当前位置:文档之家› FLAC和神经网络在隧道位移反分析中的应用

FLAC和神经网络在隧道位移反分析中的应用

FLAC和神经网络在隧道位移反分析中的应用
FLAC和神经网络在隧道位移反分析中的应用

神经网络的应用及其发展

神经网络的应用及其发展 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

自动化工程案例分析

《自动化工程案例分析》课程总结报告 时光如白驹过隙,转眼间,大学已经步入了第四年的光景。短暂的回眸,激荡起那一片片的涟漪,却才开始发现,案例分析,在我心中挥之不去,留下了难以磨灭的记忆。四位老师的倾情传授,为我们的大学生涯留下的不止是斑驳的光影,还有那一缕盘旋不去的温情。 四位老师给我们深入浅出地讲解了很多详细的实例,这些例子和我们所学的知识相互印证,加深了我们对专业知识的了解。也让我们对毕业后的工作方向有了一个更直观的认识,让我们更加有勇气,更加自信的面对即将到来的工作或者是研究生的学习生涯。 叶老师给我们演示的是“中石化某油库计量系统”。首先叶老师讲了背景:中国石化担负着保障国家能源安全的重要责任,一年的原油加工量约为亿吨,其中原油依赖进口,因此,如何降低原油的采购运输成本成为了影响企业生产经营效益的重要问题。原油运输大型化或者原油运输管道化已成为中国石化降低原油输送成本的主要手段。国外的油库管理中已经引入了先进的工业控制技术、网络技术、数据库技术等,对油库日常的收发油品作业、储油管理、油库监控系统等进行全方位的综合管理。而我国的油库自动化技术与国际先进水平相比还是有一定的差距。各种计量仪表的精度较低,稳定性较差,控制系统的控制精度比较低,信息化管理水平不够健全。我国的油库自动化控制和管理系统曾经历了一个较长的发展时期,各种系统操作方式各异,水平也参差不齐,其中还存在着许多人工开票、开阀、手动控泵的原始发油手段。这些系统一方面是可靠性不高,影响油库的经济效益另一方

面没有运用现代化信息技术使有关人员能够方便及时的了解现场的实时运行情况以及历史生产信息,不能为生产调度决策提供可靠的数据依据,同时也不利于提高整个企业的科学化管理水平。 自动化项目浏览: 油库监控自动化系统 原油调合自动化系统 选矿自动化系统 嵌入式项目浏览: 智能防溜系统 海关油气液体化工品物流监控系统 综合项目要求,从整个系统分析,我们需要: 自动化/嵌入式项目浏览 投标与方案 监控系统设计 监控系统调试 监控系统验收 项目管理 油库是储存和供应石油产品的专业性仓库,是协调原油生产和加工、成品油运输及供应的纽带。长期以来,我国油库数据采集工作中的许多操作都是采用人工作业的方式。一方面,不仅工作效率低,而且容易出现人为因素造成的失误另一方面,也不便于有关人员及时了解现场的实时运行情况,不利于提高企业的规范化管理水平。随着自动化

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本) 这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我 QQ:415295747,或者登录我的博客https://www.doczj.com/doc/891883485.html,/u/1723697742 1.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别 5 译者序 6 前 9 致谢 10 作者简介 11 目录 19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战 27 第2章神经网络基础和线性数据分析模型 72 第3章用于非线性模式识别的神经网络 105 第4章神经网对非线性模式的学习 166 第5章从数据中抽取可靠模式的神经网络模型的实现 205 第6章数据探测、维数约简和特征提取 235 第7章使用贝叶斯统计的神经网络模型的不确定性评估 276 第8章应用自组织映射的方法发现数据中的未知聚类 359 第9章神经网络在时间序列预测中的应用 458 附录 2.MATLB 神经网络30个案例分析 第1章BP神经网络的数据分类——语音特征信号分类 23 第2章BP神经网络的非线性系统建模——非线性函数拟合 33 第3章遗传算法优化BP神经网络——非线性函数拟合 48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优 57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模 66 第6章PID神经元网络解耦控制算法——多变量系统控制 77 第7章RBF网络的回归——非线性函数回归的实现 85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测 93 第9章离散Hopfield神经网络的联想记忆——数字识别 102 第10章离散Hopfield神经网络的分类——高校科研能力评价 112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算 124 第12章SVM的数据分类预测——意大利葡萄酒种类识别 134 第13章SVM的参数优化——如何更好的提升分类器的性能

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

神经网络简介abstract( 英文的)

Abstract: Artificial Neural Network is a math model which is applied to process information of the structure which is similar to Brain synaptic connection in a distributed and parallel way. Artificial Neural Network is a computing model, and it contains of many neurons and the connection of the neurons. Every neuron represents a special output function which is called activation function. The connection of neurons represents a weighted value of the connection’s signal. Neuron is a basic and essential part of Artificial Neural Network, and it includes the sum of weighted value, single-input single-output (SISO) system and nonlinear function mapping. The element of neuron can represent different thing, such as feature, alphabet, conception and some meaningful abstract pattern. In the network, the style of neuron’s element divided into three categories: input element, output element and hidden element. The input element accepts the signal and data of outer world; the output element processes result output for system; the hidden element cannot find by outer world, it between input element and output element. The weighted value represents the strength of connection between neurons. Artificial Neural Network adopted the mechanisms that completely different from traditional artificial intelligence and information processing technology. It conquers the flaw of traditional artificial intelligence in Intuitive handling and unstructured information processing aspect. It is adaptive, self-organized and learning timely, and widely used in schematic identification signal processing.

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

路基边坡稳定性分析

路基边坡稳定性分析 【摘要】简要介绍了路基边坡稳定性分析的一些常用方法、基本原理及其适用范围,探讨路面边坡稳定技术的发展,为进一步研究路基边坡稳定性问题理清了思路。 【关键词】路面边坡;稳定性;分析 路基边坡稳定性分析方法按破坏类型大致可以分为以下两大类:力学分析法和工程地质法。 1.力学分析法 1.1数解法 该方法是假定几个不同的滑动面,按力学平衡原理对每个滑动面进行边坡稳定性分析,从而找出极限滑动面,按此极限滑动面的稳定程度来判断边坡的稳定性。按滑动面的形状可以分成平面破坏(直线破裂面)和非平面破坏(圆弧破裂面)。 1.1.1平面破坏的边坡稳定性分析 平面破坏的边坡稳定性分析方法:分为无张拉裂隙坡体的稳定性分析及有张拉裂隙坡体的稳定性分析。所谓无张拉裂隙平面破坏:是坡体土沿一近似直线的破裂面滑动,从而发生滑移破坏。 有张拉裂隙坡体破坏是由于收缩及张拉应力的作用,在边坡坡顶附近或坡面,可能发生裂隙,从而产生的滑移破坏。 平面破坏的边坡稳定性分析方法适用于砂土和砂性土(两者合成砂类土),土的抗力以内摩擦力为主,粘聚力甚小,边坡破坏时,破裂面近似为一直线。 1.1.2非平面破坏的边坡稳定性分析 所谓非平面破坏,是指边坡在外力和自身重力的作用下,坡体沿不规则的破裂面发生滑动,从而产生滑移破坏。 其分析方法分为圆弧滑面分析法和非圆弧面分析法。最典型的圆弧滑面的稳定性分析法有:瑞典条分法(W. Fellenius)和毕肖普法(A.W.B shop Method)。 瑞典条分法假定土坡稳定分析是一个平面应变问题,因此其滑面是圆弧形。将圆弧滑动面上的土体划分为若干竖向土条,依次计算每一土条沿滑动面的下滑力和抗滑力,而后叠加计算出整个滑动体的稳定性。

神经网络应用实例

神经网络 在石灰窑炉的建模与控制中的应用神经网络应用广泛,尤其在系统建模与控制方面,都有很好应用。下面简要介绍神经网络在石灰窑炉的建模与控制中的应用,以便更具体地了解神经网络在实际应用中的具体问题和应用效果。 1 石灰窑炉的生产过程和数学模型 石灰窑炉是造纸厂中一个回收设备,它可以使生产过程中所用的化工原料循环使用,从而降低生产成本并减少环境污染。其工作原理和过程如图1所示,它是一个长长的金属圆柱体,其轴线和水平面稍稍倾斜,并能绕轴线旋转,所以又 CaCO(碳酸钙)泥桨由左端输入迴转窑,称为迴转窑。含有大约30%水分的 3 由于窑的坡度和旋转作用,泥桨在炉内从左向右慢慢下滑。而燃料油和空气由右端喷入燃烧,形成气流由右向左流动,以使泥桨干燥、加热并发生分解反应。迴转窑从左到右可分为干燥段、加热段、煅烧段和泠却段。最终生成的石灰由右端输出,而废气由左端排出。 图1石灰窑炉示意图 这是一个连续的生产过程,原料和燃料不断输入,而产品和废气不断输出。在生产过程中首先要保证产品质量,包括CaO的含量、粒度和多孔性等指标,因此必须使炉内有合适的温度分布,温度太低碳酸钙不能完全分解,会残留在产品中,温度过高又会造成生灰的多孔性能不好,费燃料又易损坏窑壁。但是在生产过程中原料成分、含水量、进料速度、燃油成分和炉窑转速等生产条件经常会发生变化,而且有些量和变化是无法实时量测的。在这种条件下,要做到稳定生产、高质量、低消耗和低污染,对自动控制提出了很高的要求。 以前曾有人分析窑炉内发生的物理-化学变化,并根据传热和传质过程来建立窑炉的数学模型,认为窑炉是一个分布参数的非线性动态系统,可以用二组偏

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

Workbench高级工程实例分析培训

Workbench高级工程实例分析培训 第1例:齿轮动态接触分析 该实例系统讲解模型的导入,接触设置,齿轮实现转动的方法和原理解释,并给学员演示空载荷负载作用下的齿轮结构的应力计算比较。 图1 斜齿轮接触的有限元模型 图2 动态接触过程中某一时刻的等效应力云图(空载)

图3 动态接触过程中某一时刻的等效应力云图(负载200N.m) 第2例:过盈装配结构分析 该实例会系统讲解过盈装配结构的应力分析方法。不同设置过盈量的计算结果比较和讨论设置过盈量的合理方法,摩擦系数,旋转速度对过盈装配应力的影响。 图4 过盈量为0.00005m时的等效应力(转速=0)图5 过盈量为0.00005m时的接触应力(转速=0)

图6 过盈量为0.00005m 时的等效应力(转速=4000) 图7 过盈量为0.00005m 时的接触应力(转速=4000) 第3例:液压阀结构的分析 该实例会讲解施加随空间变化的压力载荷和系统分析接触设置对求解的影响,并给出如何合理选取接触参数来实现较为准确的求解。 图8 变化压力载荷分布云图 图9 接触压力云图(摩擦系数=0.1,增强拉格朗日算法) 第4例:发动机活塞机构的多体动力学分析 该实例会讲解如何为多体设置驱动力和约束多体之间的运动关系的方法,并讲解柔性体的多体动力学分析和刚-柔耦合的多体动力学分析。

图10 0.12s时刻的等效应力云图(柔性体)图11 1.17s时刻的等效应力云图(柔性体) 图12 0.12s时刻的等效应力云图(刚-柔耦合)图13 1.17s时刻的等效应力云图(刚-柔耦合)第5例:薄壁结构的非线性屈曲分析 该实例会讲解如何在Workbench环境下完成薄壁结构的非线性屈曲分析并获得非线性屈曲载荷的方法,研究不同初始缺陷,弹塑性对非线性屈曲载荷的影响。

神经网络分析应用

基于动态BP神经网络的预测方法及其应用来源:中国论文下载中心 [ 08-05-05 15:35:00 ] 作者:朱海燕朱晓莲黄頔编辑:studa0714 摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字神经网络,BP模型,预测 1 引言 在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

神经网络的应用及其发展

神经网络的应用及其发展 来源:辽宁工程技术大学作者:苗爱冬 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts 合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。 (2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。 (3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。 (4) 机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。 (5) 卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。 (6) 焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都

BP网络用于催化剂配方建模--MATLAB实例

BP 网络用于催化剂配方建模--MATLAB 实例 本例是《人工神经网络理论、设计及应用》(第二版)中BP 网络应用与设计的例子,现用MATLABF 仿真。 介绍:理论上已经证明,三层前馈神经网络可以任意精度逼近任意连续函数。本例采用BP 神经网络对脂肪醇催化剂配方的实验数据进行学习,以训练后的网络作为数学模型映射配方与优化指标之间的复杂非线形关系,获得了较高的精度。网络设计方法与建模效果如下: (1)网络结构设计与训练首先利用正交表安排实验,得到一批准确的实验数据作为神经网络的学习样本。根据配方的因素个数和优化指标的个数设计神经网络的结构,然后用实验数据对神经网络进行训练。完成训练之后的多层前馈神经网络,其输入与输出之间形成了一种能够映射配方与优化指标内在联系的连接关系,可作为仿真实验的数学模型。图3.28给出针对五因素、三指标配方的实验数据建立的三层前馈神经网络。五维输入向量与配方组成因素相对应,三维输出向量与三个待优化指标[脂肪酸甲脂转化率TR(%)、脂肪醇产率Y (%)和脂肪醇选择性S (%)]相对应。通过试验确定隐层结点数为4。正交表安排了18OH OH 组实验,从而得到18对训练样本。训练时采用了改进BP 算法: ) 1()(??+=?t W X t W αηδ(2)BP 网络模型与回归方程仿真结果的对比表3.3给出BP 网络配方模型与回归方程建立的配方模型的仿真结果对比。其中回归方程为经二次多元逐步回归分析,在一定置信水平下经过F 检验而确定的最优回归方程。从表中可以看出,采用BP 算法训练的多层前馈神经网络具有较高的仿真精度。

表3.3注:下标1表示实测结果,下标2表示神经网络输出结果,下标3表示回归方程 以下是具体操作: 编号A/Cu Z n/C u B/Cu C/Cu Mn/Cu T R1/% 1 T R2/% T R3/% Y OH 1/%Y OH 2/% Y OH 3/% S OH 1/% S OH 2/% S OH 3/% 10.050.130.080.140.0494.594.62 83.8396.3 96.56 95.9897.8 97.24 102.8320.0650.070.120.160.0288.05 88.0592.4375.575.97 76.5 86.586.68 79.6530.08 0.190.080.060.060.25 60.4382.0340.2141.4344.8796.2595.3681.9240.0950.110.060.160.0493.05 93.1194.3197.3196.29105.4399.3 99.39 103.0850.11 0.050.020.060.0294.65 94.7285.7988.5588.0677.8995.297.49 87.1260.1250.170.00.140.096.05 95.9697.0895.5 96.69 105.4399.599.52 104.7170.14 0.090.160.040.0461.00 61.1365.3959.7258.954.76 67.3569.1 73.52 80.1550.030.120.140.0270.40 70.3980.4437.5 41.83 46.3652.2551.3871.4590.17 0.150.10.040.083.383.32 70.2282.8580.4659.5 99.2 96.53 74.3 100.050.070.060.120.0584.585.27 70.2290.9 90.46 91.5195.997.87 92.75110.0650.190.040.020.0369.569.45 80.7761.865.03 55.2288.292.41 98.44120.08 0.130.00.120.0194.55 95.694.75 97.695.74 92.4499.697.93 101.65130.0950.050.160.020.0570.95 69.5192.8862.5460.452.5 60.162.63 68.12140.11 0.170.140.10.0387.287.16 78.6491.0 89.19 76.9299.899.36 92.22150.1250.110.10.00.0164.264.08 69.5958.359.12 54.0258.960.22 72.5 160.14 0.030.080.10.0586.15 86.1582.4 75.65 61.4329.9386.578.07 79.28170.1550.150.040.00.0377.15 77.1775.2371.971.72 83.9491.891.74 94.2318 0.17 0.090.020.080.0196.05 96 87.05 94.60 94.62 94.61 98.00 99.12 90.35

相关主题
文本预览
相关文档 最新文档