当前位置:文档之家› 精馏塔的工作原理课件_12251409

精馏塔的工作原理课件_12251409

精馏实验

精馏实验 一、简答题 1、电加热开关何时开启?精馏过程如何调节电压? 待塔釜料液加好后,将加热电压调节旋钮全关,再开电加热开关,以免启动功率过大,烧坏电加热管。刚开始加热电压可高些如200~220V,等塔釜温度稳定在九十几度也即釜温达泡点时,电压降至100~120V左右,注意加热电压不能太高,否则会出现淹塔现象。 2、其他条件都不变,只改变回流比,对塔性能会产生什么影响? 3、进料板位置是否可以任意选择,它对塔的性能有何影响? 4、为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 5、将本塔适当加高,是否可以得到无水酒精?为什么? 6、为什么精馏开车时,常先采用全回流操作? 精馏塔要保持稳定高效操作,首先必须使精馏塔从下到上建立起一整套与给定操作条件对应的逐板递升的浓度梯度和逐板递降的温度梯度。即使全塔的浓度梯度和温度梯度按需要渐变。所以,在精馏塔开车时,常先采用全回流操作,待塔内情况基本稳定后,再开始逐渐增大进料流量,逐渐减小回流比,同时逐渐增大塔顶塔底产品流量。 7、精馏塔操作时,若精馏段的高度已不能改变,要提高塔顶产品易挥发组分的浓度,则采用什么方法? 影响塔顶产品质量的诸因素中,影响最大而且最容易调节的是回流比。所以若需提高塔顶产品易挥发组分的浓度,常采用增大回流比的办法。 8、精馏塔操作时,若提馏段的高度已不能改变,要提高塔底产品中难挥发组分的浓度,则采用什么办法? 最简便的办法是增大再沸器上升蒸汽的流量与塔底产品的流量之比。 (由7、8题可见,在精馏塔操作中,产品的浓度要求和产量要求是相互矛盾的,为此必须统筹兼顾,不能盲目地追求高浓度或高产量。一般是在保证产品浓度能满足要求以及能稳定操作的前提下,尽可能提高产量。此时提高产量的办法是在允许的范围内采用尽可能小的回流比和尽可能大的再沸器加热量。) 9、精馏操作稳定的必要条件是什么?

空分装置原理

低温空分原理:[1] 标准大气压下,空气的主要组分为:氮气、氧气和氩气,其沸点分别为77.36K、90.19K和87.26K。可见氧气和氮气的沸点相差近13K,而氧气和氩气的沸点相差仅近3K,故氧气和氩气相对于氮气都是难挥发组分。一般而言,对于两种沸点不同的物质(如氮和氧)组成的混合液体在吸热部分蒸发时,易挥发组分(沸点较低)将较多的蒸发为气相,而两种沸点不同的混合蒸汽在放热而部分冷凝时,难挥发的组分(沸点较高)将较多的冷凝为液相。如果将温度较高的饱和蒸汽和温度较低的饱和液体相接触时,则蒸汽放出热量而部分冷凝,而液体则吸收热量而部分蒸发,蒸汽部分冷凝时,蒸汽中氧组分较多的冷凝到液相,同样液相中的氮组分较多的蒸发到气相,使得气相中的氮组分浓度提高,液相中的氧组分浓度提高,如果进行多次这样的部分蒸发和部分冷凝过程,则气相中的氮组分浓度不断增加,同时液相中的氧组分浓度不断增加,最终达到氮氧分离的目的。 以上为空气精馏的原理,实现精馏的主要设备为精馏塔,塔内每块塔板都提供一次气液接触而发生部分蒸发和部分冷凝的场所,最终在塔顶得到高纯度的氮产品,而在塔底得到高纯度的氧产品。 为了同时得到高纯度的氮、氧产品以及氩等稀有气体产品,应用到空气得力的精馏塔一般是双级精馏塔。其典型流程如下: 下塔为高压塔,压缩后冷却到接近饱和状态的空气进入下塔顶部,经过下塔的初步分离,在下塔顶得到高纯度的馏分液氮,下塔底得到富氧液空,将馏分液氮和富氧液空采出后经液空和液氮过冷器,节流后回流入上塔(低压塔)继续参与精馏分离,最终在上塔塔顶得到高纯度的氮气,塔底得到高纯度的气氧和液氧。上塔由于回流液体较多,导致回流比较大,一般都大于实际所需回流比,为了挖掘精馏塔的精馏潜力,提高产品提取率,可以将部分空气直接引入上塔参与精馏,由于这个想法是拉赫曼提出,所以进上塔的膨胀空气量一般称为拉赫曼气。上下塔之间通过一个冷凝蒸发器(也叫主冷器)耦合在一起,它既是下塔的冷凝器,也是上塔的再沸器,下塔顶部的高温气氮用来加热上塔底部的低温液氧,同时本身被液氧冷却为液氮,部分作为下塔回流液,部分采出作为上塔顶部的回流液。富氧液空从上塔中部引入,液空进料口以上为精

空分车间生产工艺与原理

空分车间生产基本工艺与原理 1、空分综述 1.1、空气及空气分离 空气存在于我们地球表面,属典型的多组分混合物,主要成分有氮气、氧气及惰性气体,按体积含量计,氧气占20.95%、氮气占78.09%、氩占0.932%,此外还有微量的氢、氖、氦、氪、氙、氡,以及不定量的水蒸汽及二氧化碳。在标准状况下,空气液化温度为87.7K。 空气分离是指把空气通过一定的方法分离出氧气、氮气和惰性气体的过程。 目前分离的方法主要有深冷法、变压吸附法、膜分离法,它们各有自己的优缺点。变压吸附法、膜分离法主要用于低纯度、小型空分设备;焦炉煤气制合成氨项目用产品气量大且纯度要求高,故采用深冷法。 深冷法基本原理是:将空气液化后,根据各组份沸点不同,通过精馏将各组分进行分离。空气分离的主要产品为氧气及部分氮气。 1.2、空分装置简介 1.2.1.装置特点 我公司选用了由开封黄河制氧厂生产的第六代空分装置,流程上采用全低压、外压缩,不提氩的结构。主要特点: ⑴采用带自动反吹的自洁式空气过滤器,保证了运行周期及运行效果; ⑵预冷系统利用多余的污氮气及氮气对水进行冷却,降低冷水机组热负荷,减小冷水机组功率选型,不但节能且充分利用了富余气体干基吸湿

潜热; ⑶采用分子筛吸附,大大简化空气净化工艺,延长了切换周期,减少加工空气切换损失。利用分子筛所具有的选择性高吸附率,提高了净化效果,减少碳氢化合物、氮氧化物及二氧化碳进入液氧的量,确保主冷的安全同时延长装置大加温周期; ⑷采用增压机制动的透平膨胀机,提高单位气体制冷量,减少膨胀空气对上塔精馏段的影响,优化了精馏操作; ⑸分馏塔下塔采用高效塔板,上塔采用规整填料,降低精馏塔操作压力,提高了塔板和填料的精馏效率,保证了氧的提取率、降低制氧单耗; ⑹设置液氧贮槽及汽化系统,加大主冷液氧排放量,杜绝碳氢化合物、氮氧化物及二氧化碳在液氧中析出,最大限度保证主冷安全。液氧汽化系统为空分装置短停时系统用氧提供了方便,确保后工段工艺连续,减少后工段开停车损失; ⑺装置采用DCS集散控制系统,使操作更加方便和稳定。 1.2.2.装置主要参数 空分装置型号为KDON—4500/6000,其主要参数: ⑴空压机:≥25000Nm3/h,出口压力:0.6MPa(G); ⑵氧气:产量≥4500 Nm3/h,纯度99.6%,出界区压力:3.0 MPa(G); ⑶氮气:≥6000 Nm3/h,纯度99.99%,出界区压力0.8 MPa(G); ⑷仪表空气≥3000 Nm3/h,露点≤-40℃,出界区压力≥0.8MPa(G)。 1.2.3.装置设计运行要求 ⑴操作弹性 本装置可在不外加任何设备的情况下,能以设计氧产量的75~105%变

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

空分精馏塔设计说明书(下塔提污氮)

目录 设计任务书 (1) 第一部分精馏计算 (2) 一、下塔精馏计算 (2) 到第六块塔板的时候氧浓度已经超过36了,故第I段取7块 (5) 二、液空、污液氮、纯液氮节流气化率的确定 (5) 三、液空节流后气液相组分的计算 (6) 四、膨胀空气过热引起气化量的计算 (7) 五、上塔的精馏计算 (7) 六、实际塔板数的确定 (12) 第二部分塔板流动工况及结构计算(下塔) (13) 一、塔径的计算 (13) 二、溢流斗结构设计计算 (15) 三、塔板阻力计算 (16) 四、溢流斗尺寸及塔板间距计算 (17) 第三部分容器及强度计算 (19) 一、塔体壁厚计算 (19) 二、封头的设计计算 (20) 三、塔体开孔及开孔补强 (21) 四、支座设计 (24) 五、支撑梁工字钢的选取 (27)

设计任务书 已知条件: 上塔压力 MPa P 136.0=上 下塔压力 MPa P 58.0=下 氧产量 h Nm Vo /100003 2= 氧浓度 %6.992=o y 氮产量 h Nm V N /100003 2= 氮浓度 %99.992=N y 加工空气量 h Nm V K /550003 = 液空氧浓度 O X 21LK %36= 过冷度 C t ?=?5冷 过热度 C t ?=?20热 膨胀空气量 14.0=PK V 标准空气体积百分含量 20.95%2O ,0.93%Ar ,78.12%2N 设计任务: 1、三相液体精馏计算—确定上下塔板数; 2、塔板动力工况及结构计算—确定塔径、塔板间距、溢流斗个数等; 3、容器及强度计算—包括选材、壁厚、封头的选择计算; 4、绘制下塔装配图—包括焊接形式及主要装配结构; 5、书写设计说明书。 备注: 1、 本设计中凡涉及标注1,2,3的均分别表示氧、氩、氮组分; 2、 本设计为双高精馏塔,理论塔板数计算为三元逐板计算法; 3、 假设纯产品为二元混合物,即纯2O 或2N 中杂质为Ar ; 4、本设计中数据多采集自《深冷手册》和压力容器设计国家标准以及部分经验公式。

精馏塔装配图

1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 1 23 45 k 86 79 j1 10 1112 i n 1 13 14 2 3 4 5 30 11l Ⅰ 41 40 39 审核审定批准 1:5 Ⅲ 设计制图校核职务件号 12345 6 9 7810 34 Ⅱ j3 Ⅲ 35 38 3736g h Ⅳ 33 3231 27 Ⅴ 1:5 19151312 141716 1823212022 252426ⅤI 1:5 292830 3133 323534363738 39 40 41Ⅵ 18 15 16Ⅴ f 33 m5 31 32 34 35 17 50 51m7 19 20b c a 30 29e 28 2726 a f k 1:2 Ⅵ 1:2 A、B类焊缝 j1 管口方位示意图 m1-7j4 d 25 24 2322 21b c e l g d n i j2h j3 HG20594-971 1.03设计项目设计阶段 重量(Kg) 总重322.7 94.2374.19140.62.97 5.382.364.67 0.41 精馏塔 1∶20 比例 图幅 A1 版次 引出孔 φ159×4.5法兰 PN1.0,DN40接管 DN20,L=250日期 姓名 图号或标准号 名称 基础环 筋板JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93静电接地板盖板垫板引出管 DN40排气管 φ80材料Q235-A Q235-A 数量 148单件6.72Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 2424114111 3.931.551.17毕业设计施工图 备注 21.9376181210.692.02380370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.54总质量:27685 Kg 2901 1Q235-A GB/T3092-93回流管 DN45法兰 PN1.0,DN20筒体 φ1600×16法兰 PN1.0,DN32上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20GB/T3092-93GB/T3092-93JB4710-92 HG20594-97HG5-1373-80JB/T4737-95进料管 DN32塔釜隔板液封盘 吊柱 GB/T3092-93HG20594-97HG20594-97HG8162-87HG20594-97GB/T3092-93GB704-88出气管 DN600扁钢 8×16气体出口挡板1Q235-A Q235-A Q235-A·F 16MnR Q235-A Q235-A·F Q235-A 组合件16MnR 1111111Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 1111311450.6 法兰 PN1.0,DN45接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16法兰 PN1.0,DN20地脚螺栓M42×4.5HG20594-97JB/T4736-95HG21515-95HJ97403224-3HG20594-97GB/T3092-93HJ97403224-7JB/T4734-95补强圈 DN450×8人孔 DN450塔盘裙座筒体 HG20594-97GB/T3092-93JB4710-92JB4710-92HG20652-1998JB/ZQ4363-86引出管 DN20引出孔 φ133×4检查孔 排净孔Q235-A Q235-A Q235-A 组合件Q235-A Q235-A 16MnR Q235-A 71751111116.944.357 Q235-A Q235-A Q235-A Q235-A Q235-A 1111224δ=8 技术特性表 连接尺寸标准 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG21515-95h 20l 20m1-7 n 40 450j1-4k i 204020公称尺寸 d 20f g e 322045符号b c 20600凹液面计口凹凹凹凹凹凹 出料口人孔再沸器返回口 温度计口排气管口至再沸器口紧密面 型式凹凹凹凹凹凹压力计口回流口进料口液面计口用途或名称温度计口气相出口管口表 7许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 11 109 83设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件65 43 序号 21项 目0.5857.93271170指 标0.11500.027筒体、封头、法兰102 技术要求

空分设备结构及工作原理1知识讲解

空分装置系统划分 所谓空分,就是将空气深度冷却至液态,由于液空其组分沸点各不相同,逐步分离出氧、氮、氩等等。空分装置大体可分以下几个系统: 1、空气过滤系统 过滤空气中的机械杂质,主要设备有自洁式空气过滤器。 2、空气压缩系统 将空气进行预压缩,主要设备有汽轮机、增压机、空压机等。 3、空气预冷及纯化系统 将压缩空气进行初步冷却,并去除压缩空气中的水分和二氧化碳等杂质,主要设备有空冷塔、水冷塔、分子筛纯化器、冷却水泵、冷冻水泵等。 4、分馏塔系统 将净化的压缩空气深度冷却,再逐级分馏出氧气、氮气、氩气等,主要设备有透平膨胀机、冷箱(内含主塔、主冷、主还、过冷器、粗氩塔、液氧泵、液体泵等) 5、贮存汽化系统 将分馏出的液氧、液氮、液氩进行贮存、汽化、灌充,主要设备有低温液体贮槽、汽化器、充瓶泵、灌充台等。 空气冷却塔结构工作原理 空冷塔(Φ4300×26895×16),主要外部有塔体材质碳钢,内部有2层填料聚丙烯鲍尔环,并对应2层布水器。 其作用是对从空压机出来的空气进行预冷。空气由塔底进入,塔顶出去,冷冻水从塔顶进入,塔顶出去,在这样一个工程中,冷冻水和空气在塔内,经布水器填料的作用充分的接触进行换热,把空气的温度降低。 水冷却塔的结构及工作原理 水冷却塔(规格Φ4200×16600×12),主要外部有塔体材质碳钢,内部有一层聚丙烯鲍尔环填料,对应一根布水管;一层不锈钢规整填料。 其作用式把从冷却水进行降温,生成冷冻水供给空冷塔。基本原理和空冷塔一样,从冷箱出来的温度较低的污氮气,进入水冷塔下部,在水冷塔内部经填料与从上部来的冷却水充分接触换热后排出,在此过程中冷却水生成冷冻水。 分子筛结构以及原理,其再生过程原理 吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。 预冷系统中的冷却水泵和冷冻水泵 预冷系统中的冷却水泵、冷冻水泵为多级离心水泵。分别为空冷塔、水冷塔供水。其基本结构和工作原理如下: 1、离心泵的基本结构 离心泵的基本部件是高速旋转的叶轮和固定的蜗牛形泵壳。具有若干个(通常为4~12

精馏塔实验讲义

E T = ?100% C pm (t BP - t F ) + r m 精馏塔实验讲义 一、 实验目的 1. 充 分 利 用 计 算 机 采 集 和 控 制 系 统 具 有 的 快 速 、 大 容 量 和 实 时 处 理 的 特 点 , 进 行 精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2. 学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3. 学习精馏塔性能参数的测量方法,并掌握其影响因素。 4. 测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、 实验原理 1. 在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来字塔板下降的回流液,在塔板 上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是 精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分 离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全 部返回塔内中,这在生产中无实际意义。但是,由于此时所需理论塔板数最少,又易于达到 稳定,故常在工业装置的开停车、排除故障及科学研究时使用。 实际回流比常取最小回流比 1.2—2.0 倍。在精馏操作中,若回流系统出现故障,操作情 况会急剧恶化,分离效果也会变坏。 2. 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操 作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数 N T 。按照式(5-1)可以 得到总板效率 E T ,其中 N P 为实际塔板数。 N T N P 部分回流时,进料热状况参数的计算式为 q = r m 式中:

乙醇精馏塔设计(1)资料

化工原理课程设计 设计题目:乙醇精馏塔 前言 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。 精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 本次设计的筛板塔是化工生产中主要的气液传质设备。此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。 本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。通过对精馏塔的运算,调试出塔的工艺流程、生产操作条件及物性参数,以保证精馏过程的顺利进行并使效率尽可能的提高。

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

精馏塔基础知识

塔基础知识 1:化工生产过程中, 是如何对塔设备进行定义的? 答: 化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到 相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔 (合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率?其影响因素有哪些? 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1 。在实际 运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000, 否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm塔板水平度如果达不到要求, 则会造成液层高度不均匀, 使塔内上升的气相易从液层高度小的区域穿过, 使气液两相不能在塔板上达到预期的传热,传质要求. 使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢 流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除 3 —5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时, 应考虑哪些问题? 答:(1)在使用温度下有良好的力学性能,即较高的强度, 良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢, 氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程及各部件工作原理 空分设备部分部机及单元设备 1.空冷塔 作用:把出空压机的高温气体(≤100℃)冷却到~18℃,以改善分子筛的工作情况 结构:立式圆筒型塔,分上下部分,上下段均为填料塔,塔顶设有分配器,不锈钢丝捕雾器使用:出空压机的空气从下部进入空冷塔,水通过布水器均匀地分布到填料上,顺填料空隙流下,空气则逆水而上与水进行热质交换,经不锈钢丝网捕雾器出塔,进入分子筛吸附系统。 2.水冷却塔 作用:用空分塔来的污氮气和纯氮气冷却外界供水,后由水泵送入空冷塔的上段 结构:填料塔,顶设捕雾器和布水器,填料分两层装入塔内,在两填料中间设再分配器,保证让水始终均匀分布,提高水冷塔的效率 使用:被冷却的水自上而下流经填料,与空分出来的~33.6℃的污氮气和纯氮气进行热质交换,使水冷却下来,在塔底被水泵抽走,污氮气从塔顶排除 3.分子筛吸附器 作用:吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净 结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂 使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2 含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。 4.主热交换器 作用:进行多股流之间的热交换 结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热 使用:对经分子筛吸附除去水和CO2的压缩空气进行冷却,各返流气(液)在此被加热至常温 5.液空液氮过冷器 作用:对低温液体进行过冷 结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热 使用:液空、液氮和污氮气在经过过冷器时被氮气和污氮气进一步冷却,使之低于饱和温度,这样,液体在节流后可以减少气化,改善上塔的精馏工况。 6.冷凝蒸发器

空分原理概述

一、空气分离的几种方法 1、低温法(经典,传统的空气分离方法) 压缩膨胀液化(深冷)精馏 低温法的核心 2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。 3、膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 穿透膜的速度比快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、低温工质的一些性质:(空气、O、N、Ar) 5、液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、气体分离(结合设备) 三、空分的应用领域 1、钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、造纸:漂白剂; 5、国防工业:氢氧发动机、火箭燃料; 6、机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油; 第一章空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;

乙醇-水精馏塔实验

乙醇-水精馏塔实验 一、实验目的: 1.了解板式精馏塔的结构和操作。 2.学习精馏塔性能参数的测量方法,并掌握其影响因素。 二、实验内容: 1.测定精馏塔在全回流条件下,稳定操作后的全塔理论塔板数和总板效率。 2.测定精馏塔在部分回流条件下,稳定操作后的全塔理论塔板数和总板效率。 三、实验原理: 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T .按照式1可以得到总板效率E T ,其中N P 为实际塔板数。 E T %100?= P T N N (1) 部分回流时,进料热状况参数的计算式为 m m F BP Pm r r t t C q +-= )( (2) 式中: t F — 进料温度,℃ 。 t BP — 进料的泡点温度,℃ 。 Cpm — 进料液体在平均温度(t F + t P )/2下的比热,kJ/(kmol ? ℃) r m — 进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 222111x M C x M C Cpm P P += kJ/(kmol ? ℃) (3) 222111x M r x M r r m += kJ/kmol (4) 式中: C P1, C P2 —分别为纯组份1和组份2在平均温度下的比热,kJ/(kg ? ℃)。 r 1,r 2 —分别为纯组份1和组份2在泡点温度下的汽化潜热,kJ/kg 。 M 1,M 2—分别为纯组份1和组份2的摩尔质量,kJ/kmol 。

x1,x2—分别为纯组份1和组份2在进料中的摩尔分率。 四、实验装置基本情况: 1.实验设备流程图(如图1所示): 图1 精馏实验装置流程图 1-储料罐;2-进料泵;3-放料阀;4-加热器;5-直接进料阀;6-间接进料阀;7-进料流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14-回流比流量计;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-冷却水流量计;19-塔釜储料罐;20-塔釜冷凝器;21-第8块板进料阀;22-第9块板进料阀;23-第10块板进料阀;24-液位计;25-料液循环阀;26-釜残液出料阀;27-进料入口阀;28-指针压力表

空分装置讲解

空分装置简介 洗涤剂化工厂空分车间由氮氧站和空压站布置成一个区域组成的气体车间,为生产装置和辅助系统提供需要的氮气、氧气、仪表风和工业风。 1.1.1装置简介 氮氧站包括空分装置、液氧液氮储存、压氧、压氮系统,空分装置有两套KDON-800/1400空分设备(其中一套生产、另一套备用),该装置于1991年8月建成投产,装置设计生产能力为氮气1400Nm3/h,氧气800Nm3/h,该装置占地面积为20072 m2。空分装置为开封空分设备厂开发研制的新型产品。它采用常温分子筛吸附法净化空气,工艺流程简单,操作方便,运行安全平稳。为了满足生产装置氧、氮的连续供气,装置内设置了液氧、液氮的储罐及气化系统。为了保证全厂各用户需求,由压氧、压氮系统供应压缩氧气和压缩氮气,按设计值,提供给用户的氮气质量为含02≤8PPm,供给压力,产量1400 Nm3/h,提供的氧气质量为≥%,供给压力为 MPa,产量为800 Nm3/h。 空压站于1991年8月建成投产,设计可为全厂提供仪表风4000 Nm3/h,供给压力 MPa,仪表风露点为≤-40℃,工业风1080 Nm3/h,供给压力 MPa。 1.1.2工艺原理 1.1. 2.1 空分装置原理 空气主要是由%的氮气和%的氧气及其它气体混合而成。空气分离就是先使空气冷却到一定的低温,而使其液化成为液态空气。再利用氧和氮两种液体的沸点不同(在大气压力下,氧的沸点为﹣183.98℃,而氮的沸点为﹣195.8℃),在装有筛板的空分塔内进行分离。空分塔又称之为精馏塔。空气精馏塔一般可分为单级精馏塔和双级精馏塔,单级精馏塔只能制取一种纯产品。洗涤剂化工厂空分装置采用双级精馏塔制取高纯度的氮气和氧气。氮气供全厂各用户,氧气供脂肪醇。 所谓精馏,就是同时并多次地运用部分蒸发与部分冷凝的过程。压缩并经冷却到冷凝温度的液态空气进入精馏塔后,在塔内气化空气自下而上地穿过每块塔板与塔板上的液体接触,这样气体中的氧逐步冷凝到液体中去,而液体中的氮便蒸发到气体中去,每经过一块塔板,气体中的氮浓度便提高一次,这样经过多层塔板(只要塔板数足够多),在塔的上部便得到纯度为%以上的高纯度氮气,在塔底便可得到氧纯度(30~38%)较高的液体,称之为富氧空气。富氧空气再经过精馏塔,在上塔的底部可得到纯度为~%的氧气。 1.1. 2.2空压装置原理 大气经仪表风空压机压缩后,压力达到,经干燥器净化后做为仪表风送给全厂。大气经工业风空压机压缩后,压力达到送给全厂做为工业风。 1.1.3工艺流程说明 1.1.3.1 空分装置工艺流程说明

精馏塔常识

1,液泛? 在精馏操作中,下层塔板上的液体涌至上层塔板,破坏了塔的正常操作,这种现象叫做液泛。 液泛形成的原因,主要是由于塔内上升蒸汽的速度过大,超过了最大允许速度所造成的。另外在精馏操作中,也常常遇到液体负荷太大,使溢流管内液面上升,以至上下塔板的液体连在一起,破坏了塔的正常操作的现象,这也是液泛的一种形式。以上两种现象都属于液泛,但引起的原因是不一样的。 2,雾沫夹带? 雾沫夹带是指气体自下层塔板带至上层塔板的液体雾滴。在传质过程中,大量雾沫夹带会使不应该上到塔顶的重组分带到产品中,从而降低产品的质量,同时会降低传质过程中的浓度差,只是塔板效率下降。对于给定的塔来说,最大允许的雾沫夹带量就限定了气体的上升速度。 影响雾沫夹带量的因素很多,诸如塔板间距、空塔速度、堰高、液流速度及物料的物理化学性质等。同时还必须指出:雾沫夹带量与捕集装置的结构也有很大的关系。虽然影响雾沫夹带量的因素很多,但最主要的影响因素是空塔速度和两块塔板之间的气液分离空间。对于固定的塔来说,雾沫夹带量主要随空塔速度的增大而增大。但是,如果增大塔板间的距离,扩大分离空间,则相应提高空塔速度。 3,液体泄漏? 俗称漏液,塔板上的液体从上升气体通道倒流入下层塔板的现象叫泄漏。在精馏操作中,如上升气体所具有的能量不足以穿过塔板上的液层,甚至低于液层所具有的位能,这时就会托不住液体而产生泄漏。 空塔速度越低,泄漏越严重。其结果是使一部分液体在塔板上没有和上升气体接触就流到下层塔板,不应留在液体中的低沸点组分没有蒸出去,致使塔板效率下降。因此,塔板的适宜操作的最低空塔速度是由液体泄漏量所限制的,正常操作中要求塔板的泄漏量不得大于塔板上液体量的10%。泄漏量的大小,亦是评价塔板性能的特性之一。筛板、浮阀塔板和舌形塔板在塔内上升气速度小的情况下比较容易产生泄漏。4,返混现象? 在有降液管的塔板上,液体横过塔板与气体呈错流状态,液体中易挥发组分的浓度降沿着流动的方向逐渐下降。但是当上升气体在塔板上是液体形成涡流时,浓度高的液体和浓度低的液体就混在一起,破坏了液体沿流动方向的浓度变化,这种现象较做返混现象。返混现象能导致分离效果的下降。 返混现象的发生,受到很多因素的影响,如停留时间、液体流动情况、流道的长度、塔板的水平度、水力梯度等。 5,最适宜的进料板位置确定 最适宜的进料板位置就是指在相同的理论板数和同样的操作条件下,具有最大分离能力的进料板位置或在同一操作条件下所需理论板数最少的进料板位置。 在化学工业中,多数精馏塔都设有两个以上的进料板,调节进料板的位置是以进料组分发生变化为依据的。当进料组分中的轻关键组分比正常操作较低时,应将进料板的位置向下移,以增加精馏段的板数,从而提高精馏段的分离能力。反之,进料板的位置向上移,则是为增加提馏段的板数,以提高提馏段的分离能力。总之,在进料板上进料组分中轻关键组分的含量应该小于精馏段最下一块塔板上的轻关键组分的含量,而大于提馏段最上一块塔板上的轻组分的含量。这样就使进料后不至于破坏塔内各层塔板上的物料组成,从而保持平稳操作。 6,精馏操作的影响因素 除了设备问题以外,精馏操作过程的影响因素主要有以下几个方面:塔的温度和压力(包括塔顶、塔釜和某些有特殊意义的塔板);进料状态;进料量;进料组成;进料温度;塔内上升蒸汽速度和蒸发釜的加热量;回流量;塔顶冷剂量;塔顶采出量和塔底采出量。塔的操作就是按照塔顶和塔底产品的组成要求来对这几个影响因素进行调节。 7,进料组成的变化对精馏操作的影响 进料组成的变化,直接影响精馏操作,当进料中重组分的浓度增加时,精馏段的负荷增加。对于固定了精馏段板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

相关主题
文本预览
相关文档 最新文档