当前位置:文档之家› 11 矩阵变换器驱动无刷直流电动机间接调制策略 电工技术学报

11 矩阵变换器驱动无刷直流电动机间接调制策略 电工技术学报

11   矩阵变换器驱动无刷直流电动机间接调制策略    电工技术学报
11   矩阵变换器驱动无刷直流电动机间接调制策略    电工技术学报

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

几种直流电动机原理和特点的比较

几种直流电动机原理和特点的比较 王新宇20070173 (北京理工大学信息科学技术学院01220701班) 摘要本文通过介绍三种直流电机:普通直流电机、无刷电机、步进电机的原理和特点,使用学过的物理知识分析比较了三种电机的优缺点。以便在完成不同工作时正确地选 取并使用三种电机。 关键字直流电机;无刷电机;步进电机 1 引言 1821年英国科学家法拉第证明可以把电力转变为旋转运动。而德国的雅可比则是最先制成直流电动机的人。他于1834年前后成了一种简单的装置:在两个U型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。通电后,棒型磁铁与U型磁铁之间产生相互吸引和排斥作用,带动轮轴转动。 直流电机的发明对各个行业都产生了极大的影响,而不同行业对电机性能的要求越来越高,且不尽相同,于是便产生了很多种直流电机。这些电机原理和性能有着很大的区别,以应用于不同领域。 2 普通直流电机 普通直流电机便是我们最熟悉的一种电动机,它的转子在内部,由线圈组成,定子则在外部,由永磁体组成。 图1 在工作时,而把它的电刷A、B接在电压为U 的直流电源上(如图1所示),电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd 中的电流是从c流向d。载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力F de的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极

MOS管驱动直流电机

直流电机驱动课程设计题目:MOS管电机驱动设计

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。 本文介绍了直流电机驱动控制装置(H桥驱动)的设计与制作,系统采用分立元件搭建H桥驱动电路,PWM调速信号由单片机提供,信号与H桥驱动电路之间采用光电耦合器隔离,电机的驱动运转控制由PLC可编程逻辑控制器实现。 关键词:直流电动机,H桥驱动,PWM

目录 一、直流电机概述 (4) 二、直流电机驱动控制 (6) 三、直流电机驱动硬件设计 (8) 四、直流电机驱动软件设计 (9) 五、程序代码 (12) 六、参考文献 (18)

一、概述 19世纪70年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用。在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。电动机负荷约占总发电量的70%,成为用电量最多的电气设备。对电动机的控制可分为简单控制和复杂控制两种。简单控制对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件来实现。复杂控制是对电动机的转速、转角、转矩、电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。以前对电动机的简单控制应用较多,但是,随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机的复杂控制变成主流,其应用领域极其广泛。电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。其中电动机控制部分已由模拟控制让位给以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统的应用,并向全数字控制系统的方向快速发展。电动机驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快,控制更容易的

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

直流电动机设计方案

直流电动机设计方案 第1章前沿 1.1 课题研究的背景及意义 直流电动机以其良好的起动、制动性能,较宽范围内平滑调速的优点,在许多调速要求较高、要求快速正反向、以蓄电池为电源的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流调速技术得到了很快的发展,在某些领域交流调速系统已逐步取代直流调速系统。然而直流调速系统系统不仅在理论上和实践上都比较成熟,目前还在应用,比如轧钢机、电气机车等都还有用直流电机;而且从控制规律的角度来看,交流拖动控制系统的控制方式是建立在直流拖动控制系统的基础之上的,从某种意义上说有相似的地方。因此,掌握和了解直流拖动控制系统的控制规律和方法是非常必要的。 从生产机械的要求的角度看,电力拖动控制系统分为调速系统、伺服系统、多电动机同步控制系统、张力控制系统等多种类型。而各种系统大多都是通过控制转速来实现的,因此调速系统是电力拖动控制系统最基本的系统[1]。 从直流电机在国民生产生活中所占位置的角度来看,直流电机目前依旧应用于工业生产中,并广泛应用于人们的生活中。因此直流电机的控制技术的发展很大程度上影响着国民经济的增长,影响着人们的生产生活水平,因此,对直流电机调速系统的研究还是很有必要的。 1.2 课题发展历程及趋势 在很长的一段时间里直流电动机作为最主要的电力拖动工具,其应用已经渗透到人们的工作、学习、生活的各个方面。早期电动机调速控制器主要由模拟器件构成,由于模拟器件存在的固有缺点,比如存在温漂,零漂电压等,使系统控制精度和可靠性降低。后来,随着可编程控制器比如AT89C51,PLC等和IGBT、GTR等电力电子开关器件,传感器技术等的发展使得直流电机调速系统进入了数字控制的阶段,这使得直流电机调速系

直流电动机的工作原理

直流电动机的工作原理:在电枢线圈中通入直流电流,电枢在磁场中旋转,换向器和电枢一起旋转。电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由线圈边ab,cd流入,使线圈边只要处于N极下,其中通过电流的方向总是从电刷A流入的方向,在S极下,电流总是从电刷B流出的方向。由此保证了每个磁极线圈边中的电流始终是一个方向,使电动机连续旋转。 直流发电机的工作原理:把电枢线圈感应产生的交变电动势,靠换向器配合电刷的换向作用, 使之从电刷端引出时为直流电动势。 直流电机的结构:定子(主磁极,换向极,机座,端盖,电刷装置)作用:产生磁场 转子(电枢铁心,电枢绕组,换向器,轴,风扇) 主要是电枢,作用:产生电磁转矩和感应电动势 可逆原理:同一台电机,既能做电动机运行,又能做发电机运行的原理,称为可逆原理。 直流电机的励磁方式:4种,串励,并励,他励,复励。 直流电机的空载磁场:直流电机不带负载时运行的状态称为空载运行。空载运行时电枢电流为零或近似为零,所以空载磁场是指主磁极励磁磁动势单独产生的励磁磁场。电枢磁动势:由电枢电流所建立的磁动势. 电枢反应:电枢磁动势对励磁磁动势所产生的气隙磁场的影响,称为电枢反应。 电枢反应影响电动机转速,发电机端电压。 电枢反应的作用:1负载时气隙磁场发生了畸变。2呈去磁作用。 改变电动机转向的方法:1改变电枢两端电压极性。2互换励磁绕组极性。 电机圆周在几何上分成360度,这个角度成为机械角度或空间角度。 导体切割磁场,经过N,S一对磁极,因而一对磁极占有的空间是360度 直流电机的3种调速方法:1改变电枢电压调速,2电枢回路串电阻调速,3改变励磁调速。 并励直流发电机的自励条件:1电机磁路中有剩磁 2励磁绕组并联到电枢两端 3励磁回路的总电阻小于临界点组 换向:元件内电流方向改变的过程。 变压器的分类:电力变压器,特种变压器. 变压器的主要部件:铁心,绕组,油箱。铁心和绕组装配组成器身。 变压器的特性指标:变压器二次侧的电压变化,变压器的效率 三相异步电动机的工作原理:就是通过一种旋转磁场与由这种旋转磁场借助于感应作用在转 子绕组内所感生的电流互相作用,以产生电磁转矩来实现拖动作用。 旋转磁场:一种极性不和大小不变,以一定转速旋转的磁场。 三相异步电动机的结构:定子(定子铁心,定子绕组,机座,端盖,风扇) 转子(转子铁心,转子绕组,转轴,气隙) 机械角度:电机圆周在几何上分成360度,机械角度总是360度。 电角度=P×机械角度=p×360 p:极对数

ZKTD系列矿井低速大型直流电动机

一概述 上海电机厂60年代初已开始制造矿井提升机用大型直流电动机自1962年生产第一台720千瓦58转/分大型直流电动机至今已生产了百余台大型矿井提升直流电机1978年起结合引进技术并开发了低速悬挂式矿井提升直流电动机该类电机由于设备占地面 积小投资费用省传动效率高维护方便改善运行环境达到了技术经济上更为完善 的目的 上海电机厂经过数十年的生产实践对矿井提升低速大型直流电动机设计制造积累 了丰富的经验通过不断研究改进最新建立了72XTD系列矿井提升低速大型直流电动 机 使电动机性能更加优良结构合理质量可靠 三产品性能 1本系列电动机的定额为连续工作方式 2电动机的励磁方式为他动励磁绕组有四个引线端子分为两组两组串联电压为110V 并联时励磁电压为55伏 电动机容许强行励磁强动电压不得超过500伏 3当采用磁场向进行逆运行时磁场电流从正向额定值至负向额定值时间为0.8秒 4电蹈许电流变化率(di/dt)为200300倍额定电流/秒 5电机容许的短时最大过载能力为2倍额定电流持续时间60秒切断电流为2.25倍额定电流 6电动机容许双方向运转 7.电动机适用于直流电机组电源供电和静止电源供电当电动机采用静止电源供电时整 流器的脉波数应不大于6在额定基速额定电压和额定负载下的相控总量不大于15 供电电源的峰值纹波因数不得超过6 四.结构特点 1本系列电动机的定转子铁芯分别采用优质钢板和硅钢片叠压而成适用于可控硅系统的供电方式

2电动机绝缘等级为F级电机采用无溶剂真空压力浸泽处理VPI,使绕组绝缘具有良好的抗潮能力机械强度和导热性能 3本系列电动机有两种结构型式一种为有轴和轴承座另一种为无轴无轴承座直接 悬挂在提升主轴上后一种称悬挂式电机它与提升机主轴的连接方式又三种 (a)轴套过盈连接液压装卸 (b)夹板式配合螺栓连接 (c)夹板式高强度螺栓摩擦连接 4本系列电动机的转子槽为斜槽使电动机在整个运行转速范围内确保平稳运行并有效防止磁噪音 5电机定子绕组内埋置测温元件pt100共四件主机绕组和换向绕组各二件 6当电机制成带轴带轴承时其轴承采用卧式复合润滑滑动轴承轴承上带有电接点测温装置或铂电阻测温元件pt100轴承供油系统和装置一般由用户自备 7悬挂式结构电机电机定子为可移式能从轴向位置移出露出电枢部分便于维修 8电机防护等级有IP01和IP44二种通常采用换向器外露的IP01型式 电机的冷却方法为IC37 电机的安装型式为IM5710,IM7321

直流电动机转速控制系统设计

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。特别是在直流电动机广泛应用的电气传动领域,起到至关重要的作用。直流电动机因为具有良好的调速性能和比较大的起动转矩,一直被应用在电气领域,尤其是在需要调速性能很高的场所。在制造业、工农业自动化、铁路与运输等行业都被广泛的应用,随着市场的竞争力,对直流电动机的需求也越来越高,同时对直流电动机的调速性能也有了更高的要求。因此,研究直流电动机转速控制系统的调速性能有着很重要的意义。 在本次的设计中采用PWM控制直流电动机转速。PWM脉冲受到PID算法的控制,被用来控制直流电动机的转速。同时利用安装在直流电动机转轴上的光电式传感器,将直流电动机的转速转换成脉冲信号,反馈到单片机,形成闭环反馈控制系统,改变不同占空比的PWM脉冲就可以实现直流电动机转速控制。 本论文对每一个方案的选择都进行详细的论述,在软件和硬件部分都进行了模块化。硬件部分首先给出一个以AT89S52单片机为核心的整体结构图,并对驱动电路、显示电路等模块进行详细的阐述。在软件部分给出整体程序流程图,对PWM 程序、PID算法程序、显示程序等模块详细的阐述。本次系统设计的具有抗干扰能力强、性价比高、维修简单方便等优点。 关键词:PWM;单片机;直流电动机;转速控制

Abstract Nowadays, automatic control system has been widely used and greatly developed in all walks of life. As the dominant part of electric drive, direct current (DC) control plays an important role in modern production, especially in the DC motor is widely used in the field of electric transmission. DC motor because of its good speed control performance and relatively large starting torque, has been applied in the electrical field, especially in the high speed performance requirements of the occasion. Is widely used in the manufacturing industry, industry and trade of agricultural automation, rail and transit industry, with the competitiveness of the market, the demand of DC motor is also more and more high, also of the DC motor speed performance also has the higher requirements. Therefore, it is very important to study the speed control performance of the DC motor speed control system. In this design, using PWM control DC motor speed. PWM pulse is controlled by the PID algorithm, PWM is used to control the speed of DC motor. At the same time, the hall sensor mounted on the rotational shaft of the DC motor, the DC motor speed is converted into a pulse signal, feedback to the microcontroller, form a closed loop feedback control system, changing the duty ratio of the PWM pulse can realize DC motor speed control. In this paper, the choice of each program are discussed in detail, in both the software and hardware parts are modular. In the part of hardware, we first give a whole structure diagram with AT89S52 single chip microcomputer as the core, and elaborate the driving circuit, display circuit and other modules in detail. In the software part gives the overall program flow chart, the PWM program, PID algorithm program, display program, and other modules are described in detail. The system design has the advantages of strong anti-interference ability, high cost performance, easy maintenance and so on. Key Words: PWM; microcomputer; DC motor; speed control

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将 直流电能转换成机械能(直流 电动机)或将机械能转换成直 流电能(直流发电机)的旋转 电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

直流无刷电动机工作原理控制方法

直流无刷电动机工作原 理控制方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

直流无刷电动机工作原理与控制方法 序言 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 一个多世纪以来,电动机作为机电能量转换装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活中。其主要类型有同步电动机、异步电动机和直流电动机三种。由于传统的直流电动机均采用电刷以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火化、无线电干扰以及寿命短等弱点,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用范围,致使目前工农业生产上大多数均采用三相异步电动机。 针对上述传统直流电动机的弊病,早在上世纪30年代就有人开始研制以电子换向代替电刷机械换向的直流无刷电动机。经过了几十年的努力,直至上世纪60年代初终于实现了这一愿望。上世纪70年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为直流无刷电动机的广泛应 用奠定了坚实的基础。 三相直流无刷电动机的基本组成 直流无刷永磁电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图1所示为三相两极直流无刷电机结构, 图1 三相两极直流无刷电机组成 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、C相绕组分别与功率开关管V1、V2、V3相接。位 置传感器的跟踪转子与电动机转轴相联结。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理 直流电动机转速N的表达式为:N=U-IR/Kφ 由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。现在,大多数应用场合都使用电枢控制方法。 对电动机的驱动离不开半导体功率器件。在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。 线性放大驱动方式是使半导体功率器件工作在线性区。这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。绝大多数直流电动机采用开关驱动方式。开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。 在PWM调速时,占空比α是一个重要参数。以下3种方法都可以改变占空比的值。 (1)定宽调频法 这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。 (2)调频调宽法 这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。 (3)定频调宽法 这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。 前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。目前,在直流电动机的控制中,主要使用定频调宽法。 直流电动机双极性驱动可逆PWM控制系统 双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。 双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。 另一种称为H型。 H型双极性驱动 一、显示接口模块 方案一:液晶显示器也是一种常用的显示器件。它的优点是功耗低,寿命长,本身无老化问题,显示信息量大(可以显示字母和数字),在显示字符上没有限制。但价格高,接口电路较为复杂。其只在一些(袖珍型)设备上作为显示之用。

直流电机伺服驱动器使用说明

直流电机伺服驱动器使用说明 一.概况 ED系列直流电动机伺服驱动器是针对本公司生产的空心杯系列直流电动机、无刷电动机开发设计的控制器,可对电动机的各种运动功能进行精确的控制,电路采用MOTOROLA公司生产的直流电动机伺服控制芯片,IR公司的MOSFET管做功率驱动组成H桥驱动级,集成度高,体积小,功率密度大,工作稳定可靠,功能齐全,是电机驱动器的最佳选择。可与E-Drive系列的直流电机、无刷电机等产品配套使用,能为您提供电机运动灵活控制方面完整的解决方案。二.功能特点简介 1. 方便灵活的转速调整及开环闭环的转速控制 2. 灵活的转向控制与设定 3. 方便的使能控制 4. 瞬间的刹车制动控制 5. 设有LED工作状态指示 6. 能实现多种控制功能的用户控制接口 7. 设有编码器信号接口,用户利用外部微处理器能对电机的运动状态及运动位置等进行灵活控制 8. 体积小,功率密度大 9. 设有多重保护电路使工作稳定可靠 10.电路能在瞬间吸收电机因制动及换向造成的冲击电流和反冲电压三.产品电气参数 型号:ED-Y1030A1 输入电源电压:18V-30V 直流纹波≤5%最高输出电压:28V 脉动最大负载电流:8A 连续过载保护电流:≥10A 最大吸收反冲电流:40A 最大驱动功率:200W 连续外部调速控制输入电压:0—5V 控制接口电平:高电平≥4.5V,低电平≤0.8V 最大效率:90% 环境温度:-20℃~+40℃,最大温升30℃ 四、转速控制电压与输出量关系图: 五、外形结构尺寸 长宽高=76*53*28(mm)安装脚尺寸=76*73(mm)安装孔:63*68(mm)外形结构图:

直流电动机双闭环控制系统设计与分析[设计+开题+综述]

开题报告 电气工程与自动化 直流电动机双闭环控制系统设计与分析 一、选题的背景与意义 随着现代工业的快速发展,在调速领域中,双闭环的控制理念已经得到了越来越广泛的认同。由于其动态响应快,静态性能良好,抗干扰能力强,因而在工程设计中被广泛地采用[1]。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度[2]。 PID(即:比例-积分-微分)控制器是最早发展起来的控制理论之一,由于它具有算法结构简单、鲁棒性好、可靠性高等优点,在工业控制中90%是采用PID控制系统 [3]。然而,在越来越复杂的工业过程中,常常难以确定其精确数学模型,无法从理论上准确设计PID 控制器的相应参数。此外,在实际的生产现场过程中,由于受到现场环境及运行工况的变化等因素的困扰,常规的PID设计方法往往整定欠佳,性能不良,对运行工况的适应性较差,很难满足对生产过程的控制性能和产品质量的要求。 群体智能算法(Swarm Intelligence Algorithm) [4]是近十几年发展起来的智能仿生算法,其基本思想是模拟自然界生物的群体行为来构造随机优化算法。其中由美国学者Kennedy 和Eberha提出的粒子群优化算法(particle swarill optimization,PSO) 计算快速收敛,不易陷入局部最优,而且所需参数少且易于实现。因此,粒子群及改进的粒子群优化算法在PID参数整定中的应用近几年也得到了极大关注和重视。 二、研究的基本内容与拟解决的主要问题: 1、基本内容 本课题主要研究直流电动机双闭环控制系统设计与分析,并通过粒子群优化算法(PSO)用于双闭环PID调节控制的方法对系统进行设计和仿真。 双闭环PID控制系统设置了转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 两者实行串级连接, 且都带有输出限幅电路。由于调速系统的主要被控量是转速, 故把转速环作为外环, 以抑制电网电压扰动对于转速的影响, 把由电流环作为内环, 以实现在最大 电流约束下的转速过渡过程最快最优控制。直流电动机双闭环控制系统原理见图1所示。 III

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

一种无刷直流电动机控制系统设计1

一种无刷直流电动机控制系统设计1

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y 联结全控电路,使用六支高速MOSFET开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushle ss DC Motors SUN GuanQun;SHI Ming;TONG LinYi; XU YiPing Abstract:It introduces the MOTORAL A company used for the characteristi cs of the chip MC33035 and MC3303 9 which control the brushless direc t current motor exclusively and its w ork principle. The system design divi

良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实现。本设计采用无刷直流电机专用控制芯片MC33 035,它能够对霍尔传感器检测出的位置信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需外围电路 简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。驱动电路结构简单,因而整个线路外围元件少、走线简单,可大大减小逆变器体积。 2.系统原理

相关主题
文本预览
相关文档 最新文档