当前位置:文档之家› RHSS航煤生产技术-加氢交流会

RHSS航煤生产技术-加氢交流会

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

苯加氢岗位安全操作规程(新编版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 苯加氢岗位安全操作规程(新编 版)

苯加氢岗位安全操作规程(新编版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1、上岗前必须按规定穿戴好劳保用品,持证上岗,严格遵守操作法和劳动纪律。 2、氢气易燃易爆,在空气中的含量4~75%之间为爆炸范围,要加强氢气系统的检查,发现有泄漏时要及时报告和处理,并采取相应的防范措施,防止事故发生。万一发现着火,要立即切断氢气源、总电源,作紧急停车处理,并迅速用干粉灭火器灭火,及时报告。 3、岗位及周围是易燃易爆禁火区,无关人员不准进入;作业人员不准带进火种或发火、爆炸等危险物品,不准穿或带化纤服装,不准穿带铁钉的鞋,进入岗位前要检查鞋底是否有图钉等铁器,手机、柯机要关机,不准敲打铁器设备,铁器工具要轻拿轻放,避免产生各种火花;岗位上禁止堆放其他易燃物品,及存放带油的抹布、纱头等。 接料、送料前,必须与有关岗位联系好,做到确认无误。 4、加氢反应过程中发生漏气时,应停车处理,严禁带压检修设备;加氢系统检修作业,必须按有关安全规定执行,做好安全隔绝、卸压、

航煤加氢资料

1.1 装置基本原理介绍 加氢精制是在一定的温度、压力、氢油比和空速条件下,借助催化剂的作用,将油品(直馏航煤)中的硫、氮、氧化合物转化成易除去的H2S、NH3、H2O 而脱除,并将油品中的杂 质如重金属截留在催化剂中。同时烯烃、芳烃得到饱和,从而得到安定性、燃烧性都较好的产品。, u- Z0 j/ D" s2 w4 J. f/ g 1.1.1 脱硫硫化物的存在影响了油品的性质,给油品的加工和使用带来了许多危害:对机械设备的腐蚀,给炼油过程增加困难,降低油品的质量,燃料燃烧造成环境污染等。其中,有代表的含硫化合物主要有硫醇、硫醚、二硫化物和噻吩等。9 {5 S; D' A1 i1 i; X RSH+H古RH+ H2S' }8 K37 NO D7 I 1.1.2 脱氮 含氮化合物对产品质量的稳定性有较大危害,并且在燃烧时会排放出NOX 污染环境。石油产品中的含氮化合物主要是杂环化合物,非杂环化合物较少。 2 R" T! {O K2 a/ ]$ P: d! S R NH2 + H2 RH + NH3% V A- _. a- x' O 1.1.3 脱氧 RCH2OOH + 2 H2 RH3 + 2H2O' C3、3 I7 ', i. A* } 1.1.4 烯烃、芳烃的饱和; n7 \O y a) \$ U& u6 C1 R7 m9 M- z" n R/ CH=CH R R/ CH2¬&nOECH2R,x8 r0 W4 ~! B7 d- _ ! M3 p7 L: U8 H. O7 M4 u 1.2 工艺流程说明 1.2.1 反应部分 直馏航煤自原料罐区及常压装置来经原料油过滤器( 1001 —SR- 101A/B)原料油脱水器(1001 —D—104)进入原料缓冲罐(1001 —D—101 )。经加氢进料泵(1001 —P—101A/B ) 升压至约 2.7Mpa 与氢气混合,然后经反应流出物/反应进料换热器( 1001—E—101A/B/C/D) 壳程,换热后进入加热炉( 1 001 —F—1 01 )加热至反应所需的温度进入反应器( 1001—R—1 01 ) 。混氢原料在催化剂的作用下进行加氢反应,反应产物与反应进料换热后经空冷器(1001—A —101)冷却到50C,进入低压分离器(1001 —D—102)分离出大部分的生成油进入分馏部分,低分顶部出来的循环氢与装置外来新氢混合经循环氢分液罐( 1001 —D—103)脱液经循环氢压缩机 ( 1001 —K—101A/B )增压后与原料混合进入反应系统。6 m o6 U0 p) m$ c+ A# d 1.2.2 分馏部分W8 I. i g" Y- A( v3 C' I 自反应系统来的生成油经精制航煤/低分油换热器 (1002—E—201A/B/C/D )壳程与精制航煤 换热进入分馏塔(1002 —C—201 )第25层塔盘。塔顶油气经空冷器(1002 —A—201)与分馏塔顶后冷器(1002 —E—202)冷凝后入分馏塔顶回流罐(1002 — D —201)分出气/液两相。气相与柴油加氢精制装置塔顶气体合并后,送去轻烃回收装置;液相分出污水后经分馏塔顶回流 泵(1002 —P —201A/B)提高压力后一部分作为塔顶回流,控制塔顶温度。一部分与柴油加氢精制装置石脑油合并送出装置作重整进料。塔底油一路经分馏塔底重沸器(1002 —E—204)壳 程,与柴油加氢装置来的精制柴油换热后返回塔底,另一路经精制航煤泵 ( 1002 —P—202A/B ) 升压后经精制航煤/低分油换热器与低分油换热,经空冷( 1002 —A—202)和后冷器(1002

高压加氢釜安全操作规程

高压釜安全操作规程 准备: 接通反应釜体系和加热体系电源; 旋开反应釜上进料口截门,加入反应物,注意加料量不要超过釜容积的3/4;加毕,先用小扳手对角旋紧螺栓后,再用专用大扳手旋紧(注意使用大扳手时吃住劲即可,不要过于用力)。反应(带压)检查各阀门(上方排气阀,釜上排气阀,进气阀,釜下出料口阀门等)是否旋紧(吃住劲即可,不要过于用力),开启控制箱电源及其显示开关; 开启反应釜 开启冷却水,调节搅拌转速; 检查热电偶已插入后,开启加热开关,运行加热程序; 反应开始后要密切关注反应中各参数(压力、温度、转速、转距)的变化,尤其是压力的变化 停止反应: (1)设定温度至室温,自然降温; (2)打开反应釜上方的排气阀,缓慢降压,使压力表降为0; (3)关闭排气阀,由底阀放料口放出物料,并用适当溶剂清洗出残余。 清洗反应釜:每次实验后要严格清洗反应釜。 检查反应釜上下接口处是否对齐,适当调整后,缓慢将釜体与釜盖合上,卡套卡紧但不要旋螺栓,将反应釜调整到反应前的状态,检查各阀门是否关紧。反应结束后,先进行冷却降温,再放出釜内高压气体,使压力降至常压,然后将螺栓对称均等地旋松卸下。卸盖过程中应特别注意保护密封面。每次操作完毕,应清除釜体、釜盖上的残留物,高压釜上所有密封面,应经常清洗,并保持干燥,不允许用硬物或表面粗糙的软物进行清洗。搅拌器要卸开清洗。 高压釜的安装和使用: 高压釜应放置在符合防爆要求的高压操作室内,若装备多台高压釜,应分开放置,每两台中间要用可行性防墙隔开,每间操作室,均应有直接通向室外或通道的出口。高压釜应有可靠的接地。 装盖时,先放置好密封环,然后将釜盖按固定位置,小心地在装釜体上。纯铜的密封环与釜体和釜盖之间,采用锥面相接触密封形式,借拧紧主螺栓使他们相互压紧而达到密封的目的。密封面应特别加以爱护,在拧紧主螺栓时,不可超过规定之拧紧力矩,以防密封面被挤坏或加速磨损。密封面损坏后,需重新加工修复,方可恢复良好的密封性能。拧紧螺栓时,必须按对角,对称地分多次逐步拧紧,用力要均匀,不允许釜盖向一边倾斜,以达到良好的密封效果。所有螺纹连接件在装配时,均需涂抹油料或油料调和石墨。 加温、加压密封性试验,试验介质可用空气、氮气,但最好是用惰性气体,严禁使用氧气或其它易燃易爆气体。升温升压,必须缓慢进行。升温速度不大于80度/小时。试压时,用连接管将高压釜的进气阀和压缩机(或高压泵)相连。升压必须分次进行,

加氢裂化空气预热系统操作规程

加氢裂化空气预热系统操作规程 空气预热系统可在各炉启运前投用,此时各炉在机械供风状态下点火。也可在各炉启运后投用,此时应将风道上的自然通风门打开,各炉在自然通风状态下点火。 为保证加热炉和空气预热器的安全稳定运行,空气预热系统设置了如下安全联锁系统: 1、烟气入预热器压力1401-PI-2507大于-400Pa,或温度1401-TI-2507大于420℃以及烟气出预热器温度1401-TI-2508大于等于250℃时停烟气引风机,同时自动打开烟囱旁通挡板1401-HV-2501,关闭烟气入预热器挡板1401-HV-2502。 2、空气入预热器压力1401-PI-2507小于500Pa时,停空气鼓风机和烟气引风机,自动打开烟囱旁通挡板1401-HV-2501和炉底风道快开门1401-UV-2511A~F和1401-UV-2511A~E,关闭烟气入预热器挡板1401-HV-2502。 一、风机试运 1.鼓风机、引风机在首次开机及检修后开机前必须进行试运转。 2.首先在无载荷的情况下进行试转,运转时间不少于半小时。 3.如运转情况良好,再转入满载荷下的试运转,运转

时间不少于2小时。 4.试运转合格后停机进行全面检查。 二、投用 (一)准备工作 1.关闭鼓风机进出口阀,然后盘车。 2.检查鼓风机各部件安装是否齐全正确。 3.检查鼓风机轴承箱的油位是否在1/2~2/3油标之间。 4.检查电机线路及仪表是否正确。 5.检查冷却水部分是否正常。 6.全开鼓风机出口挡板。 (二)投用步骤 1.启动鼓风机,不带负荷运转10分钟。待运转正常后,逐步开启进出口阀,投入运转。 2.当各炉操作稳定,燃烧正常后,即可启用空气予热器和引风机。 3.重沸炉1402-F-201和分馏炉1402-F-202供风不均时,分别调节重沸炉前的总蝶阀1401-HC2511和分馏炉前的总蝶阀1401-HC2521,平衡各炉的供风量。 4.在联合烟道形成稳定的负压后,各炉即可由烟囱抽风状态改为机械抽风状态,即缓慢打开去预热系统的挡板,同时缓慢关闭去烟囱的挡板。切换过程要缓慢,以免造成加

加氢工艺作业安全操作规程1

加氢工艺作业安全操作规程 1、上岗前必须按规定穿戴好劳保用品,持证上岗,严格遵守操作法和劳动纪律。 2、氢气易燃易爆,在空气中的含量4~75%之间为爆炸范围,要加强氢气系统的检查,发现有泄漏时要及时报告和处理,并采取相应的防范措施,防止事故发生。万一发现着火,要立即切断氢气源、总电源,作紧急停车处理,并迅速用干粉灭火器灭火,及时报告。 3、催化剂是遇空气能自燃跳火的物质,必须经常检查,保持有纯化水浸泡与空气隔绝,水少时要加纯化水,同时投料加催化剂时,每次投量不能太多、太快,以免堵塞管道,同时要注意在投料达90%时,加完催化剂;防止催化剂掉出投料槽外,不慎掉出外面,要及时清理干净,岗位要配备回收掉地催化剂的水桶和抹布,不能乱冲,以防不测。 4、岗位及周围是易燃易爆禁火区,无关人员不准进入;作业人员不准带进火种或发火、爆炸等危险物品,不准穿或带化纤服装,不准穿带铁钉的鞋,进入岗位前要检查鞋底是否有图钉等铁器,手机、柯机要关机,不准敲打铁器设备,铁器工具要轻拿轻放,避免产生各种火花;岗位上禁止堆放其他易燃物品,及存放带油的抹布、纱头等。 5、投料前,要检查本岗位所辖的设备、安全防护装置、管道、阀门、仪表及水、电、汽是否正常,原、辅材料是否充足。 6、按工艺要求投2.1m3的糖液,在投料罐保持有物料作为水封防止空气进入反应釜的情况下,要做好标记,取样口没有气出后,要及时关闭投料阀,防止多投料,若不慎投多了,要排出多投部分,否则,会因吸氢困难造成焦料。 7、液碱(氢氧化钠)是具有腐蚀性的物品,给物料调PH时,取液碱、投碱要穿戴好防护用品,小心操作,防止被碱灼伤;若不慎被碱灼伤,要及时用大量的清洁水冲洗,然后用2%的硼砂溶液冲洗,再清洁水冲洗。若伤势严重时,要及时送医院救治。

航煤加氢资料

装置基本原理介绍 加氢精制是在一定的温度、压力、氢油比和空速条件下,借助催化剂的作用,将油品(直馏航煤)中的硫、氮、氧化合物转化成易除去的H2S、NH3、H2O而脱除,并将油品中的杂质如重金属截留在催化剂中。同时烯烃、芳烃得到饱和,从而得到安定性、燃烧性都较好的产品。, u- Z0 j/ D" s2 w4 J. f/ g 脱硫 硫化物的存在影响了油品的性质,给油品的加工和使用带来了许多危害:对机械设备的腐蚀,给炼油过程增加困难,降低油品的质量,燃料燃烧造成环境污染等。其中,有代表的含硫化合物主要有硫醇、硫醚、二硫化物和噻吩等。9 {5 S; D' ^1 i1 i; X RSH+H2→RH+ H2S' }8 K5 \7 N0 D7 I 脱氮 含氮化合物对产品质量的稳定性有较大危害,并且在燃烧时会排放出NOX 污染环境。石油产品中的含氮化合物主要是杂环化合物,非杂环化合物较少。 2 R" T! {0 K2 a/ ]$ P: d! S R NH2 + H2 RH + NH3% V A- _. a- x' O 脱氧 RCH2OOH + 2 H2 RH3 + 2H2O' C3 `3 I7 `, i. A* } 烯烃、芳烃的饱和; n7 \0 y a) \$ U& u6 C1 R7 m9 M- z" n RˊCH=CHˊR RˊCH2¬¬-CH2Rˊx8 r0 W4 ~! B7 d- _ ! M3 p7 L: U8 H. O7 M4 u 工艺流程说明 反应部分 直馏航煤自原料罐区及常压装置来经原料油过滤器(1001-SR-101A/B)原料油脱水器(1001-D-104)进入原料缓冲罐(1001-D-101)。经加氢进料泵(1001-P-101A/B)升压至约与氢气混合,然后经反应流出物/反应进料换热器(1001-E-101A/B/C/D)壳程,换热后进入加热炉(1001-F-101)加热至反应所需的温度进入反应器(1001-R-101)。混氢原料

加氢裂化操作规程

120万吨/年加氢裂化装置操作规程 海南实华炼油化工有限公司 二〇一四年十一月

目录 第一章概述 (1) 第一节装置概况 (1) 第二节原料和产品 ............................................................................................................... 第三节物料平衡 ................................................................................................................... 第四节工艺流程说明 ............................................................................................................. 第五节主要操作条件 ............................................................................................................. 第六节能耗、公用工程及辅助材料消耗.............................................................................. 第七节装置内外关系............................................................................................................. 第八节分析控制 ..................................................................................................................... 第九节工艺卡片........................................................................................................第二章化学反应原理、催化剂及影响因素 .............................. 第一节反应原理 ..................................................................................................................... 第二节催化剂 ......................................................................................................................... 第三节影响因素 ..................................................................................................................... 第三章正常开工程序 ................................................ 第一节开工准备工作 ............................................................................................................. 第二节开工前的设备检查 ..................................................................................................... 第三节反应系统氮气气密、烘干催化剂.............................................................................. 第四节催化剂装填 ................................................................................................................. 第五节催化剂干燥 ................................................................................................................. 第六节急冷氢和紧急泄压试验 ............................................................................................. 第七节催化剂预硫化 ............................................................................................................. 第八节切换原料油和调整操作 ............................................................................................. 第九节原料分馏系统气密 ..................................................................................................... 第十节原料分馏系统冷油运 ................................................................................................. 第十一节分馏系统热油运及进油操作.................................................................................. 第四章正常操作法 .................................................. 第一节反应部分正常操作 ..................................................................................................... 第二节分馏部分正常操作 ..................................................................................................... 第三节循环氢脱硫操作 ......................................................................................................... 第四节加热炉操作 ................................................................................................................. 第五节空气预热系统操作 ..................................................................................................... 第六节热工部分操作 ............................................................................................................. 第七节原料油过滤器操作 ..................................................................................................... 第五章装置正常停工程序 ............................................ 第六章循氢机操作规程 .............................................. 第一节开机条件 ..................................................................................................................... 第二节开机前的检查工作 ..................................................................................................... 第三节润滑油系统的检查、准备及润滑油系统循环的建立..............................................

航煤装置技术问答

中国石化塔河炼化有限责任公司管理体系 SHTH-T4.02.02.001.2014 加制氢车间航煤加氢装置技术问答 2014-03-01 发布2014-03-01实施 中国石化塔河炼化有限责任公司

目录 第一节化工工艺基础 (1) 第二节冷换设备 (10) 第三节燃烧 (14) 第四节司泵 (32) 第五节自控 (44) 第六节压缩机 (61) 第七节分馏单元 (67) 第八节航煤加氢岗位技术问答 (75)

第一节化工工艺基础 1.常见物质的积聚状态有:气态、液态、固态三种。其各自的物理特征:气态 分子间引力小,可以自由的充满整个空间;液体分子间作用力较大,但有空缺,具有一定的流动性和扩散性; 固态微粒紧密堆积,其形态不易改变。 2.描绘气体状态的三个参数为温度、压力、体积。 3.理想气体状态方程式为PV = nRT(或PV = W/MRT) 。 4.气体方程中R称为摩尔气体常数,其数值对压力和体积的单位不同而不同。 5.当气体达到临界状态时,气体都有一个共性,即:气液不分的特点。 6.为了使理想气体状态方程能够用于实际气体提出了压缩因子的概念和对比 态原理。热力学上将体系分为:敞开体系、封闭体系、孤立体系三类。 8.如果体系各个状态性质均不随时间而变化,则该体系处于热力学平衡状态。 9.热容是指在不发生化学反应和物质聚积状态转变的条件下,使物质温度升高 1K所需的热量,称为该物质的热容。 10.标准状态是指1atm,热力学温度为273.15K 。 11.基元反应是指反应物分子在碰撞中一步直接转化为生成物分子的反应。 12.活化能是指使具有平均能量的普通分子变为能量超过一定值的活化分子所需 的最小能量。 13.反应化学平衡是研究反应可能性的关键。 14.PH是指溶液中[H+]浓度的负对数,用其来表示溶液的酸碱性。 15.测定PH值的方法有:酸碱指示剂、PH试纸、PH计等。 16.金属腐蚀按机理分为化学腐蚀和电化学腐蚀两类。 17.金属腐蚀的防护方法有:钝化法、合金法、包复法、阴极保护法等。 18.热力学三大平衡是:热平衡、化学平衡、相平衡。 19.相平衡是所有分离过程的基础,?它为选择适宜的分离方法与确定正确操作 条件提供了科学依据。 20.沸点是指当溶液的蒸汽压等于外压时的温度。

苯加氢岗位安全操作规程

苯加氢岗位安全操作规程Through the process agreeme nt to achieve a uni fied action policy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly.

编制:____________________ 审核:____________________ 批准:____________________

苯加氢岗位安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、上岗前必须按规定穿戴好劳保用品,持证上岗,严格遵守操作法和劳动纪律。 2、氢气易燃易爆,在空气中的含量4?75%之间为爆炸范围,要加强氢气系统的检查,发现有泄漏时要及时报告和处理,并采取相应的防范措施,防止事故发生。万一发现着 火,要立即切断氢气源、总电源,作紧急停车处理,并迅速用干粉灭火器灭火,及时报告。 3、岗位及周围是易燃易爆禁火区,无关人员不准进入; 作业人员不准带进火种或发火、爆炸等危险物品,不准穿或带化纤服装,不准穿带铁钉的鞋,进入岗位前要检查鞋底是否有图钉等铁器,手机、柯机要关机,不准敲打铁器设备,铁器工具要轻拿轻放,避免产生各种火花;岗位上禁止堆放其他易燃物品,及存放带油的抹布、纱头等。 接料、送料前,必须与有关岗位联系好,做到确认无误。

航煤加氢催化剂的选型与应用_荆军航

第 45 卷 第 10 期2016 年 10 月 Vol.45 No.10Oct.2016 化工技术与开发 Technology & Development of Chemical Industry 航煤加氢催化剂的选型与应用 荆军航,周婷婷,李兴彪 (锦西石化分公司研究院,辽宁 葫芦岛 125001)摘 要:分析喷气燃料加抗静电剂后水分离指数严重下降的原因,确定影响因素为原料油中携带的碱性氮化物。当处理碱性氮化物含量较高的原料时,需要选用脱氮率更好的加氢催化剂。通过实验筛选确定了新型加氢催化剂,工业应用结果表明,新型催化剂能够满足航煤生产需要。 关键词:喷气燃料 ;水分离指 数; 抗静电剂 中图分类号:TE 624.4+3 文献标识码:B 文章编号:1671-9905(2016)10-0057-02作者简介:荆军航,男,高级工程师,博士学位,长期从事炼油工艺及水处理技术研究管理工作 收稿日期:2016-08-02 生产工艺 锦西石化分公司航煤加氢装置以南、 北蒸馏常一线混合油为原料生产3#喷气燃料, 产品执行国家标准GB 6537-2006,对水分离指数的要求是:加剂前水分离指数不小于85,加入抗静电剂后水分离指数不低于70。公司航煤加氢装置于2013年11月17日检修后开工,加工处理南、北蒸馏常一 线原料,航煤一直达不到质量指标要求,突出表现在固体颗粒污染物含量超标及加入抗静电剂后水分离指数不合格。经过调整操作、原料监控及更换过滤器滤芯等措施,航煤固体颗粒污染物含量达标,航煤质量问题集中表现为水分离指数不合格。具体表现为单独加入抗静电剂及抗磨剂,水分离指数下降不明显,同时加入抗静电剂及抗磨剂后,水分离指数下降至44,指标要求不小于70,水分离指数下降严重。装置曾考虑采用改性白土对航煤产品进行精制,产品可以达标,但由于油品碱性氮含量高,颗粒白土仅运行10d 便失活,代价昂贵。对南、北蒸馏原料进一步分析得出,南蒸馏常一线原料碱性氮含量较高,达12.9×10-6,北蒸馏常一线原料碱性氮含量较低,为1.7×10-6,因此目前装置采取将南蒸馏原料划出,只保留处理北蒸馏原料维持生产合格航煤,导致航煤加氢装置负荷降低,效益损失大。 1 航煤质量问题的原因分析 资料显示,水分离指数不合格的根本原因是油 品中碱性氮化物的存在[1],使得抗静电剂活性成分冲突,衍生出了新的表面活性物质,大幅降低了水分离指数[2]。碱性氮化物的影响已形成共识,但目前还没有相关的机理分析。 抗静电剂加入量/×10-6 水分离指 数 图1 不同碱氮含量下水分离指数与加剂量关系 从图1中看出,加入抗静电剂后,航煤水分离指数发生变化。碱性氮含量不同的航煤,其水分离指数受抗静电剂加入量影响也不同。随着碱性氮含量升高,航煤水分离指数受抗静电剂加入量影响增大,证明碱性氮是影响航煤水分离指数的重要组分。 航煤加氢装置使用的是标准公司生产的DC-2551加氢精制催化剂,其主要成分为钴和钼,脱硫能力强,脱氮能力弱,而我公司航煤加氢原料来自于南、北蒸馏常一线,分析显示南蒸馏常一线的总氮及碱性氮均较高,碱性氮达到11×10-6。碱性氮与航煤产品抗静电剂T1502(聚醚聚砜类物质)和抗磨剂T1601(环烷酸)活性成分冲突,衍生出了新的表面活性物质,大幅降低了水分离指数。因此,解

加氢裂化分馏系统操作法

加氢裂化分馏系统操作法 1.1岗位任务和职责 1.1.1岗位任务 1.1.1.1以加氢裂化反应生成油为原料,按工艺操作标准及工艺卡片的要求,操作加热炉、分馏塔等主要设备;采用分馏、汽提等分离方法,生产出合格的液态烃、轻重石脑油、航煤、柴油、乙烯料、轻中重润滑油组分等产品。 1.1.2岗位职责 1.1. 2.1严格按工艺卡片、平稳率指标及车间规定控制操作,保持各塔液位、压力、温度、流量平稳,平为其他岗位平稳操作创造条件。 1.1. 2.2根据反应系统操作参数的变化,正确分析操作,及时调整,保证各产品质量合格。 1.1. 2.3按工艺操作规程要求,加强对加热炉的维护和管理,对异常情况做出准确判断与处理。 1.1. 2.4对本系统的所有设备、机泵及仪表设备进行定期巡检及不定期检查,有异常情况及时汇报班长并做相应的处理措施,做好操作记录。 1.1. 2.5遇到异常情况岗位应冷静分析,准确判断,采取一切有效的方法恢复平稳操作;对报警与连锁动作做出快速判断,紧急情况下,有权实施分馏岗位紧急联锁。

1.2操作因素分析 分馏系统的目的是生产符合质量标准的各类产品,并为反应系统提供符合要求的性质相对稳定的循环油。保持分馏系统的物科平衡及热量平衡,是分馏系统的设计思想和依据,是分馏操作必须遵循的原则。 我装置分馏系统包括:脱丁烷塔(重沸炉)、脱乙烷塔、常压塔(常压进料炉)、减压塔(常压进料炉),操作遵循蒸馏原理。 1.2.1操作因素分析 1.2.1.1脱丁烷塔(T1001) a.压力 压力是产品的定性值,它决定油品的沸点,在相同温度相同组成下,决定油品的气化率。塔顶压力是靠控制塔顶分液罐的压力来实现塔的压力对整个分馏塔组分的沸点有直接影响,随着塔压升高,产品的沸点也会升高,以致给组分的分离带来更大的困难。 正常的塔压不宜改变,塔操作的稳定由温度调节控制。正常压力控制在1.55MPa。 b.温度: 脱丁烷塔两路进料:从冷低分经E1015加热后约168℃进22层;从热低分底约250℃进28层。保持进料流量温度及出料流量和温度的

160加氢裂化操作规程

第一章工艺技术规程 1.1装置概况 1.1.1装置简介 一、辽阳石化分公司炼油厂加氢裂化装置是继镇海加氢裂化装置之后第二套国产化装置,由洛阳石化工程公司承担主要设计,天津四建承建。于1991年10月正式开工建设,1995年6月建成,1995年9月开车一次成功; 原设计为100*104t/a,串联式中间馏分油循环流程。1998年9月装置进行120万吨/年一次通过流程的扩能改造,1999年6月实现160万吨/年一次通过流程改造的第一步,2001年6月完成160万吨/年串联式一次通过流程改造。 原料油主要是常减压直馏蜡油,可以掺炼部分焦化蜡油抽余油。 二、装置占地:加氢裂化和制氢在一个界区内,界区的面积为228*140=31920m2,其中加氢裂化占地面积为228*80=18240m2,制氢装置占地228*60=13680m2,加氢裂化和制氢装置共用一个中心控制室、变配电间、生产办工楼和生活设施,中心控制室在制氢南侧,办工楼在联合装置的界区外。 三、装置组成:装置由两大部分组成: (一)反应部分包括原料系统、反应系统、新氢系统及注氨、注硫系统、反应部分包括:加热炉系统(F1101、F1102),加氢精制和加氢裂化反应器,高分和低分。 (二)分馏系统:由脱丁烷塔;轻石脑油分馏塔;第一分馏塔、重石脑油气提塔;第二分馏塔四个单元。 反应系统作用:原料油通过加氢裂化反应转化为轻质烃;轻、重石脑油、航煤、柴油等产品。 分馏系统作用:将反应部分来的反应生成油分馏切割成干气、液化石油气,轻、重石脑油、航煤、柴油、未转化油等产品。 四、主要材料和辅助材料的来源 (一)加氢裂化所需直馏蜡油VGO144.5*104t/a,由常减压装置提供;焦化蜡油抽余油CGO15.5*104t/a,由蜡油抽提装置提供。 (二)氢气由制氢装置及氢气提纯装置提供。 (三)燃料1、燃料气(干气+液化石油气),3.95*104t/a; 2、燃料油3.55*104t/a,均由燃料站提供。 (四)装置开工用油:新催化剂开工用油:低氮油2000吨;正常开工柴油500吨,全馏分石脑

航煤加氢装置优化操作

航煤加氢装置优化操作 摘要:针对镇海炼化炼油四部航煤加氢装置的实际生产情况,分析装置生产存在的问题,并采取相应的对策。经过相应措施的实施,达到装置的长周期运行及全面达标。 关键词:航煤加氢压降达标 一、概述 航煤加氢装置2001年5月建成投产,该装置采用北京石油化工科学研究院开发的新一代航煤精制技术RHSS技术,它包括新型加氢脱硫醇催化剂RSS—1A以及与之相适应的临氢脱硫醇工艺,集合了非临氢及加氢两种工艺的特点,选用低温活性好的催化剂,操作费用较低,经济效益好,生产的高附加值航煤产品量占公司航煤成品出厂量的大头。 但航煤装置生产也存在不少难点。首先航煤质量指标多、要求严,操作条件苛刻,操作上稍有疏忽就会导致馏出口不合格并污染成品大罐,而且不能进行调和成为合格产品;其次装置开工周期短,投产时间不长,操作人员经验不足,操作条件有待变化;再次航煤原料/精制航煤换热器管程压降上升较快,影响到装置的处理量,相关管线振动幅度较大,甚至有可能造成装置非计划停工。 本文试图通过对航煤加氢装置操作特点的分析并采取相应措施,以达到克服各种不利因素,确保装置平稳长周期运行和全面达标的目的。

二、装置各项达标指标及难点分析 航煤加氢装置开工一来始终被公司定为二类达标装置,2004年装置的达标项及指标如表—1所示: 表-1:航煤加氢装置达标项目及指标 在实际生产过程中存在以下生产难点。 1、装置操作苛刻度高,馏出口合格率达标为工作难点。航煤质量指标多、要求严、特别是银片腐蚀指标不合格原因目前还没有明确定论,一般认为航煤银片腐蚀主要是由有机硫、小分子硫醇、单体硫和硫化氢引起的。从操作经验来看,本装置银片腐蚀不合格由微量硫化氢(均在1PPm以下)引起,但要定量分析,公司没有必要设备。且银片腐蚀分析时间长达4小时,分析结果严重滞后给操作带来不利影响。随着公司加工原油的劣质化趋势日益明显,航煤原料油性变化幅度较大,对操作影响较大,稍有疏忽会引起塔201底航煤银片腐蚀大于2级,从而导致精脱硫罐后航煤银片腐蚀在2级以上而不合格。 2、装置含硫污水含油量存在超标问题。航煤加氢装置含硫污水分级控制合格率是与Ⅰ加氢装置合并考核的。由于改造不彻底,特别

加氢裂化装置开工安全事项示范文本

加氢裂化装置开工安全事 项示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

加氢裂化装置开工安全事项示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 车间人员应经过事故诊断专家系统培训。事故诊断专 家系统主要是利用计算机把已有的专家经验和合理的正逆 向推理系统集成,实时地进行在线诊断,防止异常过程发 生。加氢裂化装置稍有波动(如晃电、短时间的停电、停 风、停汽、停水等),对安全影响很大,利用专家系统进 行实时诊断,使操作人员对催化剂床层压降异常、催化剂 床层超温、高压分离器压力异常、高压分设器液位异常、 高低分串压等异常情况及时发现并为解决问题提供了专家 处理方案,同是为及时处理问题赢得时间。 开工时应配备硫化氢报警仪、防毒面具和空气呼吸 器,以便在事故时进行自救、抢救。 用盲板隔离操作管线、设备、阀门与非操作管线、设

备、阀门,防止发生串压。 反应(循环氢)加热炉可与高压系统干燥结合,烘炉(干燥)介质应采用N2,质量应符合标准,并严格遵守烘炉升温曲线。 高压系统应严格执行“先升温后升压”的原则,在达到最低升压温度(如:50℃)后才能升压;且温度小于150℃时,升温速度小于25℃/h,以免产生脆性破坏。 高压系统应进行气密试验,试验的最高压力应不超过高压分离器的压力,试验介质可采用氮气、氢气分阶段、分步聚实施。 开工时高压系统应进行慢速和快速两种紧急泄压试验,检查联锁系统的安全可靠性,进行事故演练,并根据试验结果调整泄压孔板孔径。 高压系统不应进行水运,以免损坏催化剂、高压泵,防止水中的杂质损坏设备和管道。反应器内氧含量大于

航煤加氢装置存在的问题及解决策略研究

航煤加氢装置存在的问题及解决策略研究 作者:李方志 来源:《中国化工贸易·下旬刊》2020年第05期 摘要:通过现代化技术,可将汽油加氢装置改造成航煤加氢装置。但是,很多经过改造后航煤加氢装置生产出来的产品,不但质量不达标,还存在能源消耗过大的问题。为此,本文分别针对航煤加氢装置所存在的问题及其解决策略进行了探索与研究。 关键词:航煤加氢装置;存在问题;解决策略 0 引言 航空煤油加氢装置具有较强的抗风险能力,所以具有较高的经济效益和环境效益。通过在油品当中加氢,不但可以改善其气味和颜色,还可以提高油品的安定性和整体质量,在降低生产成本的同时,为环保事业做出积极的贡献。但是,在航煤加氢装置运行的过程中,还存在一些问题与不足,亟待相关技术人员对其进行有效解决,使该装置的作用与性能得到最大限度的发挥。 1 航煤加氢装置运行中存在的问题 1.1 加氢反应器进出口压差过大 正常情况下,当原油料加热后,从反应器入口到反应器出口的压力差值应为0.25MPa。反应器压差是固定床加氢反应器中一项非常重要的控制参数,当压差加大时,会导致压缩机负荷的增大,与此同时,反应器或者管道的物流变乱,从而使加氢效果受到不利影响。例如在装置处理量为30.1t/h的条件下,反应器的实际压降为0.3MPa,较规定指标相整整高出20%。为此,操作人员特别针对设备运行情况进行了数据分析,并得出以下分析结论:首先,当原料油处理量增大时,原料油组分变重或者带有一定的水分,导致进料负荷增大,甚至超出反应器的正确处理范围;其次,反应器中的催化剂存在局部粉碎或者结焦现象,由此产生一定的阻力,导致原料在流通过程中受阻,最终造成反应器压差增大;最后,由于设计方案不够科学合理,使得压缩机自身排量较小。在这种情况下,即使反应器处于满负荷运行状态,其出口压力依然低于设计指标。 1.2 原料过滤器滤芯鼓胀或破损 为了能够有效去除原料中大于25μm的杂质颗粒,在绝大多数航煤加氢装置中,都会根据实际工艺条件安装一定数量的滤芯,避免杂质在催化剂床层聚集,对设备的运行质量造成不利影响。生产厂家不同,在过滤器压差的设计上也存在一定的差异。但是,无论是哪一种类型的

相关主题
文本预览
相关文档 最新文档