当前位置:文档之家› 金属高分子陶瓷材料加工成型方法

金属高分子陶瓷材料加工成型方法

金属高分子陶瓷材料加工成型方法
金属高分子陶瓷材料加工成型方法

金属材料、高分子材料、陶瓷材料的成型制备方法

金属材料加工成型方法

金属材料成型工艺有以下几种

它是将熔融的金属液体浇注到与零件形状相对应的铸造模型腔中,待冷却后得到实体毛坯或零件的工艺过程。

铸造加工的特点:1.适应性强2.成本低廉3.铸造组织存在一定缺陷4.工艺过程较难控制铸造方法分为砂型铸造、特殊铸造

I、砂型铸造:用型砂做铸型的铸造方法,使用率90%

砂型铸件的结构设计应注意

1、力求外形简单,轮廓平直,只需一个分型面

2、力求铸件的内腔铸造时,型芯数目最少,方便装配、清理、排气

3、起模方向应设计结构斜度

4、铸件应有合理的壁厚

5、力求铸件壁厚均匀,防止局部积聚变形,造成裂纹、缩孔、缩松等缺陷

6、尽量避免铸件中有过大的水平面,防止由于横截面突然增大,导致金属液面上升缓慢,致使型腔顶部受到长时间烘烤,造成夹砂缺陷、产生气孔等;将平面改为倾斜面

II、特种铸造

特种铸造:砂型铸造以外的其他铸造方法,包括熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、陶瓷型铸造等。

①熔模铸造(失蜡铸造):在蜡模表面包以造型材料,待其硬化,将其中的蜡模熔去,从而获得无分型面的铸型的铸造方法。

基本过程:蜡模制造→结壳→脱蜡→造型→焙烧→浇铸→落砂清理

熔模铸造(失蜡铸造)的特点

a、铸件的精度高且表面光洁。

b、适用于各种铸造合金铸件,尤其是高熔点及难切削的合金的铸造。

c、熔模铸件的形状可以比较复杂,最小孔径0.5mm,壁厚0.3mm。

d、铸件的重量不宜太大,一般<=25kg,最大80kg左右。

e、工艺过程复杂,不易控制,使用和消耗的材料较贵,适用于形状复杂、精度较高或难以机加工的小型零件,如发动机叶片和叶轮等。

②金属型铸造:金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,以获得铸件的一种铸造方法。铸型是用金属制成,可以反复使用多次(几百次到几千次)。

金属性铸造的优缺点

可以“一型多铸”,铸件的力学性能提高,金属型铸件的冷却速度较快、组织比较致密铸件精度较高,可以少加工或不加工。

但是,成本高、周期长;铸造透气性差、无退让性,易产生冷隔、浇不足、裂纹等缺陷;铸件熔点不宜太高,重量也不宜太大。

主要用于:大批量的有色金属铸件,如内燃机的铝活塞、气缸体、缸盖、油泵壳体等。

③压力铸造:压力铸造(简称压铸)的实质是在高压作用下,使液态或半液态金属以较高的速度充填压铸型(压铸模具)型腔,并在压力下成型和凝固而获得铸件的方法。

压铸特点:高压和高速充填压铸型是压铸的两大特点。它常用的压射比压是从几千至几万kPa,甚至高达2×105kPa。充填速度约在10~50m/s,有些时候甚至可达100m /s以上。充填时间很短,一般在0.01~0.2s范围内。

压铸优点:铸件表面质量高,可铸出复杂形状薄壁件或镶嵌件,生产率高。主要适合于有色金属合金,如锌合金、铝合金、镁合金。

④低压铸造:介于重力铸造和压力铸造之间的一种方法,所用压力为2-7N/cm2。主要用于生产质量高的铝镁合金铸件。

⑤离心铸造:将液态合金浇入高速旋转(250-1500r/min)的铸型中,使金属液在离心力作用下充填铸型并结晶。主要用于生产圆筒形铸件。

二、塑性成形工艺

塑性成形工艺:利用外力使坯料产生塑性变形,获得所需尺寸,形状和性能的产品(毛坯或零件)成型方法。

加工基本方式:轧制、挤压、拉拨、锻造(自由锻和模锻)和板料冲压。

轧制、挤压、拉拨用于金属型材、板材、管材和线材板料冲压和锻造用于毛胚和零件。

加工的特点:是一种重要的塑性成型方法,要求金属具有良好的塑性

优点:金属塑性变形后,能压合铸坯的内部缺陷,提高金属机械性能保证强度和韧性,节省金属材料和加工工时间。

缺点:只适用于塑性金属材料,不能加工脆性材料如铸铁、青铜,不能加工形状太复杂的零件比如具有复杂外形和内腔的零件。

A、轧制:将金属靠摩擦力的作用,连续通过轧机上两个相对回转轧辊之间的空隙,进行压延变形成为型材(如圆钢、方钢、工字钢等)的加工方法。

B、挤压:将金属坯料置于一封闭的挤压模内,用强大的挤压力将金属从模孔中挤出成型,从而获得符合模孔截面的坯料或零件的加工方法。

C、锻造加工:对金属坯料(不含板材)施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件、工具或毛坯的成形加工方法。

可锻造的固体坯料可以是铁碳合金、铝合金、铜合金等。

锻造分为两种:①自由锻②模锻

①自由锻:利用冲击力或压力,使金属在上下之砧间塑性变形

而获得所需尺寸、形状以及内部质量锻件的一种加工方法。

基本工序:镦粗、拔长、冲孔、弯曲、切割、扭转和错移

辅助工序:方便基本工序而进行的

修整工序:校正等

②模锻:使金属坯料在模膛内受压而产生塑性变形,获得所需尺寸、形状以及内部质量锻件的加工方法称为模锻。

模锻优点:效率高、易操作、尺寸精确,质量好、减小切削工作量磨具昂贵、灵活性差、生产准备周期长、质量要小。

D、冲压加工成型:它是利用冲模使板材产生分离或变形的加工方法。

通板料冲压特点:

(1)可冲压出形状复杂的零件,废料较少。

(2)产品具有足够高的精度和较低的表面粗糙度,互换性能好。

(3)能获得质量轻,材料消耗少,强度和刚度较高的零件。

(4)冲压操作简单,工艺过程便于机械化和自动化,成品率很高,

故零件成本低。常在冷态下进行,又叫冷冲压。

三、连接形式

连接形式有以下几类:焊接、胶接、机械连接

I、焊接:通过加热、加压,或两者共同作用(用或不用填充材料)使

两部分分离的金属形体形成原子结合的一种永久性连接方法。

熔焊:电弧焊、气焊、电子束焊、激光焊

压焊:电阻焊(点焊、缝焊、对焊)

钎焊:锡焊、铜焊、银焊

一般情况,低碳钢的焊接性能较好,焊接过程中不出现裂纹、气孔、夹渣等,焊后接头强度与母材相近,高碳钢,铸铁等较差。在灯饰,金属家具等产品的加工过程中,都会用到。1)熔焊:将工件需要焊接的部位加热至熔化状态,一般须填充金属并形成共同的熔池,待冷却凝固后,使分离工件连接成整体。

特点:是金属的熔化与结晶,类似于小型铸造过程,焊接时填充金属的目的是使焊接接头符合标准尺寸、外形,渗入有益元素以加强强度,熔焊的能量可以是电能、化学能和机械能。2)压焊:在压力(或同时加热)作用下,被焊的分离金属结合面处产生塑性变形(有的伴随有熔化结晶过程)而使金属连接成整体。

特点:常见的如电阻焊(点焊、缝焊、对焊)。1.金属待焊部位发生塑性变形,挤碎或挤掉结合面的氧化物及其他杂质2.纯净的金属紧密接触,形成原子间的引力而牢固结合。3.加热的目的:增加原子的动能,以提高塑性和降低顶锻力。

3)钎焊:熔点低于被焊金属的钎料熔化后,填充到被焊金属结合面的空隙之中,钎料凝固而将两部分金属连接成整体。

常见有:锡焊、铜焊、银焊。

特点:被焊金属不熔化,钎料熔化,依靠熔化的钎料对被焊金属的润湿性(浸润与附着能力)和毛细作用与被焊金属形成结合,从而将分离的金属连接。

II、胶接:胶接是将两种或两种以上的零件(构件)用胶粘剂连接起来的一种工艺方法,所构成的不可拆连接称为胶连接。

胶接工艺主要包括接头设计、表面处理、配胶和涂胶、固化和质量检测。

胶接优点:①能够将不同的金属或金属与非金属粘接在一起。②可以粘接一些不易焊接的异形、复杂、微小和极薄零件。③粘接接头处应力分布比较均匀,粘接胶层具有缓和冲击,消减振动的作用,使接头处疲劳强度得以提高。④粘接胶层密封性能好,粘接剂可以将两种不同金属隔开,能防止电化学腐蚀。⑤粘接重量轻,外表光整。

胶接的缺点是:①胶接剂对温度变化比较敏感。②耐老化、耐酸、碱等性能较差。③粘接接头的检查,特别是无损检验困难。

III、机械连接:螺栓与螺母连接,双头螺柱连接,螺钉连接,销连接,铆钉连接,压扩、卷边咬缝等机械方法连接将两个金属器件连接起来的方法。

塑料的加工成型方法

一、塑料的加工成型

塑料的成型分为一次成型和二次成型两类

塑料的一次成型方法有:挤出成型、注射成型、压制成型、压延成型、其他成型方法(铸塑成型、模压烧结成型、传递成型、泡沫塑料的成型)。

二次成型有:中空吹塑成型、热成型、拉幅薄膜的成型。

⑴、挤出成型:挤出成型在塑料加工中又称为挤塑,在非橡胶挤出机加工中利用液压机压力于模具本身的挤出称压出。是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。

挤出成型原理:料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,

进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。1、挤出方法

按塑化方式:干法挤出与湿法挤出

按加压方式:连续挤出与间歇挤出

2、特点生产连续、效率高、操作简单、应用范围广

⑵、注射成型:是指有一定形状的模型,通过压力将融溶状态的胶体注入摸腔而成型。工艺原理是:将固态的塑胶按照一定的熔点融化,通过注射机器的压力,用一定的速度注入模具内,模具通过水道冷却将塑胶固化而得到与设计模腔一样的产品。主要用于热塑性塑料的成型,也可用于热固性塑料的成型。

工艺流程:1、成型前的准备;2、注射过程;3、制品的后处理。

1、成型前的准备

为了使注射成型顺利进行和保证制品质量,生产前需要进行原料预处理、清洗机筒、预热嵌件和选择脱模剂等一系列准备工作。

2、注射过程

注射过程一般包括:加料——塑化——注射——冷却——脱模。加料:由于注射成型是一个间歇过程,因而需定量(定容)加料,以保证操作稳定,塑料塑化均匀,最终获得高质量的塑件。

塑化:成型物料在注射机机筒内经过加热,压实以及混合等作用,由松散的粉状或粒状固态转变成连续的均化熔体之过程。

注射:柱塞或螺杆从机筒内的计量位置开始,通过注射油缸和活塞施加高压,将塑化好的塑料熔体经过机筒前端的喷嘴和模具中的浇注系统快速送入封闭模腔的过程。注射又可细分为流动充模、保压补缩、倒流三个阶段。

冷却:当浇注系统的塑料以及冻结后,继续保压已不再需要,因此可退回柱塞或螺杆,卸除料筒内的塑料熔体的压力,并加入新料,同时在模具内通入冷却水、油或空气等冷却介质,对模具进行进一步的冷却,这一阶段称为浇口冻结后的冷却。实际上冷却过程从塑料熔体注入型腔起就开始了,它包括从充模、保压到脱模前的这一段时间。

脱模:塑件冷却到一定的温度即可开模,在推出机构的作用下将塑件推出模外。

3、制品的后处理

1、退火:消除残余应力;

2、调湿:使塑件颜色、性能及尺寸得以稳定。

⑶、压延成型:压延成型是将熔融塑化的热塑性塑料通过两个以上的平行异向旋转辊筒间隙,使溶体受到辊筒挤压延展、拉伸而成为具有一定规格尺寸和符合质量要求的连续片状制品,最后经自然冷却成型的方法。

1.压制成型的原理及特点

适用范围:各种热固性塑料的主要成型方法之一。

压制成型包括模压法(又称为挤胶法、挤塑法、压塑法)和层压法。

模压法:又称压缩模塑,是模塑料在闭合模腔内借助加压(一般尚须加热)的成型方法。通常,压缩模塑适用于热固性塑料,如酚醛塑料、氨基塑料、不饱和聚酯塑料等。压缩模塑由预压、预热和模压三个过程组成:

预压为改善制品质量和提高模塑效率等,将粉料或纤维状模塑料预先压成一定形状的操作。

预热为改善模塑料的加工性能和缩短成型周期等,把模塑料在成型前先行加热的操作。

模压在模具内加入所需量的塑料,闭模、排气,在模塑温度和压力下保持一段时间,然后进行脱模清模的操作。

⑷、压制成型:压制成形是利用压力将置于模具内的粉料压紧至结构紧密,称为具有一定形状和尺寸的坯体的成形方法。

根据材料的形状和成型加工工艺的特征,又可分为模压成型和层压成型。

模压成型:模压成型又称压缩模塑,这种方法是将粉状、粒状、碎屑状、或纤维状的塑料放入加热的阴模模槽中,合上阳模加热使其熔化,并在压力作用下使物料充满模腔,形成与模腔形状一样的模制品,再经加热(使其进一步发生交联反应而固化)或冷却(对热塑性塑料应冷却使其硬化),脱模后即得制品。

主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;

③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。

层压成型:是指在加热、加压下把多层相同或不同材料结合整体的成型加工方法。

在塑料加工中,对于热塑性塑料,常用于生产人造革类产品或复合薄膜;对于热固性塑料,是制造增强塑料和制品的一种重要方法。

⑸、其他成型方法

1、铸塑成型类似于金属的浇铸。铸塑成型的特点是所用设备简单,成型时一般不需要加压,故不需要加压设备,对模具强度的要求也低。铸塑对制品的尺寸限制较少,宜生产小批量的大型制品。

2、模压烧结成型:是将粉末状的聚四氟乙烯冷模压成密实的各种形状的预成型品,然后将预成型品加热到高于其结晶熔点(327℃)以上的温度,使颗粒相互熔结,形成一个密实的连续整体,最后冷却至室温即得制品。主要用于与聚四氟乙烯和超高分子量聚乙烯的树脂的成型。

3、传递模塑:又称传递成型或注压成型。热固性塑料的一种成型方法,模塑时先将模塑料在加热室加热软化,然后压入已被加热的模腔内熟化成型。传递模塑与模压相仿,都借助于压机,但又有注射成型的特点,模具设有浇口和流道。

二、塑料的二次成型

1、中空吹塑成型:是将从挤出机挤出的,尚处于软化状态的管状热塑料性塑料坯料放入成型模内,然后通入压缩空气,利用空气的压力使坯料沿模腔变形,从而吹制成颈口短小的中空制品。

中空吹塑(又称吹塑模塑)是借助于气体压力使闭合在模具中的热熔型坯吹胀形成中空制品的方法,是第三种最常用的塑料加工方法,同时也是发展较快的一种塑料成型方法。吹塑用的模具只有阴模(凹模),与注塑成型相比,设备造价较低,适应性较强,可成型性能好(如低应力)、可成型具有复杂起伏曲线(形状)的制品。

2、热成型:将热塑性塑料片材加工成各种制品的一种较特殊的塑料加工方法。片材夹在框架上加热到软化状态,在外力作用下,使其紧贴模具的型面,以取得与型面相仿的形状。冷却定型后,经修整即成制品。此过程也用于橡胶加工。

3、拉夫薄膜的成型:是将挤出得到的厚度为1—3毫米的厚片或管坯,重新加热到T g-T m 温度范围进行大幅度拉伸而形成的薄膜。

4、冷成型:是在不进行加热的情况下对材料进行冲剪、弯曲、拉伸等的加工方式。其特点是在高压和冷模中经过足够时间成型,从模中取出后再在加热或不加热的炉中继续干燥硬化而成不溶不熔的制品。此法操作迅速,价格低廉,电绝缘性能较好,耐水性、耐热性较高,常用于制造绝缘电器产品。

橡胶的加工成型方法

橡胶的成型加工工艺过程一般分为塑炼、混炼、压延、压出、硫化五部分。

一、塑炼:塑炼就是在橡胶的加工过程中,首先通过机械、热、氧和加入化学试剂等方式,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态。

塑炼的目的:使生胶获得一定的可塑性,使之适合于混炼、压延、挤出和成型等工艺操作。使生胶的可塑性均匀化,以便制得质量均匀的胶料。

工艺上可用以降低橡胶分子量获得可塑性的塑炼方法可分成两大类。

1.机械塑炼法:采用开炼机、密炼机、螺杆塑炼机等的机械作用切断分子链而获得生胶可塑性。

2.化学塑炼法:在化学药品的作用下,使橡胶大分子链解聚而达到塑化的目的。

生胶塑炼方法很多,工业中广为采用的是机械塑炼法。按所用设备可分为:开炼机塑炼、密炼机塑炼、螺杆塑炼机。

①开炼机塑炼是最早的塑炼方法属于低温塑炼,其优点是塑炼胶料质量好,收缩小,但生产效率低,劳动强度大。此法适宜胶料变化多和耗胶量少的工厂。

②密炼机塑炼属于高温塑炼的生产能力大、劳动强度第,电力消耗小;但由于是是密闭系统,所以清理较难,故仅适用于胶种变化少的场合。

③螺杆机塑炼的特点是在高温下进行连续塑炼,生产效率比密炼机塑炼高,并能连续生产,但在操作运行中产生大量的热,对生胶物理机械性能的破坏性较大。适用于胶料变化多和规模化生产。

二、混炼:为了使各种橡胶制品性能符合使用要求,改善加工工艺性能、节约生胶降低成本,必须在生胶中加入各种配合剂,在炼胶机上将各种配合剂加至具有一定塑性的生胶中制成混炼胶的过程称为混炼。

混炼的目的:通过机械作用使生胶与各种配合剂均匀混合。

对混炼工艺的要求:1、使各种配合剂全部均匀地分散于生胶中,保证胶料性能均匀一致。2、使配合剂(特别是增强剂)达到最好的分散度,并与生胶结合,以获得良好的补强效果。3、使胶料具有一定的可塑度,保证各项加工操作顺利进行。4、在保证混炼均匀的基础上,尽可能缩短混炼时间,提高生产效率,降低能耗。

混炼工艺按其使用设备,一般可以分为以下两种:开放式炼胶机混炼和密炼机混炼。

1、开放式炼胶机混炼

与密炼相比,其缺点是生产效率低、劳动强度大、环境卫生及安全性差。开炼机混炼的灵活性大,适用于小规模、小批量的生产。对于品种变换频繁,胶料需用量不大的橡胶产品的生产,开炼机有其特殊用途。开炼机混炼还特别适用于几种特殊胶料的生产,如海绵胶、硬质胶和某些生热量较大的合成橡胶(如丙烯腈含量较高的硬丁腈胶)。

2、密炼机混炼

机械化程度高,劳动强度小,混炼时间短,生产效率高,此外,因混炼室为密闭的,减少粉剂的飞扬。

三、压延:主要是通过两个辊筒作用把胶料辗压成具有一定厚度和宽度的胶片的过程。

压延工艺可分成压片、贴胶、擦胶和压型等不同的作业。

1、从原理上看,压延过程主要是通过两个辊筒作用把胶料辗压成具有一定厚度和宽度的胶片的过程。

2、从表面上看,压延只是胶料造型的变化,但实质上是一种流体流动过程。

3、在压延过程中,胶料一方面发生粘性流动,一方面又发生弹性变形。

4、压延中的各种工艺现象与胶料的流动性质有关,又与胶料的粘弹性有关。

四、压出:是使胶料通过压出机连续制成各种不同形状半成品的工艺过程。它广泛应用于制造胎面、内胎、胶管、各种断面形状复杂或空心的半成品。

压出的特点:压出工艺操作简单、经济,半成品质地均匀,生产能力大,是橡胶生产中的一个重要工艺过程。

五、硫化:是橡胶制品制造工艺的最后一个过程,也是橡胶制品加工中最主要的物理-化学变化过程。

通过胶料定伸强度的测量(或硫化仪)可以看到,整个硫化过程可分为硫化诱导,预硫,正硫化和过硫(对天然胶来说是硫化返原)四个阶段。

1、诱导期

硫化诱导期(焦烧时间)内,交联尚未开始,胶料有很好的流动性。这一阶段决定了胶料的焦烧性及加工安全性。这一阶段的终点,胶料开始交联并丧失流动性。硫化诱导期的长短除与生胶本身性质有关,主要取决于所用助剂,如用迟延性促进剂可以得到较长的焦烧时间,且有较高的加工安全性。

2、预硫期

硫化诱导期以后便是以一定速度进行交联的预硫化阶段。预硫化期的交联程度低,即使到后期硫化胶的扯断强度,弹性也不能到达预想水平,但撕裂和动态裂口的性能却比相应的正硫化好。到达正硫化阶段后,硫化胶的各项物理性能分别达到或接近最佳点,或达到性能的综全平衡。

3、正硫化

正硫化阶段(硫化平坦区)之后,即为过硫阶段,有两种情况:天然胶出现“返原”现象(定伸强度下降),大部分合成胶(除丁基胶外)定伸强度继续增加。

4、过硫

对任何橡胶来说,硫化时不只是产生交联,还由于热及其它因素的作用产生产联链和分子链的断裂。这一现象贯穿整个硫化过程。在过硫阶段,如果交联仍占优势,橡胶就发硬,定伸强度继续上升,反之,橡胶发软,即出现返原。

陶瓷的加工成型方法

陶瓷材料已经成为我们生活中一个智能更要的工具了,在现代陶瓷材料的生产中,常用的成型方法有挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型等。

1.挤制成型:坯料在三向不均匀压应力作用下,从模具的孔口或缝隙挤出使之横截面积减小长度增加,成为所需制品的加工方法叫挤压,坯料的这种加工叫挤压成型。

挤制成型主要用于制造片形、棒形和管形制品,如电阻的基体蜂窝陶瓷载体的陶瓷棒、陶瓷管等陶瓷制品。该成型方法生产效率高,产量大、操作简便,使用的挤压机分卧式和立式两种。配料中新土含量较大时,成型的坯料一般不加黏合剂,配料经过真空练泥、闲料后即可用于挤制成型。坯料中一般含水量为16%一25%。配料中含茹土少或不含教土时,将均匀混合了熟合剂的粉料经真空练泥和闲料后,再用于挤制成型。

2.干压成型:干压成型或模压成型,一种金属粉末和陶瓷粉末的成型方法,就是将干粉坯料填充入金属模腔中,施以压力使其成为致密坯体。

干压成型的原理:高纯度粉体属于瘠性材料,用传统工艺无法使之成型。首先,通过加入一定量的表面活性剂,改变粉体表面性质,包括改变颗粒表面吸附性能,改变粉体颗粒形状,从而减少超细粉的团聚效应,使之均匀分布;加入润滑剂减少颗粒之间及颗粒与模具表面的摩擦;加入黏合剂增强粉料的粘结强度。将粉体进行上述预处理后装入模具,用压机或专用干压成型机以一定压力和压制方式使粉料成为致密坯体。

干压成型的特点:干压成型的优点是生产效率高,人工少、废品率低,生产周期短,生产的制品密度大、强度高,适合大批量工业化生产;缺点是成型产品的形状有较大限制,模具造价高,坯体强度低,坯体内部致密性不一致,组织结构的均匀性相对较差等。

3.热压铸:热压铸成型或热压注成型,是特种陶瓷生产应用较为广泛的一种成型工艺,其基本原理是利用石蜡受热熔化和遇冷凝固的特点,将无可塑性的瘠性陶瓷粉料与热石蜡液均匀混合形成可流动的浆料,在一定压力下注入金属模具中成型,冷却待蜡浆凝固后脱模取出成型好的坯体。坯体经适当修整,埋入吸附剂中加热进行脱蜡处理,然后再脱蜡坯体烧结成最终制品。热压铸成型或热压注成型,是特种陶瓷生产应用较为广泛的一种成型工艺,其基本原理是利用石蜡受热熔化和遇冷凝固的特点,将无可塑性的瘠性陶瓷粉料与热石蜡液均匀混合形成可流动的浆料,在一定压力下注入金属模具中成型,冷却待蜡浆凝固后脱模取出成型好的坯体。坯体经适当修整,埋入吸附剂中加热进行脱蜡处理,然后再脱蜡坯体烧结成最终制品。

热压铸成型的工艺流程:1.陶瓷粉体中加入表面改性剂如油酸、硬脂酸等,球磨混合,使之具有亲油性,和蜡液良好融合。2.将改性后的粉料加入熔化的石蜡中搅拌混合至均匀。 3.将混好的料浆加入热压铸成型机中,以适当压力和温度注入模具成型。4.脱模并对坯体进行适当修整。5.将坯体埋入吸附剂中,以适当速度升温至900℃-1100℃,使坯体完全排除石蜡并具有一定强度。6.再将坯体放入烧结炉中烧成最终制品。

热压铸工艺的优点:1.可成型形状复杂的陶瓷制品,尺寸精度高,几乎不需要后续加工,是制作异形陶瓷制品的主要成型工艺2.成型时间短,生产效率高。3.相比其它陶瓷成型工艺,生产成本相对较低,对生产设备和操作环境要求不高。4.对原料适用性强,如氧化物、非氧化物、复合原料及各种矿物原料均可适用。

热压铸工艺的缺点:1.气孔率高、内部缺陷相对较多、密度低,制品力学性能和性能稳定性相对较差。2.需要脱蜡环节,增加了能源消耗和生产时间。因受脱蜡限制,难以制备厚壁制品。3.不适合制备大尺寸陶瓷制品。4.难以制造高纯度陶瓷制品,限制了该工艺在高端技术领域的应用。

热压铸工艺的应用:主要用于生产中小尺寸和结构复杂的结构陶瓷、耐磨陶瓷、电子陶瓷、绝缘陶瓷、纺织陶瓷、耐热陶瓷、密封陶瓷、耐腐蚀陶瓷、耐热震陶瓷制品。

4.轧膜成型:一种陶瓷坯片的成型方法。首先把粉料和有机黏结剂混合均匀,然后把他们倒在两个反向滚动的轧辊上反复进行混练,使黏结剂和粉料充分均匀分布,溶剂逐步挥发(必要时可开电风扇加速其挥发),坯料由稀到稠,直至不粘轧辊。混练好的坯料经过折迭、倒向、反复进行粗轧,将其中气泡排除,以获得均匀一致的膜层,再逐渐缩小轧辊间的间距进行精轧,使之成为所需的薄膜(厚度可达十微米至几毫米)。

轧膜成型的优点:工艺简便,轧出的膜片表面光滑,均匀,致密。但反复轧膜,常会引入少量杂质,有时对产品电性能产生不利影响,费时也较长,不便连续化操作。

主要用涂:薄片状电容器坯片、压电陶瓷扬声器(蜂鸣片)、滤波器坯片和厚膜电路基板坯片等。

5.流延成型:又称带式浇注,刮刀法,一种陶瓷制品的成型方法,首先把粉碎好的粉料与有机塑化剂溶液按适当配比混合制成具有一定黏度的料浆,料浆从容器同流下,被刮刀以一定厚度刮压涂敷在专用基带上,经干燥、固化后从上剥下成为生坯带的薄膜,然后根据成品的尺寸和形状需要对生坯带作冲切、层合等加工处理,制成待烧结的毛坯成品。

特点:一种陶瓷基片的专用成型方法,特别适合成型0.2MM--3MM厚度的片状陶瓷制品,生产此类产品具有速度快、自动化程度高、效率高、组织结构均匀、产品质量好等诸多优势。6.印刷成型:将超细粉料、就合剂、润滑剂、溶剂等充分混合,调制成流动性很好的浆料,在丝网印刷机上漏刷,可印出一层极薄的坯料膜层。该层干燥后,可重复若干次,直至达到需要的厚度。也可循环交替印刷坯料膜层和金属电权层,直至达到要求的层数。待干透后进行剪切、焙烧等其他工序。

特点:这种成型工艺简单,产量大,若制作独石电容器时,产品的比电容高。

7.等静压成型:等静压成型是将待压试样置于高压容器中,利用液体介质不可压缩的性质和均匀传递压力的性质从各个方向对试样进行均匀加压,当液体介质通过压力泵注入压力容器时,根据流体力学原理,其压强大小不变且均匀地传递到各个方向。此时高压容器中的粉料在各个方向上受到的压力是均匀的和大小一致的。通过上述方法使瘠性粉料成型致密坯体的方法称为等静压法。

等静压成型的过程:1.初期成型压力较小时,粉体颗粒迁移和重堆积阶段。2.中期压力提高,粉体局部流动和碎化阶段。3.后期压力最大时,粉体体积压缩,排出气孔,达到致密化阶段。

特点:粉料与模具的摩擦力较大,压力沿压制方向会产生压力损失,使坯体各部分的密度不均匀。而等静压成型时液体介质传递的压力在各个方向上等是相等的。弹性模具在受到液体介质压力时产生的变形传递到模具中的粉料,粉料与模具壁的摩擦力小,坯体受力均匀,密度分布均一,产品性能有很大提高。

8.注浆成型:亦称浇注成型,是基于多孔石膏模具能够吸收水分的物理特性,将陶瓷粉料配成具有流动性的泥浆,然后注入多孔模具内(主要为石膏模),水分在被模具(石膏)吸入后便形成了具有一定厚度的均匀泥层,脱水干燥过程中同时形成具有一定强度的坯体,此种方式被称为注浆成型。

三个阶段:1.泥浆注入模具后,在石膏模毛细管力的作用下吸收泥浆中的水,靠近模壁的泥浆中的水分首先被吸收,泥浆中的颗粒开始靠近,形成最初的薄泥层。2.水分进一步被吸收,其扩散动力为水分的压力差和浓度差,薄泥层逐渐变厚,泥层内部水分向外部扩散,当泥层厚度达到注件厚度时,就形成雏坯。3.石膏模继续吸收水分,雏坯开始收缩,表面的水分开始蒸发,待雏坯干燥形成具有一定强度的生坯后,脱模即完成注浆成型。

注浆成型的优点:(1)适用性强,不需复杂的机械设备,只要简单的石膏模就可成型;(2)能制出任意复杂外形和大型薄壁注件;(3)成型技术容易掌握,生产成本低。(4)坯体结构均匀。

缺点:(1)劳动强度大,操作工序多,生产效率低;(2)生产周期长,石膏模占用场地面积大;

(3)注件含水量高,密度小,收缩大,烧成时容易变形。(4)模具损耗大。(5)不适合连续化、自动化、机械化生产。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

金属、高分子、陶瓷材料加工成型方法

金属材料、高分子材料、陶瓷材料的成型制备方法 金属材料加工成型方法 金属材料成型工艺有以下几种 一、金属液态成型也叫铸造。它是将熔融的金属液体浇注到与零件形状相对应的铸造模型腔中,待冷却后得到实体毛坯或零件的工艺过程。 铸造加工的特点:1.适应性强2.成本低廉3.铸造组织存在一定缺陷4.工艺过程较难控制铸造方法分为砂型铸造、特殊铸造 I、砂型铸造:用型砂做铸型的铸造方法,使用率90% 砂型铸件的结构设计应注意 1、力求外形简单,轮廓平直,只需一个分型面 2、力求铸件的内腔铸造时,型芯数目最少,方便装配、清理、排气 3、起模方向应设计结构斜度 4、铸件应有合理的壁厚 5、力求铸件壁厚均匀,防止局部积聚变形,造成裂纹、缩孔、缩松等缺陷 6、尽量避免铸件中有过大的水平面,防止由于横截面突然增大,导致金属液面上升缓慢,致使型腔顶部受到长时间烘烤,造成夹砂缺陷、产生气孔等;将平面改为倾斜面 II、特种铸造 特种铸造:砂型铸造以外的其他铸造方法,包括熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、陶瓷型铸造等。 ①熔模铸造(失蜡铸造):在蜡模表面包以造型材料,待其硬化,将其中的蜡模熔去,从而获得无分型面的铸型的铸造方法。 基本过程:蜡模制造→结壳→脱蜡→造型→焙烧→浇铸→落砂清理 熔模铸造(失蜡铸造)的特点 a、铸件的精度高且表面光洁。 b、适用于各种铸造合金铸件,尤其是高熔点及难切削的合金的铸造。 c、熔模铸件的形状可以比较复杂,最小孔径0.5mm,壁厚0.3mm。 d、铸件的重量不宜太大,一般<=25kg,最大80kg左右。 e、工艺过程复杂,不易控制,使用和消耗的材料较贵,适用于形状复杂、精度较高或难以机加工的小型零件,如发动机叶片和叶轮等。 ②金属型铸造:金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,以获得铸件的一种铸造方法。铸型是用金属制成,可以反复使用多次(几百次到几千次)。 金属性铸造的优缺点 可以“一型多铸”,铸件的力学性能提高,金属型铸件的冷却速度较快、组织比较致密铸件精度较高,可以少加工或不加工。 但是,成本高、周期长;铸造透气性差、无退让性,易产生冷隔、浇不足、裂纹等缺陷;铸件熔点不宜太高,重量也不宜太大。

史上最全的陶瓷材料3D打印技术经验解析

精心整理史上最全的陶瓷材料3D打印技术解析 南极熊3D打印网2017-07-11现在已经陆续出现一些陶瓷3D打印机,价格100万到500万人民币的都有。南极熊希望下文可以给读者带来全面的认识。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余 体模型,而后用分层软件对其进行分层处理,即将三维模型分成一系列的层,将每一层的信息传送到成型机,通过材料的逐层添加得到三维实体制件。跟传统模型制作相比,3D打印具有传统模具制作所不具备的优势:1.制作精度高。经过20年的发展,3D打印的精度有了大幅度的提高。目前市面上的3D打印成型的精度基本上都可以控制在0.3mm以下;2.制作周

期短。传统模型制作往往需要经过模具的设计、模具的制作、制作模型、修整等工序,制作的周期长。而3D打印则去除了模具的制作过程,使得模型的生产时间大大缩短,一般几个小时甚至几十分钟就可以完成一个模型的打印;3.可以实现个性化制作。3D打印对于打印的模型数量毫无限制,不管一个还是多个都可以以相同的成本制作出来,这个优势为3D打印开 陶瓷材料烧结性能非常重要,陶瓷颗粒越小,表面越接近球形,陶瓷层的烧结质量越好。陶瓷粉末在激光直接快速烧结时,液相表面张力大,在快速凝固过程中会产生较大的热应力,从而形成较多的微裂纹。目前,陶瓷直接快速成型工艺尚未成熟,国内外正处于研究阶段,还没有实现商品化。目前,比较成熟的快速成型方法有如下几种:分层实体制造(简称LOM);

熔化沉积造型(简称FDM);形状沉积成型(简称SDM);立体光刻(简称SLA);选区激光烧结(简称SLS);喷墨打印法(简称IJM)。2.1分层实体制造(LOM)分层实体制造采用背面涂有热熔胶的薄膜材料为原料,用激光将薄膜依次切成零件的各层形状叠加起来成为实体件,层与层间的粘结依靠加热和加压来实现。LOM最初使用的材料是纸,做出的部件相当于木 和 面LOM LOM ABS 末和有机粘结剂相混合,用挤出机或毛细血管流变仪做成丝后用FDM设备做出陶瓷件生胚,通过粘结剂的去除和陶瓷生胚的烧结,得到较高密度的陶瓷件。适用于FDC工艺的丝状材料必须具备一定的热性能和机械性能,黏度、粘结性能、弹性模量、强度是衡量丝状材料的四个要素。基于这样的限制条件,Rutgers大学的陶瓷研究中心开放出称为RU系列的有机粘结

金属制品加工工艺流程

金属制品加工工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

鑫达参观学习总结 时间:2018/7/11 13:00 ~2018//7/12 18:00 人员:张之龙、鲍林吉、吴业成、何文斌 目的:参观工厂,学习产品生产流程及工艺 通过本次参观工厂,使我对定制类金属产品的生产有了一个更加客观的认知,具体如下: 1,选料 即选择原材料,包括金属丝、金属板、方管和圆管等。铁线类产品首先需要将成捆铁丝通过专用机器拉直。 涉及机器:拉线机 2,下料 即截取所生产产品适用的规格,同时考虑过程损耗,合理分配。 涉及机器:剪板机、切线机等 3,轧制成型 使用专用的模具(产生模具费的主要原因),通过冲孔、折弯、切割等使产品的各部件初步成型。鑫达具有自主制造模具的能力(优势)。 涉及工具与机器:专用模具、冲孔机、折弯机(目前工厂吨位最大的机器为一台折弯机)、线切割机(主要针对铁线、管材类)、激光切割机(主要针对板材类)等 4,拼装 使用专用的夹具(产生夹具费的主要原因)将各部件固定,便于准确焊接,使产品保持良好的一致性。 涉及工具:专用夹具 5,焊接 将通过夹具固定的各部件焊接成一体,焊接方式有点焊(焊疤较粗糙)、氩弧焊(气保焊,焊疤较美观)等。 涉及机器:点焊机、氩弧焊机(工厂具备自动机械手臂,通过写入程序搭配夹具实现

精准焊接) 6,前处理 将焊接好的产品打磨焊渣、去毛刺(45°斜切),使其表面整齐光滑;然后进行酸洗(防锈)、磷化(形成磷化膜,防腐并且利于粉末附着)处理等。 涉及工具与机器:酸洗池、磷化池、抛光机等 7,喷粉(表面处理) 将产品移至喷涂车间,依次挂在自动传送装置上,首先经过一轮强风烘干处理(去除表面杂质、油渍等),经过喷涂室喷粉之后进烤箱烘烤固化(时间10~30分钟,温度140℃~220℃),最后晾干得到成品。 涉及车间:喷涂车间 8,成品包装 包装之前先对产品进行最后检查,主要修补一些喷涂的瑕疵,对不合格产品及时返工。对于拆装产品,在包装之前先人工组装一套以检查产品装配效果。所有确认无误后出货。 涉及车间:包装车间 通过此次对工厂实地参观学习,结合此前的理论知识,对产品的原材料、生产流程、加工方式等有了更全面具体的认识,获益良多! 吴业成 2018/7/17

金属注射成型综述要点

河南工程学院 《机械工程材料与成形工艺》考查课 专业论文 金属注射成型 学生姓名: 学院: 专业班级: 专业课程: 任课教师: 201 年月日

摘要 金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的 制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 关键词:金属注射成形粘结剂脱脂烧制

一、金属粉末注射成型的发展现状及现状 1. 国外概况 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.doczj.com/doc/8116291089.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

探析工程陶瓷材料加工技术现状 原焕强

探析工程陶瓷材料加工技术现状原焕强 发表时间:2018-02-02T17:00:37.763Z 来源:《基层建设》2017年第31期作者:原焕强 [导读] 摘要:由于工程陶瓷具有极高的硬度、良好的耐磨性和耐腐蚀性以及脆性高等特点,成为难加工材料,特别是加工高精度、形状复杂的构件非常困难,因此,陶瓷材料作为工程结构材料的大规模推广使用,在很大程度上取决于陶瓷零件加工技术的发展。 身份证号码:45088119870210XXXX 摘要:由于工程陶瓷具有极高的硬度、良好的耐磨性和耐腐蚀性以及脆性高等特点,成为难加工材料,特别是加工高精度、形状复杂的构件非常困难,因此,陶瓷材料作为工程结构材料的大规模推广使用,在很大程度上取决于陶瓷零件加工技术的发展。本文综述了国内外陶瓷材料加工技术的研究现状。 关键词:工程陶瓷材料;加工技术 引言 陶瓷材料的原子通过共价键、离子键结合,而金属材料通过金属键相结合,所以陶瓷材料与金属材料有完全不同的性质。陶瓷材料在常温下对剪切应力的变形阻力很大,且硬度很高。由于陶瓷晶体是由阳离子和阴离子及它们之间的化学键组成的,化学键具有方向性、原子堆积密度低、原子间距大,使陶瓷显示出很大的脆性,加工产生的缺陷多,所以是典型的难加工材料。发展高效低成本的加工技术十分重要。 一、工程陶瓷加工技术现状 由于陶瓷材料种类繁多,制品形状各异,其制造工艺也多种多样,一般是将粉末原料进行冷压成型高温烧结或热压烧结后再加工成制品。可以概括为四个阶段:配料-粉末成型-烧结-加工。其中每一过程均影响制品的最终性能,即使陶瓷坯料是由微米级超细粉料组成,其质量也难以控制。由于粉料完全无可塑性,为了成型,除粘合剂外必需添加各种成型添加剂。未烧结的成型材料在烧结过程中通常会收缩约20%,引起制品的尺寸偏差和变形。在烧结后进行精加工,其加工性能又很差。由于这种种原因,以往陶瓷制品的形状大多较简单,制品的使用功能也较单一。近年来工程陶瓷材料的应用日益活跃,在改进制造工艺方面也展开了激烈竞争。 虽然陶瓷成型、烧结技术的进步不断提高了制品的精度,但将陶瓷作为结构材料特别是机械结构互相配合使用时,仍必须对陶瓷进行加工,以提高烧结制品的尺寸和形状精度及加工表面的完整性。 二、工程陶瓷材料的机械加工 2.1工程陶瓷的钻削加 目前广泛采用金刚石空心钻加工直径数毫米以上的圆孔。据报道该方法在钻削常压烧结氮化硅时,材料去除率可达1600mm3/min以上。由于陶瓷硬度极高,在钻削过程中金刚石钻头磨损严重,此外,由于陶瓷的脆性很大,在孔的入口和出口处崩刃现象严重,影响孔的加工质量。目前在这种空心钻上附加超声波振动进行陶瓷钻削,明显改善了加工效果。也有利用金刚石砂轮磨削内孔及金刚石刀具刮孔,但只适用于陶瓷工件上已有预置孔的情况。目前机械加工方法仅限于数毫米左右直径的孔加工,尚难获得理想的经济效果和表面加工质量,现正不断努力开发新的钻孔加工方法。 2.2工程陶瓷的车削加工 工程陶瓷的车削加工主要采用金刚石刀具(或涂层刀具)进行。多晶金刚石刀具难以产生光滑锋利的切削刃,一般只用于粗加工。而工程陶瓷的精密车削须使用天然单晶金刚石刀具,采用微切削方式。但由于工程陶瓷材料硬度和脆性非常大,车削加工仍难以保证加工精度和加工质量的要求,当前主要集中于工程陶瓷车削机理及车削方法实用化的研究上。尽管对工程陶瓷的车削机理还未形成统一认识,但较10年前已获得很大发展。 2.3工程陶瓷的磨削加工 陶瓷磨削中磨屑的处理一般采用冷却液冲洗,不仅可以冲走磨屑,还可以降低磨削温度,提高加工质量,降低砂轮耗损。一般选用清洗性能好、粘度低的磨削液。另外,砂轮的选择对陶瓷加工影响极大。铸铁结合剂是国外80年代末开发的高强度砂轮结合剂,具有强度高、不易堵塞、磨刃锋利和加工效率高等特点。目前铸铁结合剂砂轮已被国内用来磨削陶瓷。金刚石磨粒的大小也是影响陶瓷加工表面质量的重要因素。通常磨粒越小,加工表面粗糙度越低,但砂轮的磨削比降低。为了能获得较好的综合指标,国外正研究对陶瓷的缓进给磨削。 2.4工程陶瓷的研磨和抛光加工 研磨和抛光是工程陶瓷零件的重要加工方法,早已用于球面、圆柱面等简单成型表面的加工。研磨通常采用铸铁等较硬的研具有数微米以上的磨粒。抛光采用软质抛光器和细粉磨粒在较低的压力下加工。近年来研磨抛光技术取得了许多新进展,如超声抛光、电加工复合抛光等。 三、工程陶瓷材料的电加工 3.1导电工程陶瓷材料的电加工 电火花加工通过电极间放电产生高温熔化和汽化蚀除材料,材料的可加工性主要取决于材料的热学性质,而材料的力学性能影响较小。电火花加工适合于超硬导电材料的加工。由于大多数陶瓷材料是电的绝缘体,以往很少用电火花加工法加工。但近年来许多高性能工程陶瓷中都含有TiC等导电材料,使得电火花加工成为可能。研究结果表明,当工程陶瓷材料包括单相均质的工程陶瓷和陶瓷/陶瓷,金属/陶瓷复合材料的电阻率低于 ?m时,可以有效地利用电火花技术对陶瓷材料进行加工。 3.2非导电工程陶瓷材料的电加工 有一种高压电火花加工方法可以加工非导电陶瓷材料。其加工原理是:在尖电极与平电极间放入绝缘的陶瓷材料工件,两电极间加以直流或交流高电压,使尖电极附近的介质被击穿,发生辉光放电蚀除。但辉光电流小,加工效果差。由于两电极间存在寄生电容,把电源变为高频或脉冲性电源,可以使极间流过相当多的辉光电流,通常使用高压高频电源。这种方法加工表面较粗糙,需用机械加工修研。日本提出了另一种新的非导电陶瓷材料电火花加工方法,其原理是:在薄片工件上压放一块薄金属网作为辅助电极,辅助电极和工具电极分别与脉冲电源的正、负极相连,并放在油类工作液中,当脉冲电压施加到两极间,便在工具与辅助电极间产生火花放电;当电火花穿过工件上的辅助电极时,由于金属材料的气化、喷射或溅射等作用使陶瓷零件表面导电,加工得以持续。但该方法加工深度较浅。

金属成形方法大全.docx

金属成形方法大全 铸造 液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。 工艺流程:液体金属→充型→凝固收缩→铸件 工艺特点: 1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。 2、适应性强,合金种类不受限制,铸件大小几乎不受限制。 3、材料来源广,废品可重熔,设备投资低。 4、废品率高、表面质量较低、劳动条件差。 铸造分类: (1)砂型铸造(sand casting) 在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。 工艺流程: 技术特点: 1、适合于制成形状复杂,特别是具有复杂内腔的毛坯; 2、适应性广,成本低; 3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。 应用:汽车的发动机气缸体、气缸盖、曲轴等铸件 (2)熔模铸造(investmentcasting) 通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。常称为“失蜡铸造”。

工艺流程: 优点: 1、尺寸精度和几何精度高; 2、表面粗糙度高; 3、能够铸造外型复杂的铸件,且铸造的合金不受限制。 缺点:工序繁杂,费用较高 应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。 (3)压力铸造(die casting) 利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 工艺流程: 优点: 1、压铸时金属液体承受压力高,流速快 2、产品质量好,尺寸稳定,互换性好; 3、生产效率高,压铸模使用次数多; 4、适合大批大量生产,经济效益好。 缺点: 1、铸件容易产生细小的气孔和缩松。 2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作; 3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。 应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。 (4)低压铸造(low pressure casting) 指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法。

陶瓷生产工艺设计

一陶瓷生产工艺流程 二原料 菱镁矿,煤矸石,工业氧化铝,氧化钙,二氧化硅,氧化镁。三坯料的制备 1原料粉碎 块状的固体物料在机械力的作下而粉碎,这种使原料的处理操作,即为原料粉碎。(1)粗碎 粗碎装置常采用颚式破碎机来进行,可以将大块原料破碎至40-50毫米的碎块,

这种破碎机是无机材料工厂广泛应用的醋碎和中碎机械。是依靠活动颚板做周期性的往复运动,把进入两颚板间的物料压碎,颚式破碎机具有结构简单,管理和维修方便,工作安全可靠,使用范围广等优点。它的缺点是工作间歇式,非生产性的功率消耗大,工作时产生较大的惯性力,使零件承受较大的负荷,不适合破碎片状及软状粘性物质。破碎比较大的破碎机的生产能力计算方法如下: G=0.06upkbsd/tanq 式中G破碎机生产能力,Kg/h u物料的松动系数,0.6-0.7 P物料的密度 K每分钟牙板摆动次数,次/MIN b进料口长度,单位米 S牙板之开程单位米 Q钳角D破碎后最大物料的直单位毫米 (2)中碎 碾轮机是常用的中碎装置。物料是碾盘与碾轮之间相对滑动与碾轮的重力作用下被碾磨与压碎的,碾轮越重尺寸越大,则粉碎力越强。陶瓷厂用于制备坯釉料的轮碾机常用石质碾轮和碾盘。一般轮子直径为物料块直径的14-40倍,硬质物料取上限,软质物料物料下限。 轮碾机碾碎的物料颗粒组成比较合理,从微米颗粒到毫米级粒径,粒径分布范围广,具有较合理的颗粒范围,常用于碾碎物料。 (3)细碎 球磨机是陶瓷厂的细碎设备。在细磨坯料和釉料中,其起着研磨和混合的作用。陶瓷厂多数用间歇式湿法研磨坯料和釉料,这是由于湿式球磨时水对原料的颗粒表面的裂缝有劈尖作用,其研磨效率比干式球磨高,制备的可塑泥和泥浆的质量比矸干磨得好。泥浆除铁比粉除铁磁阻小效率高,而且无粉尘飞扬。 (4)筛分 筛分是利用具有一定尺寸的孔径或缝隙的筛面进行固体颗粒的分级。当粉粒经过筛面后,被分级成筛上料和筛下料两部分。筛分有干筛和湿筛。干筛的筛分效率主要取决于物料温度。物料相对筛网的运动形式以及物料层厚度。当物料湿度和粘性较高时,容易黏附在筛面上,使筛孔堵塞,影响筛分效率。当料层较薄而筛面与物料之间相对运动越剧烈时,筛分效率就越高,湿筛和干筛的筛分效果主要却决于料将的稠度和黏度。 陶瓷厂常用的筛分机有摇动筛,回转筛以及振筛。 (5)除铁 (6)A磁选条件 坯料和釉料中混有铁质将使制品外观受到影响,如降低白度,产生斑点。因此,原料处理与坯料制备中,除铁是一个很重要的工序。 从物理学中,作用在单位质量颗粒上磁力为 F=RHdH/dh

工程陶瓷材料光整加工技术的研究(科技方法训练)

工程陶瓷材料新型光整加工技术的研究 可 行 性 分 析 报 告 班级: 姓名: 学号: 时间: 景德镇陶瓷学院

一、基本情况: 1、项目名称:工程陶瓷材料新型光整加工技术的研究 2、目的和意义 工程陶瓷具有许多优良的性能,比如较高的硬度和强度,很强的耐腐蚀、耐磨损、耐高温能力和良好的化学惰性等,因此在航空航天、化工、军事、机械、电子电器以及精密制造领域的应用日益广泛。目前各发达国家如德、日、美、英等国非常重视工程陶瓷的开发及应用。80年代以来,各国竞相投人大量的资金及人力,在工程陶瓷加工理论和技术、产品开发和应用等方面取得了很大的进展。 由于陶瓷材料的高硬度和高脆性,被加工陶瓷元件大多会产生各种类型的表面或亚表面损伤,这会导致陶瓷元件强度的降低,进而限制了大材料去除率的采用。对陶瓷高效磨削加工而言,根本目标就是在保持材料表面完整性和尺寸精度的同时获得最大的材料去除率。目前陶瓷的加工成本己达到整个陶瓷元件成本的80%~90% ,高加工成本以及难以测控的加工表面损伤层限制了陶瓷元件更广泛的应用。 陶瓷材料广阔的应用前景和复杂的加工特性,都要求对陶瓷的磨削加工过程进行全面而深入的了解。从上世纪90年代开始,国内外学者进行了大量的研究,在陶瓷磨削的新型方式、陶瓷磨削的材料去除机理、磨削烧伤、磨削表面完整性等的影响因素、不同磨削条件的最佳磨削参数等多方面都取得了积极的研究成果。本文主要就陶瓷磨削的研究现状及发展状况进行了归纳和总结。 3、磨削机理的研究: 由于砂轮的磨粒尺寸、形状和磨粒分布的随机性以及磨削运动规律的复杂性,给磨削机理的研究带来了很大的困难。在陶瓷磨削方面由于陶瓷的高硬度和高脆性,大多数研究都使用了“压痕断裂力学”模型或“切削加工”模型来近似处理。20世纪80年代初,Frank和Lawn首先建立了钝压痕器、尖锐压痕器和接触滑动三种机理分析研究模型,提出了应力强度因子公式K=aE·P/C2/3,根据脆性断裂力学条件K≥KC,导出了脆性断裂的临界载荷PBC =Cb·K ,他又根据材料的屈服条件s≥sY,导出了塑性变形模式下临界载荷PYYC=s3/g3(或PYYC=H3Y/g3)。 4、完成期限: 1、2012年08月,完成各单元最佳磨削参数的实验研究 2、2013年03月,完成砂轮工作轨迹的软件设计 3、2013年09月,完成用户试用 4、2013年10月,完成样机性能检测 5、2013年12月,样品技术鉴定 5、成果提供形式:

工程陶瓷材料孔加工技术的试验

工程陶瓷材料孔加工技术的试验* 靳晓丽1袁军堂1肖冰2 1南京理工大学2南京航空航天大学 摘要:立足于传统加工方法,考虑加工的经济性、实用性和易操作性,采用新研制的单层高温钎焊金刚石套料钻及专用钻套夹具对工程陶瓷材料进行了钻孔加工试验,试验结果表明,该工艺方法可高效、简便地加工出高质量的陶瓷孔,具有实用和推广价值。 关键词:工程陶瓷,钎焊金刚石套料钻,专用钻套夹具 Experimental S tudy on Drilling Technology for Engineering Ceramics Jin Xiaoli Yuan Juntang Xiao Bin Abstract:T aken into account the machining cost,practicability and maneuverability,based on the traditional machining technology,a kind of newly developed brazed diamond trepanning tool and special clamp were designed to machine engineering ce ramics.The testing resul ts show that high quality holes can be obtained efficiently and handy by this drilling technology,so it!s worth applying and generalizing. Keywords:engineering ceramics,brazed diamond trepanning tool,special clamp 1引言 工程陶瓷具有高强度、高硬度、耐高温、耐磨损、耐热、抗腐蚀、抗氧化、防核辐射等优异的性能,使之广泛应用于机械、电子、航空航天、能源、军事等领域。但是由于其硬脆特性,陶瓷的加工比多数金属材料困难得多,因此需要优质高效经济实用的的陶瓷加工新工艺新技术。各发达国家如德、日、美、英等国都非常重视工程陶瓷材料的开发和应用,特别是80年代以来,竞相投入大量资金和人力,在工程陶瓷加工理论和技术方面取得很大进展。 目前,国内外陶瓷孔加工普遍采用电火花、激光、超声振动和水射流等技术。电火花和激光加工效率高,但都有一定的适用范围,电火花加工不适用于绝大多数陶瓷材料,只能加工电阻率小于100 .c m的材料。激光和电火花加工都有可能引起工件热和化学反应,使材料产生龟裂和细微裂纹。超声振动加工无残留应力、也不产生细微裂纹,但是加工效率很低,高压水射流无法加工小孔。且这些加工方法也普遍存在加工成本高、设备繁杂、不易实验现场加工的缺点。作者考虑加工技术的实用性、经济性、易操作性,立足于传统加工方法,设计专用夹具,尝试着用最新研制的单层金刚石套料钻进行加工试验研究。 2工程陶瓷孔加工技术试验 2 1试验设备和冷却 试验设备是Z5125立式铣床(配备有无级调速器)。 工程陶瓷钻孔一般用水、乳化液冷却。乳化液成本高,且会对环境造成一定程度的污染。水对空气无污染,加工中也可大大降低切削区温度,成本低,在材料性能许可的情况下可优先采用。本次试验采用自来水冷却。 2 2刀具的选用 目前国内使用的单层金刚石套料钻无一例外都是电镀制成的,本次试验主要采用新研制出的单层高温钎焊金刚石套料钻进行加工,同时用日本和国产的各一个单层电镀金刚石套料钻进行对比加工试验。金刚石套料钻在加工过程中整个工具的端面都参与切削,端面的每个磨粒都相当于一把小的切削刀具,工具的外圆柱面也和工件接触,具有磨削作用。本次实验所用钎焊金刚石套料钻设计有端面和外圆柱面的金刚石粒度相同和不同两类。 图1为金刚石刀具示意图和照片。为了便于排屑,金刚石套料钻内孔设计成倒圆锥型,加工通孔时可以方便快速地把切屑从孔中取出。同时考虑到冷却和锋利度问题,设计了三种刀体形状:无槽式、等比例槽式和两倍槽式。刀壁厚度有三种尺寸:1mm、1 2mm、1 5mm,外径均为18mm。金刚石粒度有35 ~40目、70~80目、110~120目三个级别。 22工具技术 * 十五 国防预研基金资助项目(项目编号:404010502.1C) 收稿日期:2003年9月

陶瓷材料的成型方法(一)

陶瓷材料的成型方法(一) 陶瓷材料已经成为我们生活中一个智能更要的工具了,在现代陶瓷材料的生产中,常用的成型方法有挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型等。 1.挤制成型 挤制成型主要用于制造片形、棒形和管形制品,如电阻的基体蜂窝陶瓷载体的陶瓷棒、陶瓷管等陶瓷制品。该成型方法生产效率高,产量大、操作简便,使用的挤压机分卧式和立式两种。配料中新土含量较大时,成型的坯料一般不加黏合剂,配料经过真空练泥、闲料后即可用于挤制成型。坯料中一般含水量为16%一25%。配料中含茹土少或不含教土时,将均匀混合了熟合剂的粉料经真空练泥和闲料后,再用于挤制成型。挤制成型的氧化铝瓷球常用的教合剂有糊精、桐油、甲基纤维素(MC)、羧印基纤维素、泽丙基甲基纤维素(HPMC)和亚硫酸纸浆废液等。 挤制资管时应注意防止坯体变形,管的外径越大,壁越薄,机械强度越差,越容易变形。 2.干压成型 干压成型是最常用的成型方法之一,适用于成型简单的瓷件,如圆片形等,对模具质量的要求较高。该方法少产效率高,

易于自动化,制品烧成收缩率小,不易变形。干压成型方法所用坯料的含水量一般控制在4%一8%左右。干压常用熟合剂主要有聚乙烯醇(PVA)水溶液、石蜡、亚硫酸纸浆废液等。通常配料中黏合剂的加入量为:聚乙烯醇水溶液3%一8%、石蜡8%左右、亚硫酸纸浆废液10%左右。 干压成型是利用模具在泊压机上进行的。干压成型的加压方式有单面加压和双面加压两种。直接受压一端的压力大,坯体密度大;远离加压一端的压力小,密度小。金属填料的双面加压时坯体两端直接受压,两端密度大,中间密度小。造粒料并加润滑剂时,双面加压的尔意图,坯体密度非常均匀。成型压力的大小直接影响资体的密度和收缩率。如某BaTiO3系资料,外加5%聚乙烯醇水溶液造粒,在相同烧成条件下,成型压力为0.5MPa时,收缩系数为1.15—1.16;成型乐力为0.6MPa时,收缩系数为1.13—1.14;成型压力为0.7MPa时,收缩系数为1.11-1.12;成型压力为0.8MPa时,收缩系数为1.03。 原文链接:https://www.doczj.com/doc/8116291089.html,/new/View_73.html版权所有,转载请以链接形式注明作 者及原始出处。 本站关键词:防腐施工、陶瓷防腐、化工填料、蜂窝陶瓷、

陶瓷材料在机械工程中的应用

技术讲座 陶瓷材料在机械工程中的应用 郭春丽 (河北理工大学机械学院唐山063009) 1用陶瓷材料制造切削刀具 在金属材料机械加工中,切削加工是最基本、最可靠的精密加工手段,刀具材料的性能对切削加工效率、精度、表面质量、刀具寿命有着决定性的影响。在现代切削加工中,陶瓷刀具材料以其优异的耐热性、耐磨性和化学稳定性,在高速切削领域和切削难加工材料方面扮演着越来越重要的角色。陶瓷刀具材料主要包括氧化铝、氮化硅及赛隆系列。其他陶瓷材料,例如氧化锆、硼化钛陶瓷等作为刀具材料也有使用。 1.1氧化铝系列 纯的氧化铝陶瓷含Al2O399%以上,强度低,抗热震性及断裂韧性较差,切削时易崩刃,故没有广泛使用。碳化物、氮化物和硼化物材料具有很高的强度和硬度,可以作为Al2O3陶瓷中的增强相。这类物质包括TiC、TiN、TiB2、Ti(CN)、WC、ZrC等。采用重复热压工艺制备Al2O3-Ti(C N)刀具材料,抗弯强度可达820 MPa,断裂韧性7.4MPa#m1P2,维氏硬度20.4GPa。切削试验表明:此种材料适合连续切削铸铁和硬化钢,尤其适合间歇切削硬化钢。 晶须是一种广泛使用的增强增韧陶瓷材料,增强Al2O3使用的主要是SiC、Si3N4晶须。SiC晶须在Al2O3基体中起加强棒的作用,并使应力在基体内分散。这种陶瓷刀具断裂韧性、强度和硬度都比较高,非常适合加工镍基耐热合金及较低的切削速度加工各种铸铁和非金属脆性材料。Si3N4晶须加入到Al2O3基体中可以提高陶瓷的抗热冲击性,适合切削镍铬铁耐热合金材料。 氧化锆相变增韧是一种广泛使用的增韧工艺。在Al2O3材料中加入15%部分稳定的氧化锆,1550e真空烧结2h,制备出ZrO2-Al2O3复合材料,断裂韧性8.2MPa#m1P2,抗弯强度可达884MPa。这类陶瓷刀具具有较好的韧性和抗热冲击性,但耐磨性较差,主要用于铸铁和合金的粗加工。 1.2氮化硅系列 氮化硅材料是在氧化铝材料以后出现的一种刀具材料。它比氧化铝材料的强度和断裂韧性高,其抗弯强度一般可达900~1000MPa,断裂韧性5~7MPa# m1P2,硬度91~93HRA,耐热性可达1300~1400e,不易产生裂纹,可以获得稳定的使用寿命。 采用热压自增韧的方法可以进一步提高氮化硅陶瓷的强度和韧性,即控制烧结过程,使一部分氮化硅晶粒发育成具有较大长径比的棒状晶粒(晶粒的长径比可达3~8),从而获得类似于晶须增韧的效果,断裂韧性可达10.02MPa#m1P2。这种自增韧陶瓷刀具是一种适合切削冷硬铸铁和淬硬钢的刀具材料,特别适合于断续切削。 在氮化硅基体中添加适量金属碳化物等复合强化剂,利用复合强化效应制成的氮化硅复合陶瓷,其性能比热压氮化硅陶瓷优越得多。在Si3N4中添加Al2O3、Y2O3、TiC、TiN和MgO等成分,可以采用冷压烧结而降低成本。B-赛隆就是在Si3N4中加入Al2O3烧结而成,兼有Al2O3和Si3N4的特性,其热硬性比硬质合金和Al2O3都高,刀尖温度高于1000e时仍可高速切削。其最大特点是可提高切削速度,加大进给量,提高金属切削率,延长刀具寿命。 纳米材料是近年来研究的热点,广泛应用到材料 # 45 # 2005.No.12陶瓷

二氧化锆陶瓷的加工技术

二 氧 化 锆 材 料 的 加 工 技 术姓名:罗乔 学号:510011593

摘要 陶瓷材料种类很多,它具有熔点高、硬度高,化学稳定性高、耐高温、耐磨损、耐氧化、耐腐蚀,以及弹性模量大、强度高等优良性质。也正是由于陶瓷材料的这些性质能决定了它的加工也是和普通的材料有着截然不同的加工方式。随着现代工业的发展,对于新型材料的需求也越来越多,陶瓷材料在近十几年来得到飞速的发展。随着它的应用领域越来越广,人们对它的研究也越来越深入。本文将介绍二氧化锆这种比较典型的特种陶瓷材料(人工合成材料)并对其加工技术进行叙述和探讨在国内陶瓷材料的加工技术水平和发展程度。 关键词:陶瓷材料二氧化锆激光加工磨料水射流铣削加工金刚石套料钻

ABSTRACT There is so many kinds of Ceramic material.They have the excellent properties.Such as the High melting point,High hardness,High Chemical stability, Heat-resistant,Resistant to wear,Resistance to oxidation,Corrosion resisting,High Elastic modulus,High strength and so on.Because of these properties , its processing is also with ordinary materials a totally different processing methods.With the development of modern industry,The demand for new materials will be more and more.Ceramic materials get rapid development in recent decade.Along with its application field more and more widely, people have studied it also more and more deeply.This paper will introduce alumina and zro2 which is Synthetic material and its processing technology description and explore the domestic ceramic materials processing techniques and development degree. KEY WORD : Ceramic materials zirconium dioxide Laser processing Abrasive Water technology milling Diamond set of material drill

陶瓷注浆成型工艺方法

1.目的:保证精陶大件产品注浆成型顺利进行,提高成型半成品合格率。 2. 适用范围:适用于精陶产品如辊棒、方梁、立柱等产品的注浆成型作业。 3.作业要点 注浆作业前的准备 模型清理 注浆工在进行作业前,要仔细检查清理模型。对于新上的模型,首先检查核对型号,检查模型是否完好,工作面有无缺陷。核对检查合格的模型先用细砂纸(240#)将模型工作面轻轻打磨一遍,清除模型表面的脱模剂及其它杂物,并用约20%的稀浆水将模型工作面擦拭一遍。正常使用的模型,注浆作业前要将模型表面的余浆及石膏屑清理干净。模型跑浆时,对沾在模型内外及子母扣处的泥渣都要清理干净。对脱模时发现有不能脱模的情况,再次注浆前用石墨将模型对应坯体不脱模的地方薄薄抹一层,便于脱模。 模型及进浆管与添浆管的安装 清理过的模型放于支架上时,首先要保证支架每个支撑点在一条直线上,模型放置要稳定,不得有悬空的情况,以免引起模型断裂或变形。合模时要将模型子母扣对整齐,并用紧固件压紧。注意紧固件要分布均匀并锁紧,防止注浆时跑浆。进浆管与添浆管依次插紧,添浆管处用来盛浆的容器要高于模型悬挂,且管子要拉直,便于进浆、回浆及排气。 泥浆的准备 泥浆要使用配浆人员已化好的泥浆。泥浆使用前,要确保充分搅拌均匀,搅拌时间不得少于 30分钟,未充分搅拌的泥浆不得使用。在抽进注浆罐前要进行过筛,筛目要求为 100 目。过筛时要缓慢往筛内添浆,不得漫筛,防止料渣进入已过筛的浆料中。浆料的比重规定为,对不符合规定的泥浆不得使用。配浆要保证泥浆具有5天的陈腐期。 注浆操作 注浆作业时,要保证3人以上同时操作,一人控制进浆阀门,一人操作进浆管,一人在添浆管处观察。注浆前往注浆罐内充氮气,罐内压力达到— MPa时停止,并关闭阀门。注浆时要注意控制上浆速度,缓慢均匀进浆,不得猛开阀门。出现跑浆漏浆的情况要立即处理。 根据确定的不同产品的注浆时间,在吸浆过程中要经常观察添浆管中的浆面的位置,及时添加泥浆,防止缺浆造成坯体厚度不够及局部厚薄不均。添浆时要注意不得踩在模型上,避免造成模型振动,引起坯体坍塌。 在吸浆到注浆时间的60%左右时,翻转模型。翻转模型必须由3人以上人员同时操作,翻转模型时要保证轻、慢、稳,禁止动作过猛,引起模型振动,导致坯体振动坍塌。

相关主题
文本预览
相关文档 最新文档