当前位置:文档之家› 控制系统仿真课程设计

控制系统仿真课程设计

控制系统仿真课程设计
控制系统仿真课程设计

内蒙古科技大学

本科生课程设计论文

题目:基于SIMULINK的载热体前馈-反馈控制系统仿真研究

学生姓名:蒙龙华

学号:1067112303

专业:测控技术与仪器

班级:测控3班

指导教师:李琦

2013年12月9日

内蒙古科技大学课程设计任务书

摘要

前馈控制系统和反馈控制系统都属于单回路控制系统,它们有各自的优缺点。诸如前馈控制能根据干扰值的大小在被调参数偏离给定值之前进行控制,使被调量始终保持在给定值上,但这种控制方式也存在局限,首先表现在前馈控制系统中不存在被调量的反馈,即对于补偿的结果没有检验手段。反馈控制是根据被调量与给定值的偏差值来控制的,反馈系统的特点是在干扰作用下,必须形成偏差才能进行调节(或偏差即将形成),如果干扰已经发生,而被调参数还没变化时,调节器是不会动作的,即反馈控制总是落后于干扰动作,因此称之为不及时控制。

因此把它们结合起来就产生了前馈—反馈复合控制系统,这种系统能把前馈与反馈的优点结合起来,既能发挥前馈调节控制及时的优点,又能保持反馈控制对各种扰动因素都有抑制作用的长处,较好地解决了控制过程中的问题,通过仿真可以得出这种系统既能获得较好的稳定性,又有较好的抗扰性能。

关键词:计算机应用软件换热器仿真分析仿真建模SIMULINK

目录

目录 (5)

引言 (6)

1 概述 (7)

1.1 SIMULINK (7)

1.2 换热器 (8)

1. 换热器概述 (8)

2.换热器的特性 (9)

1.3 前馈-反馈控制系统 (10)

2 控制方案 (11)

2.1 载热体流量的控制方案 (11)

2.2 控制系统仿真设计 (13)

2.3 参数整定 (14)

3 载热体流量控制系统仿真实验 (16)

3.1 载热体流量控制系统仿真框图 (16)

3.2载热体流量控制系统仿真响应曲线 (17)

4 结语 (18)

参考文献 (19)

引言

生产过程中必须保证产品满足一定的数量和质量的要求,同时也要保证生产的安全和经济,这就要求生产过程在预期的工况下进行。但是,生产过程往往受到各种扰动而偏离正常工况,必须通过自动控制随时消除各种干扰,保证正常运行。更为严重的是有时自动控制系统本身也要发生故障,这就要求在设计自动控制系统时,考虑各种可能发生的故障,并加以保护。因此,现代的自动控制系统往往包含自动保护、自动检测、自动报警、顺序控制等内容。有时,它们有机的组合成一个不可分割的整体,以确保控制系统的安全可靠。

以往人们对换热器控制系统进行仿真,大多采用Basic、 Fort ran、 C、C + + 等算法语言来编制仿真程序,编程复杂,而且受上述算法语言的绘图功能的限制,要绘出仿真曲线就得调用相应的软件包来作进一步的处理,使得编制、调试程序更复杂。另外,过去建立仿真模型往往是以系统的状态方程为基础的,在仿真前需要手工求出系统的状态方程。而换热器控制系统是一个比较复杂的系统,求取状态方程有一定的难度,若系统结构发生变化, 则需要重写状态方程,仿真程序的修改工作量很大,仿真模型的利用率低。

本文采用MATLAB下的Simulink作为仿真平台,对换热器控制系统进行建模,采用各种模型对换热器控制系统进行仿真实验。并将仿真实验与现场试验相比较,验证仿真模型和算法的正确性,体现了模块化建模在仿真计算中的优势。

1 概述

1.1 SIMULINK

SIMULINK是一种强有力的仿真工具,它能让使用者在图形方式下以最小的代价来模拟真实动态系统的运行。SIMULINK准备有数百种福定义的系统环节模型、最先进的有效积分算法和直观的图示化工具。依托SIMULINK强健的仿真能力,用户在原型机制造之前就可建立系统的模型,从而评估设计并修复瑕疵。SIMULINK具有如下的特点:

(1)建立动态的系统模型并进行仿真。SIMULINK是一种图形化的仿真工具,用于对动态系统建模和控制规律的研究制定。由于支持线性、非线性、连续、离散、多变量和混合式系统结构,SIMULINK几乎可分析任何一种类型的真实动态系统。(2)以直观的方式建模。利用SIMULINK可视化的建模方式,可迅速地建立动态系统的框图模型。只需在SIMULINK元件库中选出合适的模块并施放到SIMULINK建模窗口,鼠标点击连续就可以了。SIMULINK标准库拥有超过150中,可用于构成各种不同种类的动态模型系统。模块包括输入信号源、动力学元件、代数函数和非线性函数、数据显示模块等。SIMULINK模块可以被设定为触发和使能的,用于模拟大模型系统中存在条件作用的子模型的行为。

(3)增添定制模块元件和用户代码。SIMULINK模块库是可制定的,能够扩展以包容用户自定义的系统环节模块。用户也可以修改已有模块的图标,重新设定对话框,甚至换用其他形式的弹出菜单和复选框。SIMULINK允许用户吧自己编写的C、FORTRAN、Ada代码直接植入SIMULINK模型中。

(4)快速、准确地进行设计模拟。SIMULINK优秀的积分算法给非线性系统仿真带来了极高的精度。先进的常微分方程求解器可用于求解刚性和非刚性的系统、具有时间触发或不连续的系统和具有代数环的系统。SIMULINK的求解器能确保连续系统或离散系统的仿真速度、准确地进行。同时,SIMULINK还未用户准备一个图形化的调试工具,以辅助用户进行系统开发。

(5)分层次的表达复杂系统。SIMULINK的分级建模能力使得体积庞大、结构复杂的模型构建也简便易行。根据需要,各种模块可以组织成若干子系统。在此基础上,

整个系统可以按照自定向下或自底向上的方式搭建。子模型的层次数量完全取决于所构建的系统,不受软件本身的限制。为方便大型复杂结构系统的操

作,SIMULINK还提供了模型结构浏览的功能。

(6)交互式的仿真分析。SIMULINK的示波器可以动画和图像显示数据,运行中可调整模型参数进行What-if分析,能够在仿真运算进行时监视仿真结果。这种交互式的特征可以帮助用户快速的评估不同的算法,进行参数优化。

由于SIMULINK完全集成于MATLAB,在SIMULINK下计算的结果可以保存到MATLAB 工作空间之中,因而就能使用MATLAB所具有的众多分析、可视化及工具箱工具操作数据。

1.2 换热器

1. 换热器概述

换热器(热交换器)是一股或几股流体(辅助流体)加热或冷却另一股或几股流体(目标流体),使目标流体出口温度达到工艺要求的热交换设备,特别是被加热介质是水的换热器,在供热系统中得到广泛使用。热水换热器按参与换热器的介质分类,分为汽-水换热器和水-水换热器;按换热器的换热方式分类,分为表面式换热器和混合式换热器。表面式换热器是冷热两种流体被金属壁面割开,而通过金属壁面高温介质将热量传给低温介质。混合式换热器是冷热两种流体直接接触进行混合而实现换热的换热器。

目前常用的几种换热器有:容积式换热器、壳管式换热器、板式换热器、等离子体改性强化换热器等。

容积式换热器既是换热器又是贮热水罐,在未加热前在罐体存有大量冷水,热效率低,换热时间长,浪费能源,多用于生活热水和用水不均匀的工业用热水系统,主要为罐体及加热排管两部分组成。

壳管式换热器是应用最广泛的传统换热器,其最基本的构造是在圆形壳体内加许多热交换用的小管,当加热的热媒为蒸汽时为壳管汽-水换热器,加热的热媒为高温水时称为壳管水-水换热器,水-水换热器由于热交换水管内外都是水,由于小管两侧水的流速比较接近,圆形外壳直径不能太大,当加热面积不能太大,当加热面

积要求较大时,常常将几段连接起来,故又称为分段式水-水热交换器,常用于热水采暖系统。

板式换热器是发展中的新型高效换热设备之一。结构上采用特殊的波纹金属板

为换热板片,使换热液体在板间流动时,能够不断改变流动方向和速度,形成激烈的湍流,以达到强化传热的效果,且传热板片采用厚度为1.2mm 左右的薄板,这就大大提高了其传热能力。

等离子体改性强化换热器,其构造基本上同壳管式换热器,蒸汽在壳程,被加

热水在管程,是一种新型高效强化汽水换热器。它比一般换热器具有以下特点:

(1)换热效率高,是同体积其他换热器换热量的2倍以上。

(2)设备结构紧凑,占地面积和占用空间小,安装使用方便。

(3)由于换热管经过等离子体改性处理,换热管表面不易结垢,换热效率稳定。

(4)金属耗量低,比普通产品节约三分之一以上。

2.换热器的特性

图1.1所示为换热器的换热原理,其中G1、G2分别为工艺介质及载热体的流量;T1i 、T2i 分别为工艺介质及载热体的入口温度;T1o 、T2o 分别为工艺介质及载热体的出口温度;c1、c2分别为工艺介质及载热体的比热容。

图1.1 换热器换热原理

根据换热器两侧不发生相变,可得到热量平衡方程式为

G2c2(T2i-T2o)=G1c1(T1o-T1i)

换热器的传热速率为

式中 K ——传热系数,单位是kcal/(℃*㎡*h);

F ——传热面积,单位是㎡;

——平均温度差,单位是℃。

对数平均值为

T2i-T1o)-(T2o-T1i)

T= T2i-T1i

T2o-T1i

在多数情况下,当(1/3)<(T2i-T1o)/(T2o-T1i)<=3时,可采用算术平均值,其误差小于5%T=(T2i-T1o)-(T2o-T1i),

2 1

整理可得换热器的静态特性方程为T1o-T1i= G1c1 + 1 1+ G1c1

流体出口温度为

1.3 前馈-反馈控制系统

工程实际中,为克服单纯前馈控制的局限性,获得良好的控制品质,产生了前馈-反馈控制系统,即在反馈控制系统的基础上附加一个或几个主要扰动的前馈控制,又称复合控制系统。这样,依靠反馈控制来使系统在稳态时能准确的使被调量等于给定值,而在动态过程中则利用前馈控制有效地减少被调量的动态偏差(对于主要是由于扰动引起的)。其原理框图如图1.2所示,

R(s)

图1.2前馈-反馈控制系统原理框图

N-扰动(在此例中为料液流量D);Y-被调量(在此例中为料液温度错误!未找到引用

源。);错误!未找到引用源。d(s)前馈调节器的传递函数;错误!未找到

引用源。1(s)-控制通道对象的传递函数;错误!未找到引用源。

f(s)-扰动通道对象的传递函数;错误!未找到引用源。c(s) -反馈调节器的传递函

数;

2 控制方案

根据上述分析,换热器出口温度与工艺介质入口温度、工艺介质流量、载热体入口温度、载热体流量有关。其中,工艺介质入口温度、工艺介质流量、载热体入口温度都是有前一道工序确定,因此可测量但不可控的。为此,换热器控制的操纵变量可选择为载热体的流量或工艺介质的旁路控制。

2.1 载热体流量的控制方案

根据热量平衡方程和传热方程,在传热面积足够大时,改变载热体的流量,可有效的控制工艺介质出口温度。当载热体压力波动不大时,可以采用工艺介质出口温度为被控变量、载热体流量为操纵变量的单回路控制系统,如图2.1所示,该方

案适用于载热体流量的变化对出口温度影响较灵敏的场合。

图2.1 控制载热体单回路控制系统

当影响出口温度的其他三个变量变化较频繁、幅值波动较大(如工艺介质流量波动)且变量可测量时,可构成工艺介质为前馈信号和载热体流量的前馈—反馈控制系统,如图2.2所示。

图2.2 控制载热体前馈—反馈控制系统

若载热体压力波动较大,也可将它作为副被控变量,组成如图2.3所示的串级控制系统。

图2.3 控制载热体串级控制系统

载热体前馈—反馈控制和串级控制系统的结构如图2.4所示。

a)

b)

图2.4 载热体前馈—反馈和串级控制系统框图

a)前馈—反馈控制系统 b)串级控制系统

2.2 控制系统仿真设计

假设载热体的被控对象动态特性为G1(s )=8s e 4-/(20s+1),G2

(s)=2s e 12-/(16s+1),干扰通道的传递函数为Gf(s)=18s e 12-/[(9s+1)(18s+1)],系统采用前馈—反馈控制系

统的仿真框图如图2.5所示。

图2.5前馈—反馈控制系统仿真框图

2.3 参数整定

采用反馈控制器和动态前馈控制器参数分别整定方法,反馈控制器采用PI形式,其参数Kp=0.01、T1=900,仿真出对应的的阶跃响应曲线并加以分析。

1)前馈控制器静态放大系数的整定:仿真框图如图2.6所示,依次取Kd=0、Kd=2、Kd=-2、Kd=3、Kd=1.9、Kd=2.1时的系统对仿真框图的扰动仿真出相应的扰动输出曲线,由图可以分析得选择Kd=2.1较为合适。

图2.6 前馈控制器静态放大系数整定的仿真框图

2)时间常数Td1、Td2的整定:仿真框图如图 2.7所示。采用静态前馈系数Kd=2.1的仿真框图进行仿真,给定输入为零,分别取Td1=1,Td2=1;Td1=10,Td2=1;Td1=1,Td2=10;Td1=1,Td2=20;Td1=1,Td2=15;Td1=1,Td2=8;Td1=1,Td2=14;Td1=1,Td2=13.5时仿真出在单位扰动作用下的响应曲线,经过分析各种参数曲线,选取Td1=1、Td2=13.5较为合适。

图2.7时间常数整定的仿真框图

综合上述,各种参数选取Kd=2.1,Td1=1,Td2=13.5。

3 载热体流量控制系统仿真实验

选取Kd=2.1,Td1=1,Td2=13.5对系统进行仿真实验,系统在给定信号为10,扰动信号为3,被控对象加幅值为1的随机干扰下的仿真框图如图3.1所示,对其进行仿真,得到图3.2所示的响应曲线,依次为随机扰动、可测干扰信号、给定信号和输出信号的响应曲线。

3.1 载热体流量控制系统仿真框图

图3.1 载热体前馈—反馈控制系统的仿真框图

3.2载热体流量控制系统仿真响应曲线

图3.2 载热体前馈—反馈控制系统响应曲线

4 结语

仿真结果表明,SIMULINK 仿真软件具有可视化建模和图形输出的能力,用它进行仿真,可以大大减小编程量,而且仿真结果与现场试验所得结论基本吻合,因此非常适合载热体流量控制系统的仿真研究,并对换热器载热体流量控制系统的研究和设计具有重要的指导意义。

采用SIMULINK技术可快速建立换热器载热体控制系统仿真模型,并对每一子系统建立详细和简化的仿真模型,形成子系统模块库。本文重点建立了载热体前馈—反馈控制系统仿真模型,形成了PID模块库。仿真计算中应兼顾准确性及快速性,选择适当的仿真模型,并根据具体实践开发出新的仿真模型,不断丰富子系统模块库。因而,基于SIMULINK的载热体流量控制系统仿真模型具有很强的开放性和可移植性,可以形成直观的仿真模型,模型搭建高效、快捷,对换热器的设计、优化控制及工况的预测具有重要意义。但是,换热器载热体控制系统在建立数学模型的过程中,不可避免地忽略了一些次要因素和对模型进行了简化;SIMULINK模块库中的有些模块算法精度不高,不能满足专业需求。因而,基于SIMULINK的载热体动态仿真实验结果与换热器载热体实际动态试验结果可能会存在误差,应充分发挥SIMULINK技术的优势,根据换热器的具体特性,开发出适合换热器仿真的专业模块,兼顾仿真结果的准确性和快速性,根据不同需求调用不同模块,使得仿真更准确地反映换热器的实际过程,为实际工作提供定性分析及决策支持。

参考文献

[1] 《过程控制系统的MATALAB仿真》,刘文定,机械工业出版社

[2] 何东健,刘忠超,范灵燕.基于MATLAB的PID控制器参数整定及仿真.西安科技大

学学报.2006,第26卷第4期:511-515

[3] 张晓华.控制系统数字仿真与CAD.北京.机械工业出版社.1999:164-166

[4] 欧阳黎明.Matlab控制系统设计.北京.国防工业出版社.2001:12-21

[5] 张玉铎,王满嫁. 热工控制系统.北京.华北电力大学.1998:9-18

[6] 胡寿松.自动控制原理.(第四版)北京.科学出版社.2001:5-7

[7] 李遵基主编.热工自动控制系统.北京.中国电力出版社.1997:1-60

[8] 黄忠霖.控制系统MATLAB计算及仿真.西安.西安电子科技大学.2004:37-48

[9] 李文涛主编.过程控制.北京.科学出版社.2012

[10] 熊光愣.控制系统仿真与模型处理.北京.科学出版社.1993:30-41

[11] 王云亮等著.MATLAB语言与自动控制系统设计.北京.机械工业出版社.2004:

104-147

[12] 陈哲.现代控制理论基础.北京.冶金工业出版社.1987:42-47

[13] 吕勇哉著.工业过程模型化及计算机控制.北京.化学工业出版社.1986:11-19

[14] 邓莉,包明.单回路PID控制系统参数整定算法的仿真研究.渝州大学学

报.1998, 第15卷第4期:62-68

[15] 张凌雁,解绍锋,冯晓云.系统仿真技术在控制系统中的应用.山西电子技术. 2004,第3期:

5-7

[16] 薛定宇.控制系统计算机辅助设计—Matlab语言及应用.北京.清华大学

出版社. 1998:36-60

计算机仿真课程设计报告

、 北京理工大学珠海学院 课程设计任务书 2010 ~2011 学年第 2学期 学生姓名:林泽佳专业班级:08自动化1班指导教师:钟秋海工作部门:信息学院一、课程设计题目 : 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容|

! " [2 有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 , 1、求被控对象传递函数G(s)的MATLAB描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳 定的要求。(8分)

6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。 (3分) ! 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。 (8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际 闭环系统稳定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。 & (8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) 三、进度安排 6月13至6月14:下达课程设计任务书;复习控制理论和计算机仿真知识,收集资料、熟悉仿真工具;确定设计方案和步骤。 6月14至6月16:编程练习,程序设计;仿真调试,图形仿真参数整定;总结整理设计、 仿真结果,撰写课程设计说明书。 6月16至6月17:完成程序仿真调试和图形仿真调试;完成课程设计说明书;课程设计答 辩总结。 [ 四、基本要求

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

物流系统建模与仿真课程设计

课程设计物流系统建模与仿真 专业年级2011级物流工程指导教师张莹莹 小组成员 重庆大学自动化学院 物流工程系 2014年9 月12 日

课程设计指导教师评定成绩表 项目分 值 优秀 (100>x≥90) 良好 (90>x≥80) 中等 (80>x≥ 70) 及格 (70>x≥60) 不及格 (x<60) 评 分参考标准参考标准参考标准参考标准参考标准 学习态度15 学习态度认 真,科学作风 严谨,严格保 证设计时间并 按任务书中规 定的进度开展 各项工作 学习态度比较 认真,科学作 风良好,能按 期圆满完成任 务书规定的任 务 学习态度 尚好,遵守 组织纪律, 基本保证 设计时间, 按期完成 各项工作 学习态度尚 可,能遵守组 织纪律,能按 期完成任务 学习马虎, 纪律涣散, 工作作风 不严谨,不 能保证设 计时间和 进度 技术水平 与实际能力25 设计合理、理 论分析与计算 正确,实验数 据准确,有很 强的实际动手 能力、经济分 析能力和计算 机应用能力, 文献查阅能力 强、引用合理、 调查调研非常 合理、可信 设计合理、理 论分析与计算 正确,实验数 据比较准确, 有较强的实际 动手能力、经 济分析能力和 计算机应用能 力,文献引用、 调查调研比较 合理、可信 设计合理, 理论分析 与计算基 本正确,实 验数据比 较准确,有 一定的实 际动手能 力,主要文 献引用、调 查调研比 较可信 设计基本合 理,理论分析 与计算无大 错,实验数据 无大错 设计不合 理,理论分 析与计算 有原则错 误,实验数 据不可靠, 实际动手 能力差,文 献引用、调 查调研有 较大的问 题 创新10 有重大改进或 独特见解,有 一定实用价值 有较大改进或 新颖的见解, 实用性尚可 有一定改 进或新的 见解 有一定见解观念陈旧 论文(计算 书、图纸)撰写质量50 结构严谨,逻 辑性强,层次 清晰,语言准 确,文字流畅, 完全符合规范 化要求,书写 工整或用计算 机打印成文; 图纸非常工 整、清晰 结构合理,符 合逻辑,文章 层次分明,语 言准确,文字 流畅,符合规 范化要求,书 写工整或用计 算机打印成 文;图纸工整、 清晰 结构合理, 层次较为 分明,文理 通顺,基本 达到规范 化要求,书 写比较工 整;图纸比 较工整、清 晰 结构基本合 理,逻辑基本 清楚,文字尚 通顺,勉强达 到规范化要 求;图纸比较 工整 内容空泛, 结构混乱, 文字表达 不清,错别 字较多,达 不到规范 化要求;图 纸不工整 或不清晰 指导教师评定成绩:

排队系统仿真matlab实验报告

M/M/1排队系统实验报告 一、实验目的 本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。 二、实验原理 根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。 1、 顾客到达模式 设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概 率 服从Poisson 分布,即e t k k k t t p λλ-=!)()(,?????????=,2,1,0k ,其中λ>0为一常数,表示了 平均到达率或Poisson 呼叫流的强度。 2、 服务模式 设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥ 3、 服务规则 先进先服务的规则(FIFO ) 4、 理论分析结果 在该M/M/1系统中,设 λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρ μλ=-。 三、实验内容 M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。 四、采用的语言 MatLab 语言 源代码: clear; clc;

%M/M/1排队系统仿真 SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda; Mu=0.9; %服务率Mu; t_Arrive=zeros(1,SimTotal); t_Leave=zeros(1,SimTotal); ArriveNum=zeros(1,SimTotal); LeaveNum=zeros(1,SimTotal); Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间 t_Arrive(1)=Interval_Arrive(1);%顾客到达时间 ArriveNum(1)=1; for i=2:SimTotal t_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i); ArriveNum(i)=i; end t_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1; for i=2:SimTotal if t_Leave(i-1)

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目信息系统课程设计仿真 院(系): 信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012年1 月14 日至2012年1 月25 日 华朴中科技大学武昌分校制 信息系统仿真课程设计任务书

20 年月日 目录 摘要 (5)

一、Simulink 仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLA仿真设计 (12) 2.1 、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2 自编matlab 程序: (13) 2.1.3 仿真图形 (13) 2.1.4 仿真结果分析 (15) 2.2 用双线性变换法设计IIR 数字滤波器 (15) 2.2.1 双线性变换法的基本知识 (15) 2.2.2 采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3 自编matlab 程序 (16) 2.2.4 仿真波形 (17) 2.2.5 仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20) 摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能

强大、简单易学、编程效率高,目前已发展成为由MATLAB 语言、MATLAB 工作环境、MATLAB 图形处理系统、MATLAB 数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB 和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A 律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM 编码器对一连续信号进行编码。最后利用MATLAB 进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR 数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统

无积分作用单回路控制系统 大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响

matlab课程设计报告书

《计算机仿真及应用》课程设计报告书 学号:08057102,08057127 班级:自动化081 姓名陈婷,万嘉

目录 一、设计思想 二、设计步骤 三、调试过程 四、结果分析 五、心得体会 六、参考文献

选题一、 考虑如下图所示的电机拖动控制系统模型,该系统有双输入,给定输入)(t R 和负载输入)(t M 。 1、 编制MATLAB 程序推导出该系统的传递函数矩阵。 2、 若常系数增益为:C 1=Ka =Km =1,Kr =3,C2=0.8,Kb =1.5,时间常数T 1=5, T 2=0.5,绘制该系统的根轨迹、求出闭环零极点,分析系统的稳定性。若)(t R 和)(t M 分别为单位阶跃输入,绘制出该系统的阶跃响应图。(要求C 1,Ka ,Km ,Kr ,C2,Kb , T 1,T 2所有参数都是可调的) 一.设计思想 题目分析: 系统为双输入单输出系统,采用分开计算,再叠加。 要求参数均为可调,而matlb 中不能计算未赋值的函数,那么我们可以把参数设置为可输入变量,运行期间根据要求赋值。 设计思路: 使用append 命令连接系统框图。 选择‘参数=input('inputanumber:')’实现参数可调。 采用的方案: 将结构框图每条支路稍作简化,建立各条支路连接关系构造函数,运行得出相应的传递函数。 在得出传递函数的基础上,使用相应的指令求出系统闭环零极点、画出其根轨迹。 通过判断极点是否在左半平面来编程判断其系统是否稳定。 二.设计步骤 (1)将各模块的通路排序编号

(2)使用append命令实现各模块未连接的系统矩阵 (3)指定连接关系 (4)使用connect命令构造整个系统的模型 三.调试过程 出现问题分析及解决办法: 在调试过程出现很多平时不注意且不易寻找的问题,例如输入的逗号和分号在系统运行时不支持中文格式,这时需要将其全部换成英文格式,此类的程序错误需要细心。 在实现参数可调时初始是将其设为常量,再将其赋值进行系统运行,这样参数可调性差,后用‘参数=input('inputanumber:')’实现。 最后是在建立通路连接关系时需要细心。 四.结果分析 源代码: Syms C1 C2 Ka Kr Km Kb T1 T2 C1=input('inputanumber:') C2=input('inputanumber:') Ka=input('inputanumber:') Kr=input('inputanumber:') Km=input('inputanumber:') Kb=input('inputanumber:') T1=input('inputanumber:') T2=input('inputanumber:') G1=tf(C1,[0 1]); G2=tf(Ka*Kr,[0 1]); G3=tf(Km,[T1 1]); G4=tf(1,[T2 1]); G5=tf(1,[1 0]); G6=tf(-C2,1); G7=tf(-Kb,1); G8=tf(-1,1); Sys=append(G1,G2,G3,G4,G5,G6,G7,G8) Q=[1 0 0;2 1 6;3 2 7;4 3 8;5 4 0;6 5 0;7 4 0;8 0 0;]; INPUTS1=1; OUTPUTS=5; Ga=connect(Sys,Q,INPUTS1,OUTPUTS) INPUTS2=8; OUTPUTS=5; Gb=connect(Sys,Q,INPUTS2,OUTPUTS) rlocus(Ga)

课程设计之matlab仿真报告

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院学生姓名:李群学号05113096 专业名称:光信息科学与技术班级:光信1103 实习时间:2014年4月8日至2014年4月 18日

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务和要求 1、用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲 率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121==' n n (K9玻璃), 502-=r ,0.12=' n ,物点A 距第一面顶点的距离为100,由A 点计算三条沿光轴夹角分别为10、20、 30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿 真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab 对不同传输距离处的光强进行仿真。 三、理论推导部分 第一大题 (1)十条近轴光线透过透镜时,理想情况下光线汇聚透镜的焦点上,焦点到像方主平面的距离为途径的焦距F ,但由于透镜的折射率和厚度会影响光在传输过程中所走的路径(即光程差Δ)。在用MATLAB 仿真以前先计算平行光线的传输路径。,R 为透镜凸面的曲率半径,h 为入射光线的高度,θ1为入射光线与出射面法线的夹角,θ2为出射光线与法线的夹角,n 为透镜材料的折射率。设透镜的中心厚度为d ,则入射光线经过透镜的实际厚度为:L=(R-d) 光线的入射角为:sinq1=h/R 折射角度满足:sinq2=nsinq1 而实际的光束偏折角度为:θ2-θ1。 由此可以看出,当平行光线照射透镜时,在凸面之前光线平行于光轴,在凸面之后发生了偏折,于光轴交汇一点,这一点成为焦点f ,折线的斜率为(-tan(θ2-θ1))。 (2)根据题意可得,本题所讨论的是与光轴夹角不同的三条光线,经过透镜的两次反射后的成像问题。利用转面公式计算。

生产物流系统仿真与建模课程设计 多产品离散型

中北大学 课程设计说明书 学生姓名:学号: 学院: 专业: 题目:多产品离散型流水作业线系统仿真

指导教师: 2016年 06 月17日

目录 1、课程设计步骤 (4) 1.1模型建立 (4) 1.2参数设置 (5) 1.3 模型运行 (10) 1.4模型优化 (10) 1.5数据统计 (11) 2、总结 (12) 3、参考文献 (13)

生产系统建模与仿真》课程设计题目 1. 题目 运用Flexsim软件进行的多产品离散型流水作业线系统仿真 2. 课程设计内容 系统描述与系统参数: (1)一个流水加工生产线,不考虑其流程间的空间运输。 (2)有三类工件A,B,C分别以正态分布、均匀分布和三角分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,C进入队列Q3等待检验。 (按学号最后位数对应的仿真参数设置按照下表进行) 对B进行检验,每件检验用时2分钟,操作工人labor3对C进行检验,每件检验用时3.5分钟。

(4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A 的合格率为65%,B的合格率为95%,C的合格率为85%, (5)工件A送往机器M1加工,如需等待,则在Q4队列中等待;B送往机器M2加工,如需等待,则在Q5队列中等待。C送往机器M3加工,如需等待,则在Q6队列中等待。 (6)A在机器M1上的加工时间;B在机器M2上的加工时间,C在机器M3上的加工时间,按照下表对应进行。 (学号首位数对应的仿真参数设置按照下表进行) (5,1)分钟,装配完成后离开系统。 (8)如装配机器忙,则A在队列Q7中等待,B在队列Q8中等待,C在队列Q9中等待。

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

单服务台排队系统建模与仿真研究报告

物流系统建模与仿真 单服务台排队系统仿真研究报告 ——选大学A区门口中国银行分行某一服务窗口为单服务台排队系统研究对象一、系统基本背景 社会的进步越来越快,人们的生活节奏也随之越来越快。在科技的发展,新技术的普及下, 我国的银行业以计算机和信息技术、互联网技术为前提, 通过大量资金和科技的投入, 不断地开发出新产品和新业务。另外有网上银行、支付宝等新业务的出现, 大大提高了工作效率。然而现代的金融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银行办理业务的顾客仍然经常性地出现排队现象。顾客等待时间过长, 造成顾客满意度下降, 矛盾较为突出, 因此本报告试利用单服务台排队论的方法, 定性定量地对具有排队等候现象的银行服务系统进行统计调查与分析研究,希望能帮助改进银行工作效率, 优化系统的运营。 本报告研究对象为中国银行大学处分行某一服务窗口,数据取自银行唯一非现金业务柜台。研究对象的选取虽然不是最典型的,但是综合考虑了研究地域围和小组成员作业时间有限,另有其他方案由于各种原因无法进行,故选择离学校

较近的有代表性的中国银行中的服务窗口作为最终方案。 中国银行简介:中国银行是中国历史最为悠久的银行之一,在大家对银行的概念中有着一定地位。中国银行主营传统商业银行业务,包括公司金融业务、个人金融业务和金融市场业务。公司业务以信贷产品为基础,致力于为客户提供个性化、创新的金融服务和融资、财务解决方案。个人金融业务主要针对个人客户的金融需求,提供包括储蓄存款、消费信贷和银行卡在的服务。作为中国金融行业的百年品牌,中国银行在稳健经营的同时,积极进取,不断创新,创造了国银行业的许多第一,在国际结算、外汇资金和贸易融资等领域得到业界和客户的广泛认可和赞誉。 二、系统描述 该银行工作时间为上午8:30至下午16:30(周一至周日),另周末不办理对公业务,属于每天8小时工作制。系统调查对象为银行唯一非现金业务柜台,可知到达的顾客中,需要办理非现金业务的顾客在正常现金业务柜台忙碌的情况下可以选择该服务台。在队列中,等待服务的顾客和服务台构成了一个排队系统。由于银行前台出纳员逐个接待顾客,当顾客较多的时候就会出现排队等待的现象。其中,顾客的到达是随机的,每两个先后到达的顾客的到达间隔时间是不确定的。 本排队系统用顾客的数目、到达模式、服务模式、系统容量和排队规则来描述。 为探求此排队系统的规律, 首先需确定顾客流在一定时间到达的概率分布

基于Simulink仿真双闭环系统综合课程设计报告书

课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号200830460102 08自动化1班成员一:陈木生学号 200830460103 08自动化1班 指导老师: 日期: 2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速 Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

物流系统分析与设计课程设计报告资料

盐城工学院 《物流系统设计》 课程设计书 题目:“关于浙江华东钢业集团有限公司在浙江地区设立配送中心的规划方案” 学号 ******* 姓名 ******* 完成日期 2015-12-13

目录 一.背景分析(问题的提出) 二.配送中心设立的目的、意义 1. 配送中心设立的目的 2. 配送中心设立的意义 三.选址地点及评价与建议 1.定性分析 从市场需求、产业环境、交通条件、地方政策、地理环境、公共基础设施等定性分析评述 2.计算分析 利用重心法与数值分析法计算分析 四.钢材配送中心内部设施构成、作业分区及面积规划 五.钢材配送中心仿真模型及其有效性验证 六.附件 (1)选址计算过程; (2)基于Flexsim的出入库仿真模型图; (3)课程设计的收获与体会

关于浙江华东钢业集团有限公司在浙江地区设立配送中心的规划方案 1.背景分析(问题的提出) 浙江华东钢业集团有限公司位于杭州市萧山区,下属浙江华东轻钢建材有限公司、杭州华东钢结构制造有限公司、杭州华东板材有限公司、杭州金属材料有限公司、杭州富申日用品有限公司等六家企业,现有总资产8亿元,员工800余人。公司主业为彩涂钢卷、镀锌钢卷、钢结构工程等。2008年工业销售达21.59亿元,上缴税收3500万元。 2001-2008年萧山区百强企业,2005-2008年杭州市百强企业;2008年被评为全国钢铁工业先进集体;“华东钢构”商标为中国驰名商标,公司生产的华东牌彩钢卷是浙江名牌产品,2008年在国内外市场的销售量超15万吨,是浙江省同类产品的第一品牌。 浙江华东钢业集团有限公司所生产的彩涂钢卷、镀锌钢卷、冷板、线材在浙江的杭州、湖州、嘉兴、宁波、金华、温州、丽水、台州、衢州、绍兴、温岭、江苏苏州、上海市有稳定的钢材销售市场,如图1所示,原来钢业公司均是将彩涂钢卷、镀锌钢卷、冷板、线材公路直送到需要地,现决定在浙江境内设置一区域性钢卷、冷板、线材专业配送中心进行公路配送。试确定该配送中心最佳选址城市,同时还应对配送中心的设施布局、功能定位、规模确定、作业流程、作业方法、组织结构与岗位职责进行设计。 2.配送中心设立的目的、意义 原来钢业公司均是将彩涂钢卷、镀锌钢卷、冷板、线材公路直送到需要地,这必然导致大量人力物力的消耗和浪费,也难以顺应时代潮流在激烈的市场竞争中处于领先水准,无法提供优质的物流服务。设立配送中心,作为企业增加营业额的秘密武器,进而扩大市场占有率。配送中心是为了达到统一配送,实现资源最大化利用。配送中心的建立提高了企业物流系统的运作效率,简化手续,方便客户,降低了成本。在浙江境内建立配送中心后,一则通过统一订货,增大订货经济批量,降低进货成本:二则通过集中向客户发货,以及将多个客户所需的小批量货物集中在一起进行一次发货等发货,减少运输费用:三则通过集中库存,使企业降低库存量。在浙江建立配送中心后,能更好地、及时地满足客户需求,对顾客的服务的响应时间缩短,同时也减轻了客户的工作量,节省了开支,方便了客户,从而提高了物

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

多服务台排队系统的仿真

实验3--- 多服务台排队系统的仿真 姓名:学号: 一、目标任务 已知一个系统有N 个服务员,能力相等,服务时间服从指数分布。顾客的到达时间间隔服从指数分布。用Monte-Carlo 仿真,分别求按下列方案的总体平均排队时间: ①M|M|N 。 ②N 个单通道系统并列,按1/N 概率分裂到达流。 ③N 个单通道并列,挑选最短的队。 要求: ①给出程序设计的过程。 ②如果采用固定的N,则要求N>2。 ③至少取p二和p二两种强度运行程序。 ④对结果进行分析。 二、编程语言 Matlab 三、关键代码

N = 3; % 服务员人数 r = 6; % 顾客到达流强度 u = 20; % 服务员服务强度 T = 1000000; % 仿真运行时间 avg_wait_time = []; % 平均等待时间 for i=1:100 % 模拟排队函数 server_time = [, , ]; % 用来保存服务员下一空闲时间 time = 0; % 绝对时钟,初始为 0 client_num = 0; % 顾客总数,初始为 0 CRTime = 0; % 顾客到达时间间隔 ServeTime = 0; % 顾客服务时间 server_id = 0 ; % 当前进入排队窗口的服务员编号 total_wait_time = 0;% 系统中到达顾客的总等待时间 while 1 按 1..N 的顺序循环排入服务

员窗口 if server_id ==0 server_id = N; end if server_time(1, server_id) <= time % 如果当前 server_id 号 服务员空闲, 则直接接收服务 server_time(1, server_id) = time + ServeTime; % 服务员下 一空闲时间为当 前绝对时钟加上当前服务时间 else % 否则所有服务员都在忙碌,顾客要排队等候 total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时 钟 server_time(1, server_id) = server_time(1, server_id) + ServeTime; end end avg_wait_time = [avg_wait_time, total_wait_time/client_num]; end % 计算平均等待时间 mean_avg_wait_time = mean(avg_wait_time); CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔 time = time + CRTime; % 更新系统的绝对时钟 if time > T break; end client_num = client_num + 1; % 顾客数加 1 ServeTime = exprnd(1/u); % 按指数分布产生顾客服务间隔 server_id = mod(client_num, N); %

计算机仿真课程设计

附件1: 北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 2012年6 月16 日 附件2: 北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。

[0号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [1号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [2号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [3号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [4号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [5号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [6号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [7号题] 控制系统建模、分析、设计和仿真

相关主题
文本预览
相关文档 最新文档