当前位置:文档之家› 3局部放电试验讲解

3局部放电试验讲解

第三章局部放电试验

复合介质的电场分布

+ + + + + +

+ + + + + + + + + + + + + +

电介质的极化 E 外 + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ Q 0 U + + + + + 自由电荷

极化电荷 + + + + + Q ’

+

电介质的极化和相对介电常数

真空中两极板之间的电容: 000Q A

C U d

ε== ε0:8.854?10-14 F/cm 介质极化后极板间电容量:

0'

Q Q A

C U d

ε+==

相对介电常数定义: 0000'

r Q Q C C Q εεε+===

复合介质中的电场分布问题

第一节局部放电特征及原理

局部放电的特征

1、特性:局部放电发生在电极之间,但放电并未贯穿

电极。

2、原因:设备绝缘内部存在缺陷,在高电压作用下,

缺陷发生重复性击穿。

3、现象:绝缘内气体的击穿,局部范围内固体或液体

介质击穿,电极表面尖端放电等。

4、危害:放电能量小,短时存在不影响电气设备的绝

缘强度。长期存在将产生累积效应,使绝缘性能逐渐劣化,最后导致整个绝缘击穿。

局部放电导致绝缘劣化的原因

1、局部温度升高。在发生局部放电的气隙内,局部温度可达1000o C。

2、带电粒子高速碰撞。

3、化学腐蚀。局部放电产生臭氧,臭氧与氮生成一氧化氮和二氧化氮,再与水蒸气反应生成硝酸。

局部放电伴随的物理现象

主要物理过程:电荷转移

其它方面:电能损耗、电磁辐射;超声波、光、热、新的生成物等。

伴随着电荷转移,最明显的特征是反映到试品施加电压的两端,有微弱的脉冲电压信号。

局部放电发生过程

以绝缘介质中存在的气泡为例:

1、工频电压施加在绝缘介质两端,气泡上承受一定的电压;如果电压没有达到气泡的击穿电压,则气泡上的电压随外加电压的变化而变化。

2、如果气泡两端的电压上升到气泡的击穿电压时,则气泡发生放电,即发生局部放电。

3、局部放电产生空间电荷。

放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷。

4、空间电荷产生的作用。

局部放电产生的空间电荷在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压是外部电压与内部电压叠加的结果。

5、局部放电的持续发展。

当气泡上的实际电压小于气泡的击穿电压时,局部放电停止;当气泡上的电压随外加电压的上升而上升,直到重新到达其击穿电压时,气泡再次击穿,出现第二次放电。

气隙放电等值电路

局部放电发展过程

第一次放电

第二次放电

第n次放电

局部放电发生与否?

局部放电测量原理

伴随着局部放电出现的物理过程:电荷转移、电能损耗、电磁辐射、超声波、光、热、新的生成物等。

局部放电测试原理:检测由于局部放电产生的微小电压脉冲,并计算出放电电荷量。

局部放电测量原理1、实际放电量q

r

2、视在放电量q

a

实际放电量q

r 和视在放电量q

a

的关系

(1),因此;

(2)两个视在放电量q

a 相同的试品,不能直接通过q

a

的大小比较实际放电量的大小;也就是说,两个相同的试品,不能通过局部放电量的测量,判断两个试品局部放电的严重程度。

局部放电试验电压:试验程序规定电压。

局部放电能量:

局部放电起始电压:

局部放电熄灭电压:

放电发生重复率:

局部放电参数

验 220kV 及以上:1)大修更换绝缘部件或部分绕组后;2)必要时 在线端电压为1.5Um/ 3 时,放电量一般不大于500pC ; 在线端电压为1.3Um/ 3 时, 放电量一般不大于300pC

1)110kV 电压等级的变压器大修后,可参照执行 2)必要时,如:运行中变压器油色谱异常,怀疑存在放电性故障时

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

局部放电试验

局部放电测量指导书 一、适用范围 本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。 二、测量基本方法与步骤 2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。对于变压器来说,一般通过套管末屏处测量,类似并联法。 (1)并联法: 2.2试验步骤: 2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;

2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。 2.2.3试验前试品应按有关规定进行预处理: (1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。 (2)在无特殊要求情况下,试验期间试品应处于环境温度。 (3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。 2.2.4测定局放起始电压和熄灭电压 拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。 2.2.5测定局部放电量 (1)无预加电压的测量 试验时试品上的电压从较低值起逐渐增加到规定值,保持一定 时间再测量局放量,然后降低电压,切断电源。有时在电压升

课题3 走进化学实验室讲义

课题3 走进化学实验室讲义 教学目标 知识与能力 1.知道化学实验是进行科学探究的重要手段,严谨的科学态度、正确的操作方法和实验原理是保证实验成功的关键。 2.了解一些化学实验室的规则。 3.掌握常见仪器的名称和使用。 4.掌握药品的取用、加热、洗涤仪器等基本实验操作。 5.培养学生的观察能力和动手能力。 过程与方法 在本课题材的教学过程中,应采用用教师的讲解、演示与学生的探究相结合的方式进行授课。 首先在教师的讲解中学生得到启示,然后学生在探究中得出结论,进而通过学生的亲处演示找出问题,最后在教师正确的演示实验中使学生加深理解。整个教学过程在教师与学生的互动中进行,使课堂气氛活跃,同时激发学生的兴趣。 情感、态度与价值观 1.培养学生严谨的科学态度。 2.初步使学生养成良好的实验习惯。 教学重点、难点及突破 重点 1.化学实验室的实验规则和常用仪器的名称、作用。 2.药品的取用。 3.酒精灯的使用方法和给物质加热的方法。 难点 1.药品的取用。 2.酒精灯的使用方法和给物质加热的方法。 教学突破 对于教学重点的突破,可采用教师的讲解、演示与学生的讨论、观察相结合的方式。教师先向学生简单介绍药品的性质、仪器的作用等,然后让学生进行观察、分析,在学生得出结论的基础上,最后教师进行正确的演示,以加深学生对实验结论的理解和记忆。 教学过程 第一课时 一、初中化学实验常用用仪器和药品的取用规则

(一)初中化学实验常用用仪器 反应容器可直接受热的:试管、蒸发皿、燃烧匙、坩埚等 能间接受热的:烧杯、烧瓶(加热时,需加石棉网) 常存放药品的仪器:广口瓶(固体)、细口瓶(液体)、滴瓶(少量液体)、 集气瓶(气体) 用加热仪器:酒精灯 计量仪器:托盘天平(称量)、量筒(量体积) 仪分离仪器:漏斗 取用仪器:药匙(粉末或小晶粒状)、镊子(块状或较大颗粒)、胶头 器滴管(少量液体) 夹持仪器:试管夹、铁架台(带铁夹、铁圈)、坩埚钳 其他仪器:长颈漏斗、石棉网、玻璃棒、试管刷、水槽 1.试管 (1)用途:a、在常温或加热时,用作少量试剂的反应容器。 b、溶解少量固体 c、收集少量气体 (2)注意事项:a、加热时外壁必须干燥,不能骤热骤冷,一般要先均匀受热,然后才能集中受热,防止试管受热不均而破裂。 b、加热时,试管要先用铁夹夹持固定在铁架台上(短时间加热也可用试管夹夹持)。 c、加热固体时,试管口要略向下倾斜,且未冷前试管不能直立,避免管口冷凝水 倒流使试管炸裂。 d、加热液体时,盛液量一般不超过试管容积的1/3(防止液体受热溢出),使试管 与桌面约成45°的角度(增大受热面积,防止暴沸),管口不能对着自己或别人(防 止液体喷出伤人)。 2.试管夹 (1)用途:夹持试管 (2)注意事项:①从底部往上套,夹在距管口1/3处(防止杂质落入试管) ②不要把拇指按在试管夹短柄上。 3.玻璃棒 (1)用途:搅拌、引流(过滤或转移液体)。 (2)注意事项:①搅拌不要碰撞容器壁②用后及时擦洗干净 4.酒精灯 (1)用途:化学实验室常用的加热仪器 (2)注意事项: ①使用时先将灯放稳,灯帽取下直立在灯的右侧,以防止滚动和便于取用。

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

局部放电测试仪校准装置

JFD-401 局放仪校验装置使用说明书 一、概述 按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003《局部放电测量》、JJG(机械)145 -93《局部放电检测装置》检定规程的要求,检定局放仪需用仪器有:示波器、正弦信号发生器、脉冲发生器、双脉冲发生器、频率计、电压表、电流表、电容电桥、兆欧表等。上述仪器中除脉冲发生器、双脉冲发生器外,均为常规测试仪器。而脉冲发生器要求电压覆盖范围宽,脉冲波形满足特殊规定要求;双脉冲发生器需输出脉冲时延可调的双脉冲,固均需专门研制。本校准系统的核心即为一台高性能的校准脉冲发生器和一台双脉冲发生器,校准脉冲发生器可以满足局放仪视在放电量测量线性度误差、正负脉冲响应不对称误差、开关换档误差、检测灵敏度等主要检定项目检定的要求;双脉冲发生器可以满足局放仪低重复率脉冲响应误差、脉冲分辨时间测量、脉冲频率测量、数字式局放仪等检定项目检定的要求。另配的校准回路箱提供屏蔽的校准回路,使检定时干扰水平大大降低,保证检定的顺利进行以及检定的测量精度。 二、原理和结构 JFD-401 校准系统分为四大部分:JFD-401C校准脉冲发生器、JFD-401J 积分系统、JFD-401S双脉冲发生器和JFD-401H校准回路箱。校准脉冲发生器可输出幅值大范围可调、波形符合要求的校准脉冲。双脉冲发生器可输出脉冲频率可调、两脉冲间隔脉冲时延可调、波形符合要求的校准脉冲并可进行脉冲计数、积分系统用于以积分方式检定局放仪方波发生器。校准回路箱可以调节试品电容及耦合电容,使其满足检测阻抗的调谐范围。上述四部分分别装在独立的金属机箱里,保证屏蔽效果良好。 三、技术参数 JFD-401C 校准脉冲发生器的技术指标如下: 1、校准脉冲上升时间:<60nS 2、校准脉冲电压幅值可调范围:粗调档分0db,-20db,-40db三档;细调档可从1.0V至110V无级调节;实际上可以做到从10mV至100V连续可调。 3、校准脉冲电容档:20pF,50PF,100pF,500pF,1000PF,2000PF 共六档。

局部放电试验原理

局部放电试验 第一节局部放电特性及原理 一、局部放电测试目的及意义 局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。 局部放电的种类: ①绝缘材料内部放电(固体-空穴;液体-气泡); ②表面放电; ③高压电极尖端放电。 局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。 局部放电的特点: ①放电能量很小,短时间内存在不影响电气设备的绝缘强度; ②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。 ③对绝缘系统寿命的评估分散性很大。发展时间、局放种类、产生位置、绝缘种类等有关。 ④局部放电试验属非破坏试验。不会造成绝缘损伤。 局部放电测试的目的和意义: 确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。 局部放电主要参量: ①局部放电的视在电荷q: 电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。 ②局部放电试验电压: 按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。 ③规定的局部放电量值: 在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。 ④局部放电起始电压Ui: 试品两端出现局部放电时,施加在试品两端的电压值。 ⑤局部放电熄灭电压Ui: 试品两端局部放电消失时 的电压值。(理论上比起始电 压低一半,但实际上要低很多 5%-20%甚至更低) 二、局部放电机理: 内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。等效原理图:

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2)

(4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC) (2)电源采用独立变压器(图4、5)

变压器局部放电试验基础和原理-新版.pdf

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使 用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操 作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期 运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用 下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在- 定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。 这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。 通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体 周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生 电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量 的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙 上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空

电缆局部放电试验方法

如对您有帮助,请购买打赏,谢谢您! 电缆局部放电试验方法 [ 作者:admin 转贴自:中国电力试验设备网点击数:505 更新时间:2008-8-29 ] 对于制造中没有包上屏蔽的电缆线,可用图(1)的牵引试验装置对局部放电定位和检测。 图(1)未加屏蔽的电缆芯用牵引法对局部放电定位 其原理是把不屏蔽的电缆芯子通过一个紧贴着试验的管状电极,电极上施加试验电压,并把电极连到试验回路。管子都浸在绝缘液中(如离子水),并把这区域中不会发生干扰试验的边缘放电,液体不断循环与过滤。电缆芯接地,从缆盘经管状电极被匀速牵引至第二个电缆盘。 如放电脉冲正好被检测仪观察到,放电在图中A处开始出现,在B处开始消失,这两位置都在芯子表面的C处标记离A、B为已知距离I1、I2,这些长度沿芯子标出,则放电就可确定在电缆A、B之间。 至于成品电缆则不能用这种办法定位和检测。 在长电缆的测试时,要考虑到行波及其在端部的反射和衰减。可归纳以下几点: 1)在没有反射波的情况下,放电所产生的电压行波在进行中其幅值虽有很大衰减,但波形与放电量成正比的面积基持不变。 2)在有反射波的情况下,传输波和反射波在检测仪的响应上要形成交迭。在检测仪具有α响应时总是形成正迭加,时则既可能正送加,也可能负迭加,而负迭加是局部放电测试的大忌,应尽量避免。因此,如没有附加措施(例如迭器)的话。应尽量采用具有α响应的检测仪。 至于检测短电缆,可以当作集中参数元件考虑。测试就没有什么困难了。 现在的问题是究竟多少长度的电缆可视作短电缆?说法很不统一,第二个问题是这个电缆长度和检测仪有没有关系?为此,IEC最近对此作了比较具体的规定: 1、首先用可调脉冲间隔的双脉冲发生器(模拟电缆上两个交迭的脉冲波)对检测仪测试其交迭响应特性,即所谓At/A t交线。(其中t为双脉冲峰与峰间的时间间隔,A100是t达到相当大,不会产生交迭效应时的脉冲响应检测量,先定t时的脉冲检测量)。 绘制At/A100~t曲线的测试电路图见图(2)。 根据检测仪响应特性的不同,大体上可作出三种类型的交迭响应特性,见图(3)-(5)。 上图中不同的t值对应于脉冲传播的电缆长度。I1k=0.5·tk·U,I1=0.5 t1·U,·I2=0.5·t2·U (U约170~200m/μs) 图(2)双脉冲发生器的连接图 图(3)α响应检测仪的双脉冲响应关系 图(4)α响应检测仪的双脉冲响应 图(5)严重β响应检测仪的双脉冲响应 由图(3)-图(5)可知: ①所谓短电缆,应按1≤1k作为判断依据,它与检测仪响应特性有关,1k可短至100米以下,也可长达1000米以 ②当1≤2I1,可1≥2 I2,时,虽然按长电缆考虑,但因无负交迭,所以也可以与1≤1k的短电缆一样当作集中参数试,而不必在电缆端部接匹配的特性阻抗。 ③测试长度I在2I1≤I≤2 I2范围内的长电缆时,如无附加措施,则应在电缆端部接匹配特性阻抗以抑制反射。或者用α响应的检测仪以免迭加(图4-25) 。 ④检测仪的β响应愈是显著(见图5),则2I1≤I≤2 I2的I范围愈是大。 局部放电检测仪的响应特性与频带选择有关,故使用时选择放大器频带时应考虑这些因素。 2、根据At/A100~t图,确定电缆长度所处的范围后,选择合适的测试电路。 (1)对于I≤Ik,或I≤2 I1,或I≥2 I2的情况,可采取终端不接匹配阻抗的路:(图(6)-图(8)) (2)对于长度在2Ik≤I≤2 I2范围内的长电缆,必须在电缆终端采取消除终端反射波的终端匹配阻抗(或用反射抑见图(9)。

局部放电试验一般步骤

局部放电试验一般步骤 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为倍,互感器为~倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。

当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时,应以峰值除以√2作为试验电压值。 电流互感器: 一般可选用频率为50Hz的试验电源。 变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。 确定试验判据以后,可选择标准脉冲进行试验回路的校准。如局放允许水平为 50PC,可选择50PC标准脉冲进行校准 3、加压测量 互感器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。 变压器试验:

局部放电试验一般步骤

局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为倍,互感器为~倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标 DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时,应以峰值除以√2作为试验电压值。 电流互感器: 一般可选用频率为50Hz的试验电源。 变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。

特高频局部放电测试仪的检测步骤

电力设备高频局部放电测试仪一般由高频电流传感器、相位信息传感器、信号采集单元、信号处理单元和数据处理终端和显示交互单元等构成。高频局部放电检测仪器应经具有资质的相关部门校验合格,并按规定粘贴合格标志。 a)按照设备接线图连接测试仪各部件,将传感器固定在盆式绝缘子非金属封闭处,传感器应与盆式绝缘子紧密接触并在测量过程保持相对静止,并避开紧固绝缘盆子螺栓,将检测仪相关部件正确接地,电脑、检测仪主机连接电源,开机。 b)开机后,运行检测软件,检查仪器通信状况、同步状态、相位偏移等参数。 c)进行系统自检,确认各检测通道工作正常。 d)设置变电站名称、检测位置并做好标注。对于GIS 设备,利用外露的盆式绝缘子处或内置式传感器,在断路器断口处、隔离开关、接地开关、电流互感器、电压互感器、避雷器、导体连接部件等处均应设置测试点。一般每个GIS间隔取2~3点,对于较长的母线气室,可5~10米左右取一点,应保持每次测试点的位置一致,以便于进行比较分析。e)将传感器放置在空气中,检测并记录为背景噪声,根据现场噪声水平设定各通道信号检测阈值。 f)打开连接传感器的检测通道,观察检测到的信号,测试时间不少于30秒。如果发现信号无异常,保存数据,退出并改变检测位置继续下一点检测。如果发现信号异常,则延长检测时间并记录多组数据,进入异常诊断流程。必要的情况下,可以接入信号放大器。测量时应尽可能保持传感器与盆式绝缘子的相对静止,避免因为传感器移动引起的信号而干扰正确判断。 g)记录三维检测图谱,在必要时进行二维图谱记录。每个位置检测时间要求30s,若存在异常,应出具检测报告(格式见附录A)。

h)如果特高频信号较大,影响GIS 本体的测试,则需采取干扰抑制措施,排除干扰信号,干扰信号的抑制可采用关闭干扰源、屏蔽外部干扰、软硬件滤波、避开干扰较大时间、抑制噪声、定位干扰源、比对典型干扰图谱等方法。

局部放电测量试验标准化作业指导书

局部放电测量试验标准化作业指导书 1.1 试验目的 测试电气设备的局部放电特性是目前预防电气设备故障的一种好方法。 1.2 该项目适用范围 交接时、大修后、必要时 1.3 试验时使用的仪器 调压器,升压变压器,局部放电测量系统,耦合电容器,其它配套设备 9.4试验方法 1.4.1局部放电试验前对试品的要求 a.本试验在所有高压绝缘试验之后进行,必要时可在耐压试验前后各进行一次,以资比较。 b.试品的表面应清洁干燥,试品在试验前不应受机械、热的作用。 c.油浸绝缘的试品经长途运输颠簸或注油工序之后通常应静止48h后,方能进行试验。 d.测定回路的背景噪声水平。背景噪声水平应低于试品允许放电量的50%,当试品允许放电量较低(如小于10PC)时,则背景噪声水平可以允许到试品允许放电量的100%。现场试验时,如以上条件达不到,可以允许有较大干扰,但

不得影响测量读数。. 1.4.2试验基本接线 9-1变压器局部放电试验的基本原理接线图图在套管抽头测量和校准接线(b)(a)单相励磁基本原理接线;三相励磁基本 原理接线;(c)Cb一变压器套管电容9-1所示变压器局部放电试验的基本原理接线,如图,并且在其末屏端子Ck 利用变压器套管电容作为耦合电容。对地串接测量阻抗Z m 1.4.3试验电源三50 HZ的倍频或其它合适的频率。试验电源 一般采用 相变压器可三相励磁,也可单相励磁。现场试验电源与试 验方法1.4.4现场试验的理想电源,是采用电动机一发电机 组产生的电源,中频电源,三相电源变压器开口三角接线产生的150H Z或其它形式产生的中频电源。试验电压与允许放电量应同制电源,而又认为确有造厂协商。若无合适的中 频或150H Z. 必要进行局部放电试验,则可采用降低电压的现场试验方法。其试验电压可根据实际情况尽可能高,持续时间和允许局部

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

实验 局部放电测量

实验4 局部放电测量 0 实验目的 了解局部放电产生的基本原理。 学习局部放电的测量方法及仪器的正确使用。 分析局部放电起始电压、视在放电量与设备绝缘质量的关系。 了解各种局部放电信号的特点。 1.局部放电的产生和实验原理 电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。 图1 固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等 效电路 局部放电的产生机理常用三电容模型来解释,如图1所示。 图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即:

u g= [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1)因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。 u g随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放电,于是C g上的电压很快从U g下降到U r,放电熄灭,则: U r= [C b/(C g+C b)]u c 式中u c为相应的外施电压;U r为残余电压(0≤U r

局部放电试验常规步骤

局部放电试验一般步骤 一、局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为1.5倍,互感器为1.1~1.2倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 1.1电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时 ,应以峰值除以√2作为试验电压值。 1.2电流互感器:

一般可选用频率为 50Hz的试验电源。 1.3变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T 596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。 确定试验判据以后,可选择标准脉冲进行试验回路的校准。如局放允许水平为50PC,可选择50PC标准脉冲进行校准 3、加压测量 3.1互感器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。 3.2变压器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升至规定测量电压,保持5分钟;然后试验电压升到预加电压,5秒后降到规定测量电压,30分钟内无上升趋势时即可降低电压到1/3测量电压以下,切除电源。如对所测量局放不稳定的变压器,应延长测量时间,在不危及变压器安全的前提下,达到局放稳定时为止。对 局放大的变压器,应测量局放的起始放电电压和熄灭放电电压,以便确定故障的性质。 起始放电电压:电压从低值缓慢均匀上升,一直到放电量刚刚超过局放规定值,此时所加电压即为起始放电电压 熄灭放电电压:当电压升过起始放电电压后(一般高10℅),然后将电压缓慢均匀下降,直到放电量刚刚小于局放规定值,此时所加电压即为熄灭放电电压 4、局部放电的观测 读取视在放电量值时应以重复出现的、稳定的最高脉冲信号计算视在放电量。真正的局放信号具有一定的对称性和周期性,偶而出现的较高的脉冲可以忽

(完整)人教版初三化学课题3走进化学实验室(教案)

课题3 走进化学实验室 教学目标 1. 认识一些常用的仪器和药品。 2. 练习药品的取用、给物质加热、连接仪器装置、洗涤玻璃仪器等化学实验基本操作。 3. 通过几个简单的化学实验,加深对已学基本概念的理解和有关物质性质的认识。 4. 知道严谨的态度、规范的操作是实验的基本保障,能遵守实验室规则,初步养成良好的实验习惯。 教学重点 1. 认识一些常用的仪器和药品。 2. 练习药品的取用、给物质加热、连接仪器装置、洗涤玻璃仪器等化学实验基本操作。 教学难点 练习药品的取用、给物质加热、连接仪器装置、洗涤玻璃仪器等化学实验基本操作。 教学准备 学生:预习教科书内容,课余时间分组参观实验室、仪器室、药品室,了解实验室实验规则、仪器的名称和用途、药品的贮存。 教师:准备实验所用仪器、药品及多媒体课件。 附实验仪器及药品:试管、镊子、药匙、量筒、酒精灯、试管夹、试管刷、大理石、碳酸钠、稀盐酸、硝酸银溶液、氢氧化钠溶液、硫酸铜溶液。 课时安排 4课时。 教学过程 1

第1课时 一、导入新课 同学们,我们知道,学习化学的一个重要途径是科学探究,而实验是科学探究的重要手段。所以学习化学就必须要走进化学实验室。今天就让我们一起走进实验室,首先去认识一些常用仪器吧! 二、新课教学 常用仪器的分类。 常用仪器(可直接受热的):试管、蒸发皿、燃烧匙、坩埚等。 常用仪器(能间接受热的):烧杯、烧瓶(加热时,需加石棉网)。 常用仪器(存放药品的):广口瓶(固体)、细口瓶(液体)、滴瓶(少量液体)、集气瓶(气体)。 加热仪器:酒精灯。 计量仪器:托盘天平(称量)、量筒(量体积)。 分离仪器:漏斗。 取用仪器:药匙(粉末或小晶粒状)、镊子(块状或较大颗粒)、胶头滴管。 夹持仪器:试管夹、铁架台(带铁夹、铁圈)、坩埚钳。 其他仪器:长颈漏斗、石棉网、玻璃棒、试管刷、水槽。 几种常用仪器的用途和注意事项: 1. 试管 (1)用途:①在常温或加热时,用作少量试剂的反应容器。②溶解少量固体。③收集少量气体。 (2)注意事项:①加热时外壁必须干燥,不能骤热骤冷,一般要先均匀受热,然后才能集中受热,防止试管受热不均而破裂。②加热时,试管要先用铁夹夹持固定在铁架台上(短时间加热也可用试管夹夹持)。③加热固体时,试管口要略向下倾斜。④加热液体时,盛液量一般不超过试管容积的1/3(防止液体受热溢出),使试管与桌面约成45°的角度(增大受热面积,防止暴沸),管口不能对着自己或别人(防止液体喷出伤人)。 2. 试管夹 (1)用途:夹持试管。 (2)注意事项:①从底部往上套,夹在距管口1/3处(防止杂质落入试管)。②不要把拇指按在试管夹短柄上。 3. 烧杯(烧瓶、锥形瓶) (1)用途:用于溶解或配制溶液和较大量试剂的反应容器。 (2)注意事项:①受热时外壁要干燥,并放在石棉网上使其受热均匀(防止受热2

局部放电试验的操作规程

局部放电试验的操作规程 发布时间:11-10-25 来源:宝应高电电力设备厂点击量:55131 更多 局部放电试验的操作规程 局部放电是指高压电器中的绝缘介质在高电场强度作用下,发生在电极之间的未贯穿的放电。试验的目的是发现设备结构和制造工艺的缺陷。例如:绝缘内部局部电场强度过高;金属部件有尖角;绝缘混入杂质或局部带有缺陷产品内部金属接地部件之间、导电体之间电气连接不良等,以便消除这些缺陷,防止局部放电对绝缘造成破坏。 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为1.5倍,互感器为1.1~1.2倍),持续时间几分钟,测局部放电量;预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 局部放电试验的具体操作规程 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量。

对试验电源的要求: 1.1电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz 或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时 ,应以峰值除以√2作为试验电压值。 局部放电试验的操作规程 1.2电流互感器: 一般可选用频率为 50Hz的试验电源。 1.3变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T 596-1996《电力设备预防性试验规程》和有关反事故技

相关主题
文本预览