惯性运行的组件。这个组件自由转动,与发动机其余部分没有任何关系。而这就是燃气轮机最让人吃惊的部分——通过最后的输出涡轮叶片吹出的热气包含足够的能量,可产生1,500马力的动力,足以驱动重达63吨的M-1坦克~的确,燃气轮机就这么简单。

如图所示,如果是坦克或发电厂使用的涡轮机,废气将通过排气管排出,不做任何处理。不过,有些时候,废气还要经过某种热交换器,以提取其中的热量用于其他目的,或者对进入燃烧室之前的空气进行预热。

显然,我们的讲解有些过于简单了。例如,我们并没有讨论轴承、润滑系统、发动机的内部支撑结构、定子叶片等等。由于发动机内部的温度、压力和转速非常大,上述领域都是主要的工程难题。不过,我们这里介绍的基本原理适用于所有燃气轮机,能帮助您认识和理解涡轮机的基本构造和工作原理。

大型喷气客机采用的发动机叫做涡轮风扇发动机,其实这种发动机只不过是在燃气轮机的前面增加了一个大风扇而已。以下是涡轮风扇发动机的基本构造(已高度简化)。

您会看到,涡轮风扇发动机的核心是普通的燃气轮机,就像我们前几节讲到的燃气轮机一样。不同之处在于,在最后的涡轮级,由涡轮驱动的轴将动力回传到发动机前面,推动风扇旋转(图中以红色表示)。顺便说一下,在燃气轮机中,这种多同心轴设置极其普遍。实际上,除上图所示的风扇涡轮,许多大型涡轮风扇发动机会有两个完全独立的压缩级,分别由不同的涡轮驱动。三个同心轴一个套着一个。

安装风扇的目的是为了急剧增加通过发动机的空气量,从而提高发动机的“推力”。当您在机场看到商用喷气飞机的发动机时,您看到的是发动机的风扇。风扇非常大,大型喷气飞机的风扇直径在3米左右,因此可以带动大量空气运动。风扇带动的空气被称为“旁通空气”(bypassair),因为这种空气从旁边通过发动机的涡轮部分,然后直接高速到达发动机后面,产生推力。

涡轮螺旋桨发动机与涡轮风扇发动机相似,只是它在发动机前端安装的不是风扇,而是传统的螺旋桨。输出轴连接到变速箱,以降低速度。齿轮箱(变速箱)输出功率,带动螺旋桨旋转。

涡轮风扇发动机的目的是为了产生“推力”来推动飞机向前飞。公制通常以“牛顿”为单位(9.89牛顿约等于1公斤推力)。1公斤推力相当于一股可将1公斤物质加速到9.75米/秒2的力量(9.75米/秒2恰好等于重力加速度)。因此,如果

您的喷气发动机可产生1公斤的推力,那么,假如飞机头朝下垂直竖立,发动机可以让1公斤重的物体悬停在空中。依此类推,如果喷气发动机可产生2000公斤的推力,那么,它可以让2000公斤重的物质悬停在空中。如果火箭发动机可以产生2000公斤的推力,并且作用于一个在空中飘浮的2000公斤重的物体,那么,这个2000公斤重的物体将获得9.75米/秒2的加速度。

推力的产生符合牛顿原理:“每个作用力都有一个大小相等的反作用力”。例如,假设您在宇宙中漂流,在地球上您的体重是45公斤。您手中有一个棒球,在地球上它的重量是0.45公斤。如果您以9.75米/秒(约34公里/小时)的速度将棒球抛出,您的身体将会按相反的方向运动(反作用力),速度为9.75米/秒。如果您以每秒一个棒球的频率,连续将棒球按上

述方式抛出,那么,棒球将产生0.45公斤的连续推力。有一点要注意,如果您要连续产生一个小时的0.45公斤推力,您一开始就要拿3,600个棒球。如果您想做到更好,就要用更大的力量去扔棒球。如果您“扔”(例如,用枪来“射”)棒球的速度为9.75米/秒,就可以产生45公斤的推力。

就涡轮风扇发动机来说,它所抛出的棒球是“空气分子”。因为空气分子已经在那里了,所以至少不用飞机随机携带。单个空气分子并没有多重,但发动机抛出的空气分子数量多,而且速度非常快。在涡轮风扇发动机中,推力来自两部分: 燃气轮机本身——通常在燃气轮机的排气端会形成一个喷嘴(图中未显示),这个喷嘴可产生高速排气喷射流。从发动机排出的空气分子,时速一般可达2,092公里。

风扇产生的旁通空气——与涡轮排出的气体相比,旁通空气的速度较慢,但带动的空气量大。

燃气轮机发展现状分析报告前景预测

燃气轮机行业现状调研分析及市场前 景预测报告

一、基本介绍 近年,在中国能源发展“十三五”时期,着力推动能源生产利用方式变革,建设清洁低碳、安全高效的现代能源体系,是能源发展改革的重大历史使命。在新一轮能源革命蓬勃兴起背景下,中国燃气轮机行业企业有所增长,企业投资热情高涨。燃气轮机广泛应用于发电、船舰和机车动力、管道增压等能源、国防、交通领域,是关系国家安全和国民经济发展的高技术核心装备,属于市场前景巨大的高技术产业。 燃气轮机技术水平是代表一个国家科技和工业整体实力的重要标志之一,被誉为动力机械装备领域“皇冠上的明珠”。正是基于燃气轮机在国防安全、能源安全和保持工业竞争能力领域的重大地位,发达国家高度重视燃气轮机的发展,世界燃气轮机技术及其产业发展迅速,目前重型燃气轮机已基本形成以GE、西门子、三菱、阿尔斯通等公司为主导,航空燃气轮机(包括工业轻型燃气轮机)以通用电气(GE)、普拉特·惠特尼(P&W)、罗尔斯·罗伊斯(R&R)等航空公司为主导的格局。 二、燃气轮机工作原理及特点 1、燃气轮机定义 燃气轮机是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械,是一种旋转叶轮式热力发动机,其典型结构如图1。 图1 燃气轮机典型结构

2、燃气轮机的工作原理 压气机从外部吸收空气,空气从燃气轮机进气口进入,通过压气机叶片将其压力升高,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气燃烧受热后膨胀,进入透平区经过一级一级的叶片,推动动力叶片高速旋转,直至从出气口排出,成为废气,废气排入大气中或再加利用(如利用余热锅炉进行联合循环)。 叶片转动后带动轴也转动,轴带动负荷的机械转动,实现热能和机械能的转换。通常,将压气机、燃烧室、透平称为燃气轮机的三大核心部件。 3、燃气轮机特点 燃气轮机产品本身具有以下特点: 最大效率,最优效益。随着高温材料的不断进展,以及涡轮采用冷却叶片并不断提高冷却效果,透平前燃气的初温逐步提高,加之研制级数不断减少压缩比越来越高的压气机和各个部件效率的提高,使燃气轮机效率不断提高。 体积较小,使用便捷。燃气轮机动力部件设计构造衍生于涡轮增压器和辅助动力装置,结构简单、紧凑。与传统设备相比,燃气轮机设备规模、体积比传统的锅炉、蒸汽轮机小,占地面积小,便于移动。 减少燃煤,清洁环保。燃气轮机可以采用天然气、丙烷、油井气、煤层气、沼气、汽油、柴油、煤油、酒精等煤炭以外的燃料。而且燃气轮机通过在燃烧过程中控制NOx的生产,或在NOx 生成后排入余热锅炉时进行尾部烟气脱硝,达到超低的NOx排放效果,而且能够实现资源充分循环利用,真正达到零排放。 噪声最小,安全可靠。燃气轮机运行时产生的低频份量很低。而且可以通过采用数字式遥控的联网离网变换装置,弥补其它设备在安全稳定性方面的不足。 三、燃气轮机关键技术 从燃气轮机研发的角度来分析,当代燃气轮机主要关键技术难点如下: 1、燃气轮机基础技术方面 燃气轮机总体技术,高效高负荷压气机设计应用技术,高效稳定低污染燃烧室设计技术、高效流动、高效换热、高寿命透平设计技术,燃气轮机设计软件技术,燃气轮机现代控制理论与技术,燃气轮机振动、寿命与可靠性关键技术。 2、燃气轮机设计体系的规范、软件和数据库方面

燃气轮机结构-燃烧室

第三章燃气轮机 3.1概述 (1)燃烧室功用及重要性 1.保证燃机在各种工况下,将燃料化学能转换为热能,加 热压气机压缩的空气,用于涡轮膨胀做功。 2.燃烧室是燃机的主要部件之一,燃机的性能、可靠性、寿命 皆与它有密切关系。 (2)燃烧室的工作条件 ①燃烧室在高温、大负荷下工作 ②燃烧室在变工况下工作 ③燃烧室在具有腐蚀性的环境下工作 ④燃烧室内的燃烧过程是一个极其复杂的物理化学过程 ⑤燃烧室中的燃烧在高速气流及贫油混合气情况下进行 (“空气分股”、“减速扩压”、“反向回流”) (3)燃烧室的设计要求 ①不同工况下,燃烧室工作应稳定 ②燃烧要安全 ③燃烧室具有最小的流体阻力 ④燃烧室出口温度场应能满足涡轮的要求 ⑤在任何使用条件下,燃烧室都应该迅速、可靠地启动点火,且联 焰性好 ⑥工作寿命长 ⑦燃烧室的尺寸和质量要小 ⑧排气污染应能满足国家标准要求 ⑨检视、装拆和维修应当方便 3.2三种基本类型燃烧室 的结构概述 (1)分管燃烧室 1.结构特点 管形火焰筒的外围包有一个单独的壳体,构成一个分管,沿燃气轮机周围6-16 个这样的分管,各分管用传焰管连通,以传播火焰和均衡压力。 2.优点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况 3.缺点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况

(2)环管燃烧室 1 .结构特点: 若干个火焰筒均匀排列安装在同一个壳体内,相邻火焰燃烧区 之间用传焰管连通。 2.优点: ①适合与轴流式压气机配合,布局紧凑、尺寸小、刚性小; ②气流转弯小,流体阻力小,热散失亦小; ③调试比较容易,加工制造的工作量比分管小。 3.缺点: ①燃烧室出口温度场沿周向不够均匀; ②燃烧室的流体损失较大; ③耗费的材料、工时较多; ④质量较重。

简析燃气轮机发电机组的现状及未来发展

简析燃气轮机发电机组的现状及未来发展 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重视。1.燃气轮机及其发电机组现状浅析1.1.燃气轮机浅析作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热效率。高度垄断是重型燃气轮机制造领域的特点,重要的核心企业为ABB、西门子/西屋、GE、三菱等。轻型燃气轮机制造领域中主导企业为PW、R.R与GE,其他国家也不甘落后,正在紧锣密鼓的航机改型。上世纪五十年代末,国内开始制造重型燃气轮机。当时的上汽厂、南汽厂、哈汽厂身肩国家工业复兴的大任,在厂校结合形式下,自主研发出的燃气轮机位列世界领先,如3500hp机车用机组,1MW、3MW发电机组。近年来,随着我国工业化的不断升级,重型燃气轮机也在不断的改造升级。为实现利用冶金企业的高炉煤气,美国GE与南汽厂通过技术交流,立足于MS6001B,6B-L型燃气轮机研发成功,实现再利用高炉煤气的环保要求。从科研实力分析,国内研究所或高校储备着大量科研设施与科研人员,如哈尔滨工业大学、清华大学、国家电网热工研究院、中科院工程热物理研究所等,研究出的一批批优秀成果。当然,设备不够集中,先进性尚待提高,完善工作仍需继续。国内航空系统是轻型燃气轮机的集结地,在航空发动机领域,研究设计院、制造厂数量众多,职工数量上万。在上世纪70年代,邮电、石化、油田等企业都应用到了331厂、410厂研发的WZ-6G、

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术的进展与前景 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术

燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。 近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家著名的公司GE、ABB、Siemens、西屋等均与航空发动机设计、研究、制造厂彼此联营,保证及时地把航空发动机领域内的先进技术用来武装重型燃气轮机,以确保技术的先进性。如压气机已采用“可控扩压”的概念进行设计,把单轴压气机的压缩比提高到了24~30的水平,透平叶片采用了航空机组的先进冷却结构和定向结晶制造工艺,使透平前的燃气温度提高到了1300℃的水平,由此明显地提高了机组的输出功率和热效率。如GE公司的9FA、Siemens的V94.3A等典型机组的燃机单循环功率为266MW,燃气初温为1270~1300℃,压缩比为16,

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势 近年来,燃气轮机的技术发展非常迅速,性能日益完善,大型燃气轮机联合循环电厂的功率等级已与汽轮机电厂相当,发电效率普遍超过了50%,最高已达58%,远远超过汽轮机电厂的效率,加之还有初始投资省、占地面积少、耗水少、环境污染少、运行维护方便等优点,使燃气轮机联合循环电厂在世界范围内获得了迅速的推广应用,因而,各主要燃气轮机制造厂都已成套供应燃气一蒸汽联合循环发电机组,安装和使用都很方便。据统计,目前全世界新增发电设备中,燃气轮机及联合循环发电机组约占40%,已与汽轮发电机组平分秋色,而美、日等发达国家,燃气轮机已经超过了汽轮机。据美国电力研究所的专题报告预测,美国1993一2001年内新增发电设备的2/3将是燃气轮机发电机组,到2015年,世界新增发电设备中燃气轮发电机组约占63%。美好的应用前景进一步刺激了燃气轮机的研究和发展,下面将对近期的研究和发展情况分别进行介绍。 由于工业化国家对环境保护的要求越来越严格,促使燃气轮机制造厂将较多的精力放在努力减少排气污染方面,其经费已占燃气轮机研究经费的最大份朽。燃气轮机一般燃用天然气或蒸馏油等清洁燃料,其含硫和含尘量极低,因而,排气中烟尘和502含量极低。所以燃气轮机考虑的排气污染物主要有未燃烧的碳氢化合物(UHC)、一氧化碳(CO)和氮氧化物(NOx)3种,由于燃烧技术的成熟和燃烧室结构的完善,目前先进燃气轮机的燃烧效率几近100%,排气中的UHC和CO极其微少,可以满足工业化国家严格的环保要求。但是,由于燃气轮机燃烧室中的火焰温度比较高,在高温下产生了一定数量的NO、,一般可达200又10一6左右,超过了许多工业化国家的环保规定。因此,减少燃气轮机排气污染的努力,近年来主要是集中在减少NO二产生方面。向燃烧室的燃烧区按照一定比例注入水或蒸汽,可以降低最高燃烧温度,有效地抑制Ox的产生量,这是目前一种比较成熟而能有效减少燃气轮机NO、排放的方法,已获得了较广泛的应用。一般注水与燃料之比约为0.95左右。在燃气轮机的排气通道应用选择催化还原S(CR)技术,即布置催化床并注入氨气,使NOx还原成NZ和水蒸气,这也可有效地减少NOx的排放。但上述两种方法成本比较高,而且对环境又会造成另外的有害影响,如氨气泄漏等,所以,目前的研究重点已转向干式低NO、(DLN)燃烧室的研制,即不向燃烧室中注入水或蒸汽,而通过优化燃烧室结构和合理组织燃烧来减少NOx的产生。目前,GE、西屋、ABB、西门子、索拉等主要燃气轮机制造厂都已研制成各自的DLN燃烧室,具体措施大致有以下几种: 1预混稀相燃烧(或称预混贫燃料燃烧) 该方法通过燃料与空气预先混合成稀相,再组织燃烧,使燃烧更为完全,而且可降低燃烧室内的最高燃烧温度。例如,在大多数范围内,可使火焰温度低于1400’C。因而有效地抑制了NO二的产生量。该方法的缺点是运行范围比较窄,低工况时容易熄火。目前,大多数DLN燃烧室都是应用这种方法,但都采取了一些稳定燃烧的措施,如应用值班喷嘴、控制燃料的分配等。例如,爱利松公司的501型燃气轮机采用预混锥使燃料与空气产生稀相预混,再配合旋流器、值班喷嘴和空气掺混系统来控制燃料/空气比和火焰分布,实现了低NOx排放,同时在低负荷时无熄火和不稳定现象。索拉公司1993年以后应用该方法,使其燃气轮机在50%一100%负荷范围内NOx产生量少于42x10一6。西门子公司应用该技术,使其燃气轮机的NOx排放量低达9火10一6CO排放量少于5火106,而成本仅增加不到10%。GE公司应用该技术,计划要使NOx排放量降低至9又10一6。EGT公司在其

简析燃气轮机发电机组的现状及未来发展

简析燃气轮机发电机组的现状及未来发展 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

简析燃气轮机发电机组的现状及未来发展火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重视。 1.燃气轮机及其发电机组现状浅析 1.1.燃气轮机浅析 作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热效率(简单循环)。高度垄断是重型燃气轮机制造领域的特点,重要的核心

企业为ABB、西门子/西屋、GE、三菱等。轻型燃气轮机制造领域中主导企业为P&W、R.R与GE,其他国家也不甘落后,正在紧锣密鼓的航机改型。 上世纪五十年代末,国内开始制造重型燃气轮机。当时的上汽厂、南汽厂、哈汽厂身肩国家工业复兴的大任,在“厂校结合”形式下,自主研发出的燃气轮机位列世界领先,如3500hp机车用机组,1MW、3MW发电机组。近年来,随着我国工业化的不断升级,重型燃气轮机也在不断的改造升级。为实现利用冶金企业的高炉煤气,美国GE与南汽厂通过技术交流,立足于MS6001B,6B-L型燃气轮机研发成功,实现再利用高炉煤气的环保要求。从科研实力分析,国内研究所或高校储备着大量科研设施与科研人员,如哈尔滨工业大学、清华大学、国家电网热工研究院、中科院工程热物理研究所等,研究出的一批批优秀成果(红旗360、东风I 型叶型)。当然,设备不够集中,先进性尚待提高,完善工作仍需继续。 国内航空系统是轻型燃气轮机的集结地,在航空发动机领域,研究设计院、制造厂数量众多,职工数量上万。在上世纪70年代,邮电、石化、油田等企业都应用到了331厂、410厂研发的WZ-6G、WJ-6G、WJ-5G等产品型号。在技术改造与创新实践中,燃气轮机的制造工艺已经掌握成熟,精密机加设备成套,特种工艺设备应有尽有,气冷涡轮叶片制作方

(完整版)燃气轮机

燃气轮机简介 1、燃气轮机发展史 1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。 近二十年来,燃气轮机在电站中的应用得到了迅猛发展。这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。而燃气—蒸汽联合循环电站的热效率更高达60%。先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。 2、我国燃气轮机工业概况 我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。 1962年上海汽轮机厂试制船用燃气轮机,1964年与上海船厂合作制成 550KW燃气轮机,1965年制成6000KW列车电站燃气轮机,1971年制成3000KW卡车电站。在这期间还与703研究所合作制造了3295KW、4410KW、18380KW等几种船用燃气轮机。 1969年哈尔滨汽轮机厂制成2200KW机车燃气轮机和1000KW自由活塞式燃气轮机,1973年与703研究所合作制成4410KW船用燃气轮机,与长春机车车辆厂合作制成3295KW机车燃气轮机。 1964年南京汽轮电机厂制成1500KW电站燃气轮机;1970年制成37KW 泵用燃气轮机;1972年制成1000KW电站燃气轮机;1977年制成21700KW快装式电站燃气轮机;1984年与GE公司合作生产了PG6541B型36000KW燃气轮机;从1984年至2004年已生产了PG6541B型、PG6551B型、PG6561B型、PG6581B型四种型号燃气轮机,功率由36000KW上升到现在的43660KW。2003年国家发改委决定南京汽轮电机集团有限责任公司与GE公司进一步扩大

燃气轮机结构-涡轮

第四章涡轮 涡轮概述 一:涡轮功用 把来自燃烧室的高温、高压燃气中的部分热能和压力能转换成机械功,用以带动压气机、附件和外负荷。 二:按燃气流动方向分类 轴流式径流式(离心式、向心式) 三:涡轮工作条件 高温、高转速、频繁剧烈热冲击、不均匀加热及由于转子不平衡和燃气压力、流量脉动造成的不平衡负荷的作用。 四:船舶燃气轮机涡轮 船舶燃气轮机多应用轴流式涡轮。其特点是功率大、燃气温度高、转速高、效率高。 燃气发生器涡轮(增压涡轮):用来带动压气机和附件; 动力涡轮:用来带动减速器-螺旋桨或其他负荷,输出功率 五:涡轮通流形式 平的 扩张型:等中径通流等内径通流等外径通流

涡轮转子 一:涡轮转子组成 涡轮盘、涡轮轴、工作叶片、连接零件 二:盘与轴的连接 1.不可拆卸式结构:销钉连接整体结构或焊接 2.可拆卸式结构:螺钉连接短螺栓连接

三:盘与盘的连接 盘与盘地连接也分为不可拆卸和可拆卸两种结构,如下为典型连接: 不可拆卸式的径向销钉连接用长螺栓连接的可拆卸结构用短螺栓连接的可拆卸结构四:工作叶片及其与轮盘的连接 1:工作叶片工作环境: 离心力、气动力、振动负荷、受到燃气腐蚀、冷热疲劳 第一级工作叶片工作条件最恶劣,决定燃气初温选择,直接影响燃气轮机性能和可靠性 2:工作叶片组成 叶身、中间叶根、榫头(有些叶尖带有叶冠) 3:中间叶根作用 可以减少向轮盘传热,改善榫头应力分布不均匀;可以通冷却空气,降温,减少热应力,减轻轮盘质量。 4:榫头 叶片用枞树形榫头连接,承受负荷、离心力大、高温下工作。 故需满足:a.允许榫头受热后自由膨胀 b.传热性能好,叶片热量容易带走5:工作叶片的固定: 涡轮静子 一:涡轮静子组成 涡轮外环、导向器、涡轮支撑、传力系统 二:涡轮机匣 1:结构特点 一般采用整体式,且采用与燃机轴线垂直的分开面,将外环分成几部分 也有用于纵向剖分面的分开式结构的机匣,但多用于多级涡轮的情况 : 2:径向周向定位 通常采用圆柱表面实施,也有用几个不等距的精密配合的销钉作为定位件,再用精配螺栓附加定位

燃气轮机简介.

我国工业燃气轮机的现状与前景 一、世界工业燃气轮机的发展趋势 1、世界工业燃气轮机的发展途径与现状 自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。 由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。 80年代以后,燃气轮机及其联合循环技术日臻成熟。由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。 90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。 这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气轮机供不应求的局面。 目前,美、英、俄等国的水面舰艇已基本上实现了燃气轮机化,现代化的坦克应用燃气轮机为动力,输气输油管线增压和海上采油平台动力也普遍应用了轻型燃气轮机。先进的轻型燃气轮机简单循环热效率达41.6%。采用间冷—回热循 36

燃气轮机概述

燃气轮机 燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。中国在公元十二世纪的南宋高宗年间就已有走马灯的记载,它是涡轮机(透平)的雏形。15世纪末,意大利人列奥纳多·达芬奇设计出烟气转动装置,其原理与走马灯相同。至17世纪中叶,透平原理在欧洲得到了较多应用。 概述 1791年,英国人巴伯首次描述了燃气轮机的工作过程;1872年,德国人施托尔策设计了一台燃气轮机,并于1900~1904年进行了试验,但因始终未能脱开起动机独立运行而失败;1905年,法国人勒梅尔和阿芒戈制成第一台能输出功的燃气轮机,但效率太低,因而未获得实用。1920年,德国人霍尔茨瓦特制成第一台实用的燃气轮机,其效率为13%、功率为370千瓦,按等容加热循环工作,但因等容加热循环以断续爆燃的方式加热,存在许多重大缺点而被人们放弃。随着空气动力学的发展,人们掌握了压气机叶片中气体扩压流动的特点,解决了设计高效率轴流式压气机的问题,因而在30年代中期出现了效率达85%的轴流式压气机。与此同时,涡轮效率也有了提高。在高温材料方面,出现了能承受600℃以上高温的铬镍合金钢等耐热钢,因而能采用较高的燃气初温,于是等压加热循环的燃气轮机终于得到成功的应用。1939年,在瑞士制成了四兆瓦发电用燃气轮机,效率达18%。同年,在德国制造的喷气式飞机试飞成功,从此燃气轮机进入了实用阶段,并开始迅速发展。随着高温材料的不断进展,以及涡轮采用冷却叶片并不断提高冷却效果,燃气初温逐步提高,使燃气轮机效率不断提高。单机功率也不断增大,在70年代中期出现了数种100兆瓦级的燃气轮机,最高能达到130兆瓦。与此同时,燃气轮机的应用领域不断扩大。1941年瑞士制造的第一辆燃气轮机机车通过了试验;1947年,英国制造的第一艘装备燃气轮机的舰艇下水,它以1.86兆瓦的燃气轮机作加力动力;1950年,英国制成第一辆燃气轮机汽车。此后,燃气轮机在更多的部门中获得应用.在燃气轮机获得广泛应用的同时,还出现了燃气轮机与其他热机相结合的复合装置。最早出现的是与活塞式内燃机相结合的装置;50~60年代,出现了以自由活塞发气机与燃气轮机组成的自由活塞燃气轮机装置,但由于笨重和系统较复杂,到70年代就停止了生产。此外,还发展了柴油机燃气轮机复合装置;另有一类利用燃气轮机排气热量供热(或蒸汽)的全能量系统,可有效地节约能源,已用于多种工业生产中。 燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。燃气轮机的工作过程是最简单的,称为简单循环;此外,还有回热循环和复杂循环。燃气轮机的工质来自大气,最后又排至大气,是开式循环;此外,还有工质被封闭循环使用的闭式循环。燃气轮机与其他热机相结合的称为复合循环装置。燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。70年代末,压缩比最高达到31;工业和船用燃气轮机的燃气初温最高达1200℃左右,航空燃气轮机的超过1350℃。燃气轮机由压气机、燃烧室和燃气涡轮等组成。压气机有轴流式和离心式两种,轴流式压气机效率较高,适用于大流量的场合。在小流量时,轴流式压气机因后面几级叶片很短,效率低于离心式。功率为数兆瓦的燃气轮机中,有些压气机采用轴流式加一个离心式作末级,因而在达到较高效率的同时又缩短了轴向长度。 燃烧室和涡轮不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣,故它们是决定燃气轮机寿命的关键部件。为确保有足够的寿命,这两大部件中工作条件最差的零件如火焰筒和叶片等,须用镍基和钴基合金等高温材料制造,同时还须用空气冷却来降低工作温度。对于一台燃气轮机来说,除了主要部件外还必须有完善的调节保安系统,此外还需要配备良好的附属系统和设备,包括:起动装置、燃料系统、润滑系统、空气滤清器、进气和排气消声器等。燃气轮机有重型和轻型两类。重型的零件较为厚重,大修周期长,寿命可达10万小时以上。轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑、最轻,但寿命较短。与活塞式内燃机和蒸汽动力装置相比较,燃

新型船舶动力装置基本情况和发展趋势

新型船舶动力装置基本情况和发展趋势 船舶动力装置是船舶的核心设备,船舶动力装置只有正常运行,才能够为船舶的正常运行以及船员的日常生活提供保障。船舶动力装置由主动力装置、辅助动力装置和辅机及其设备共同组成,三大部分的相互协调共同为船舶提供源源不断的动力。在船舶动力装置中,主动力装置是提供推进动力的装置,其主要有蒸汽轮机、柴油机、燃气轮机、电动机和混合动力机几种主要类型,但新型船舶动力装置包括燃气轮机推进,喷水推进,吊舱推进,表面浆推进,超导磁推进,AIP 系统等。 一、柴油机动力装置 柴油机动力装置是以柴油为燃料的内燃机,其优点在于启动速度快、运行状态可靠和功率大等。柴油机动力装置是目前应用最为普遍的船舶动力装置,因此其技术成熟度也相对更高。柴油机动力装置在上世纪60年代开始全面取代了蒸汽轮机,成为最主流的船舶动力装置。柴油机动力装置分为四冲程柴油机和两冲程柴油机,其中二冲程柴油机的特点是转速相对较低,可以直接驱动螺旋机进行工作,主要应用于大中型远洋运输船舶上。而四冲程柴油机转速较高,一般主要应用于小型运输船、客船、军舰和豪华游艇上。 二、燃气轮机动力装置 燃气轮机动力装置是以油气作为燃料的动力装置,燃气轮机动力装置其突出的特点在于装置体积较少、重量轻、加速性能强,且燃气轮机动力装置运行过程中所产生的污染物远远少于柴油机动力装置。但是,燃气轮机动力装置也存在着较多的缺点和不足,如燃气轮机的燃料一一蒸馏油价格非常昂贵、燃气轮机油耗较高、经济性不高等,因此很难在船舶当中得到普及。目前,只有少部分的高速客船和军用舰艇上配备了燃气轮机动力装置。 三、电力推进装置

顾名思义是以电动机做功来推动船舶运行的动力装置,当前在船舶动力装置中被广泛使用的推进装置主要由电动机、原动机、变频器还有就是推进变压器以及控制调节器等构成。对于操纵性能要求不是特别高的船舰来说,经常使用的轴桨推进装置如可调桨以及定距桨等,对于操作性能要求相对高一点的船舶来说,通常采用的全回转推进器。电力推进装置工艺较柴油机动力装置要更为复杂, 但具有更好的经济性以及操纵空间,较为适合于多工况特种船舶。目前多数的电力推进装置还需要配备柴油机或者燃气轮机产生电力能源,为电动机提供能源。其主要优势在于: (1) 船上大型机械设备布置更灵活、有效空间更多、费用降低 (2) 电动机由电网供电,增加了系统的可靠性,提高了生命力 (3) 减少了维护的工作量; (4) 可以采用中高速不逆转原动机,以减少设备的体积和重量 (5) 可以采用低速电动机直接与推进轴连接,省去机械的减速齿轮 (6) 操纵灵活,机动性能好 (7) 易于获得理想的拖动特性 (8) 减小螺旋桨等机械振动和噪声、环境更好 船舶电力系统和船舶电力推进系统一体化供电的船舶综合电力系统是未来发展的新趋势,该系统将船舶的电力系统和推进系统有机的组合在一起,把动力机械能源转换为电力,提供给推进设备和船上的其他设备使用,使得船舶日用供 电和推进供电一体化,实现电力的综合利用和统一管理。并且伴随着船舶事业不断推进发展,这样的技能必定会得到更为广泛的应用。

燃气轮机起动过程原理

燃气轮机起动过程原理 (2007-12-25 22:02:35) 转载▼ 标签: 杂谈 燃气轮机起动过程原理 2.1 燃气轮机启动运行原理 燃气轮机主机由压气机,燃烧室和透平三大部件组成。压气机需要从外部输入机械功才能把空气压缩到一定的压力供入燃烧室。透平则用高温高压的燃气做工质将其热能转变为机械能从而对外输出机械功。在正常运行的时候,压气机是由燃气透平来驱动的。一般讲,透平功率的2/3要用来拖动压气机,其余的1/3功率作为输出功率。显然存在一个问题,在启动过程中点火之前和点火之后透平发出的功率小于压气机所需的功率这一段时间内,必须由燃气轮机主机外部的动力来拖动机组的转子。换言之,燃气轮机的启动必须借助外部动力设备。在启动 之后,再把外部动力设备脱开。机组启动扭矩变化,如图3-1所示。图中MT曲线为透平自点心后所发出的扭矩;Mc曲线是压气在被带转升速过程中的阻力矩变化;Mn 是机组起动时所需要的扭矩特性,即由起动系统所提供的扭矩;n1为机组点火时的转速,即由起动带转机组转子所达到的转速。在n1转速下,进入燃烧室的空气在其规定参数下,由点火器并藉联焰管快速且可靠地点燃由主喷油嘴喷射出来的燃料,并且在机组起动升速过程中,不会发生熄火、超温和火焰过长等现象。n1转速通常为15%~22%SPD范围内,机组不同,n1数值亦不同。图3-1 机组启动扭矩变化 燃气轮机的起动是指机组从静止零转速状态达到全速空载并网状态,在起动过程中要求机组起动迅速、可靠、平稳和不喘振。为了防止压气机在起动过和中喘振,机组起动前和起动过程中某一阶段内气机进口导叶处于34度,即所谓关闭状态,放气阀处于打开放气位置。压气机进口可转导叶角度关小,能使压气机喘振边界线朝着流减小的方向变动,扩大了压气机的稳定工作范围。同时由于空气流量减小,因而减小了起动力矩,使起动机功率减小;在起动功率不变的情况下,可以缩短起动加速时间。防喘放气阀的放气是在于减小压气机高压级的空气流量而不致阻塞,同时又能增加压气机放气口前的气流流量,从而提出高了流速,也使压气机避免喘振。 机组起动过程中,压气进口导叶(IGV)角度,不能总在34度关闭状态;放气阀也不能总在放气位;因机组起动时工质设计参数的需要,6型机当转速为87%SPD时,IGV由34度打开增至57度,当机组转速达到满转速并且加负荷,直到所带负荷达到在约1.54万KW时,IGV继续打开直到84度。而放气防喘阀,当机组转速达到97.5%SPD(转速继电器具14HS 动作)时,即关闭停止放气。 机组起动运行包括起动、带负荷、遥控起动和带负荷。起动包括正常起动和快速起动。带负荷又分自动和手动进行。在起动运行过程中的控制调节又分转速控制、同期控制和温度控制阶段。 燃气轮机的起动过程可以分段进行,亦可以自动按程序控制进行,要分步调试过程中,可以分段进行。一旦分步调试正常后,便无需再分段进行机组起动,而是采用自动程序控制。机组起动过程分以下几步。

燃气轮机技术发展及应用

龙源期刊网 https://www.doczj.com/doc/819102115.html, 燃气轮机技术发展及应用 作者:顾士国 来源:《山东工业技术》2017年第16期 摘要:燃气轮机是国家资源节约战略发展下的一项工业产品,也是能源管理方向的最高 技术水平的设备,因此发展燃气轮机技术,扩大燃气轮机的应用范围,是当下制造业的重点发展方向。本文从燃气轮机技术发展的趋势出发和燃气轮机技术发展的内容出发,分析了燃气轮机技术的应用方向,供从事燃气轮机技术探究与应用的工作人员参考。 关键词:燃气轮机;技术发展;应用方式 DOI:10.16640/https://www.doczj.com/doc/819102115.html,ki.37-1222/t.2017.16.239 0 引言 燃气轮机的应用在现代企业生产中十分广泛,能够对国民经济发展中所需要的电力和能源进行输送与分配,还是国防领域中的重要应用设备,总体来说燃气轮机在现代社会运行中有着不可取代的作用。随着科学技术的不断进步,近几年的燃气轮机发展技术已经达到了较高的水平,燃气轮机领域也取得了显著的科研成果。 1 燃气轮机技术发展的趋势 今后燃气轮机技术的发展趋势是,通过提高生产设备的温度和压力,来提高机组的运行功率及效率;燃气轮机要适应多种燃料的性质;改变燃气轮机的热力循环系统,运用新型的工质完善操作系统,优化操作的性能。重型的燃气轮机要不断朝着高参数、高性能、高效率、低污染的方向发展,经过相关技术人员与专家的研究,未来的燃气机轮最高温度可以达到1700 度,联合运行的功率可达到65%,并将持续上升。 科学先进的气动设计技术能够进一步的提高高压气机和透平部件的性能,气动设计技术中的可控漩涡技术、自由涡技术、扭叶片技术、多圆弧叶技术、散叶技术、抽吸技术、主动控制技术、被动控制技术、可调叶片技术、间隙控制技术等,能够有效的减少燃气轮机在工业生产中的损失与浪费。比方说运用可调叶片技术能够确保内压气机的工作效率,让内压气机能够在更宽的范围内运转;运用抽吸技术和主动控制技术,能够减少多级轴流压气机的级数和重量、扩大了多级轴流压气机的工作范围[1]。 为了拓宽燃料的适用范围,减少燃料燃烧过程中带来的污染,燃气轮机技术的研发专家要发展高效率低污染的稳定燃技术。目前很多国家的燃气轮机制造厂家都在研究减少污染排放的技术,并投入了一定的物力资源、人力资源和财力资源,建立了专门的实验基地,从事对燃气轮机节能减排技术的研究,并将研究的技术应用在自己生产的燃气轮机中。

相关主题
文本预览
相关文档 最新文档