当前位置:文档之家› 数值模拟报告

数值模拟报告

数值模拟报告
数值模拟报告

第一部分:数值模拟技术研究文献综述

浅析数值模拟技术

1.引言

近年来,随着我国大规模地进行“西部大开发”和“南水北调”等巨型工程,越来越多的岩土工程难题摆在我们面前,单纯依靠经验、解析法显然已不能有效指导工程问题的解决,迫切需要更强有力的分析手段来进行这些问题的研究和分析。自. Clough 上世纪60年代末首次将有限元引入某土石坝的稳定性分析以来,数值模拟技术在岩土工程领域取得了巨大的进步,并成功解决了许多重大工程问题。特别是个人电脑的普及及计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能。在这样的背景下,数值模拟特别是三维数值模拟技术逐渐成为当前中国岩土工程研究和设计的主流方法之一,也使得岩土工程数值模拟技术成为当今高校和科研院所岩土工程专业学生学习的一个热点。

采用大型通用软件对岩土工程进行数值模拟计算,在目前已成为项目科研、工程设计、风险评估等岩土类项目的必须,学习和掌握Ansys、FLAC3D、UDEC等数值计算软件已成为学校、科研院所对工程从业人员的基本要求。

数值模拟方法主要有限元法、边界元法、加权余量法、半解析元法、刚体元法、非连续变形分析法、离散元法、无界元法和流形元法等,各种方法都有其对应的软件。

2.数值模拟的发展趋势

可以说, 继理论分析和科学试验之后, 数值模拟已成为科学技术发展的主要手段之一。随着软件技术和计算机技术的发展, 目前国际上数值模拟软件发展呈现出以下一些趋势:

(1). 由二维扩展为三维。早期计算机的能力十分有限,受计算费用和计算机储存能力的限制,数值模拟程序大多是一维或二维的,只能计算垂直碰撞或球形爆炸等特定问题。随着第三代、第四代计算机的出现, 才开始研制和发展更多的三维计算程序。现在,计算程序一般都由二维扩展到了三维,如LS-DYNA2D 和LS - DYNA3D、AUTODYN2D 和 AUTO-DYN3D。

(2).从单纯的结构力学计算发展到求解许多物理场问题。数值模拟分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值模拟方法。近年来数值模拟方法已发展到流体力学、温度场、电传导、磁场、渗流等求解计算,最近又发展到求解几个交叉学科的问题。例如内爆炸时,空气冲击波使墙、板、柱产生变形,而墙、板、柱的变形又反过来影响到空气冲击波的传播,这就需要用固体力学和流体动力学的数值模拟结果交叉迭代求解。

(3).由求解线性问题进展到分析非线性问题。随着科学技术的发展,线性理论已经远远不能满足设计的要求。诸如岩石、土壤、混凝土等,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性数值算法才能解决。众所周知,非线性的数值模拟是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。为此,近年来国外一些公司花费了大量的人力和资金,开发了诸如LS- DYNA3D、ABAQUS和AU-TODYN等专长求解非线性问题的有限元分析软件,并广泛应用于工程实践。这些软件的共同特点是具有高效的非线性

求解器以及丰富和实用的非线性材料库。

3.数值模拟的基本原理

一般而言,岩、土体处于三向受力状态,其破坏模式往往表现为压-剪破坏和拉伸破坏。要分析和预测岩、土体在外力作用下的变形、破坏,就需要对其变形、破坏情况进行较为直观地再现。岩土工程数值模拟正是从岩、土体的受力状态出发,来分析和预测岩、土体破坏情况的一种手段。

其基本原理是以典型试样的物理试验(室内试验或现场试验)获得的强度来表征整个地质体的岩、土体强度,以边界条件替代地质体周围所受的约束条件,借由本构关系表达岩、土体在外力作用下的应力-应变特性,最终了解、预测岩、土体变形破坏情况。它具有鲜明的时代特征,以计算机为实现平台,是信息化时代的产物。通过与其它方法(如人工智能、人工生命科学、随机模拟、模糊数学、灰色理论以及分形理论等)交叉共生、相互耦合嫁接,以获得更广阔的发展空间。

从广义上来说,岩、土体的室内试验和原位试验也是一种模拟手段,本文称之为物理模拟。之所以如此称谓,是因为它们也是为较真实地近似再现岩、土体在其所赋存的环境中所处的受力状态所采用的一种手段。从这个意义上来说,它与数值模拟的基本原理是相同的,因此,可以将数值模拟称为虚拟实验室模拟。所不同的是,数值模拟除可以进行常规尺寸模型的模拟外,还可以进行宏观和细观两个层面尺寸模型的模拟,而其输入的参数则需通过物理模拟来提供。因此,数值模拟是与物理模拟并行发展、相互补充和相互验证的试验系统。

相较于其它方法,数值模拟具有可重复和操作性强,费用低廉,不受模型尺寸控制,可视化程度高的优点,能有效延伸和扩展分析人员的认知范围,为分析人员洞悉岩、土体内部的破坏机理提供了强有力的可视化手段。

当然作为一种分析方法,它也有自身的缺点,主要是易受制于岩、土体结构的描述和模型概化的准确性及合理性;受制于岩、土体物理试验模拟结果的准确性;受制于岩、土体本构关系与实际岩、土体力学响应特性拟合程度的高低。4.数值分析方法中存在的问题

到目前为止,研究计算工程的文章很多,但真正用于实际工程的数值分析方法(例如有限元法等)却较少。部分原因在于有较多不成功应用的实例。为什么会有这种情况,原因是多方面的,下面列出几条仅供参考:

(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。

(2)各种本构模型固有的局限性。具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响;模型只能考虑硬化,不能反映软化;模型不能反映各向异性。剑桥模型也仅能考虑硬化而不能反映软化,不能反映土的剪切膨胀和各向异性,不能用于超固结土等。

(3)现有的试验手段和设备不能提供适当、合理和精确的参数。靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。有些模型要求较多的参数,但这些参数用常规的试验手段和设备难以获取等。岩土工程中如何应用精确的数学模型和本构

模型是一个值得注意的问题。在一般结构分析中,因材料的力学性质简单、均匀,不确定性较小,一般采用较精确的数学模型会得到较精确的分析结果。但就土这种材料而言,因其不确定性非常大,其情况发生了很大的变化。众所周知,场地土性及其参数勘察结果的精度和准确性是很差的,由此导致既使采用了很精确的数学模型,但因输入参数的精度不能与之相匹配,其计算结果同样会很差。采用精确的数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。

5.结语

20世纪60年代以后,由于电子计算机的飞速发展使岩土工程数值分析方法得到不断发展和完善,并用于岩土工程实践。虽然在工程实际使用中数值分析方法存在一些问题,但只要认清问题的实质,并采取措施去解决它,相信随着岩土工程数值分析方法的不断发展及其工程经验的不断积累,在工程实践中将会得到越来越多的应用,它必将成为岩土工程分析中的有力工具。

参考文献

[1] 张森,言志信,段建. 边坡开挖数值模拟及其稳定性评价研究[J]. 西部探矿工程. (3).

[2] 汪军,刘海波. 边坡稳定性的有限元数值模拟建模[J]. 华北科技学院学报.

(0).

[3] 陈印东,刘叔灼. 基于强度折减法的边坡稳定性分析[J]. 科学技术与工程.

(0).

[4] 王浩. 类土质路堑高边坡典型失稳机制与加固工程对策的数值模拟研究[D]. 铁道部科学研究院, 2004.

[5] 张超,杨春和. 有限差分强度折减法求解边坡稳定性[J]. 土木工程与管理学报. (4).

[6] 郑颖人,赵尚毅,宋雅坤. 有限元强度折减法研究进展[J]. 后勤工程学院学报. (0).

[7] 邹宝祥,李明,唐伟华. 某大桥边坡稳定性FLAC3D数值模拟分析[J]. 山西建筑. (3).

[8] 郭辉. 山西晋城土质垂直高边坡稳定性计算及数值模拟研究[D]. 西安科技大学, 2011.

[9] 郭志柳,陈建东,吴鹏. 填土物理力学性质对路堤边坡稳定性影响的数值模拟[J]. 江西理工大学学报. (9).

第二部分:数值模拟技术FLAC 3D

上机报告

FLAC 3D

数值模拟上机题

计算模型分别如图1、2、3所示,边坡倾角分别为30°、45°、60°,岩土体参数为:

密度ρ=2500 kg/m 3, 弹性模量E =1×108

Pa ,泊松比μ=,

抗拉强度σt =×106 Pa ,内聚力C =×104

Pa ,摩擦角φ=17°

试用FLAC 3D

软件建立单位厚度的计算模型,并进行网格剖分,参数赋值,设定合理的边

界条件,利用FLAC 3D

软件分别计算不同坡角情况下边坡的稳定性,并进行结果分析。 附 换算公式:

1 kN/m 3= 100 kg/m 3

剪切弹性模量:)1(2μ+=

E

G =

体积弹性模量:)

21(3μ-=

E

K =

图1 倾角为30°的边坡(单位:m)

计算命令流如下: new

gen zone brick p0 0 0 0 p1 100 0 0 p2 0 1 0 p3 0 0 40 size 50 1 10 gen zone brick p0 40 0 40 p1 100 0 40 p2 40 1 40 p3 0 60 p4 100 1 40& p5 1 60 p6 100 0 60 p7 100 1 60 size 30 1 10 fix x range x fix x range x fix y

fix z range z model elas

prop density 2500 bulk 3e9 shear 1e9 set gravity 0 0 -10 solve

ini xdisp 0 ydisp 0 zdisp 0 ini xvel 0 yvel 0 zvel 0

model mohr

prop density 2500 bulk shear c 42000 fric 17 ten 800000

solve fos file associated

计算结果如下:

图1-a,网格剖分图图1-b,速度矢量图

图1-c,速度等值线图图1-d,位移等值线图

最终计算边坡的稳定性系数为:Fs=

分析:

30°边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数 >1,从稳定性系数系数可以判断该边坡处于安全状态。坡面最大速度为s,随着深度的增加,竖向应力逐渐增大。坡肩处出现下沉,最大值达到。

图2 倾角为45°的边坡(单位:m)

计算命令流如下:

new

gen zone bri p0 0 0 0 p1 100 0 0 p2 0 2 0 p3 0 0 40 size 50 1 10

gen zone bri p0 40 0 40 p1 100 0 40 p2 40 2 40 p3 60 0 60 p4 100 2 40 p5 60 2 60 p6 100 0 60& p7 100 1 60 size 30 1 10

model mohr

prop density bulk shear c tens &

friction 17 dilation 20

fix x y z range z

fix x range x

fix x range x

fix y

set gravity =

plot add axe red

plot con dis

;定义循环终止条件

def calfos

ait1=

k11=

k12=

loop while (k12-k11)>ait1

fs=(k12+k11)/

refric=(atan((tan(17*pi/180))/fs))*180/pi

recoh=42000/fs

;折减实现过程

command

ini sxx syy szz sxy sxz syz

ini xvel yvel zvel

ini xdis ydis zdis

pro fric refric coh recoh

set mech ratio 1e-5

solve step 5000

print fs

end_command

aa=mech_ratio

if aa<1e-5 then

k11=fs

else

k12=fs

end_if

end_loop

end

calfos

SAVE

solve fos file associated

计算结果如下:

图2-a,网格剖分图图2-b,速度矢量图

图2-c,速度等值线图图2-d,位移等值线图

最终计算边坡的稳定性系数为:Fs=

分析:

45°边坡稳定性系数采用的是FLAC3D自编的强度折减法求解,稳定性系数 >1,从稳定性系数系数可以判断该边坡处于安全状态。坡面最大速度为s,随着深度的增加,竖向应力逐渐增大。坡肩处出现下沉,最大值达到5,34m。

图3 倾角为60°的边坡(单位:m)

计算命令流如下:

new

gen zone brick p0 0 0 0 p1 100 0 0 p2 0 1 0 p3 0 0 40 size 50 1 10

gen zone brick p0 40 0 40 p1 100 0 40 p2 40 1 40 p3 0 60 p4 100 1 40 p5 1 60& p6 100 0 60 p7 100 1 60 size 30 1 10

attach face range z

fix x range x

fix x range x

fix y

fix z range z

model elas

prop density 2500 bulk 3e9 shear 1e9

set gravity 0 0 -10

solve

ini xdisp 0 ydisp 0 zdisp 0

ini xvel 0 yvel 0 zvel 0

model mohr

prop density 2500 bulk shear c 42000 fric 17 ten 800000

solve fos file associated

计算结果如下:

图3-a,网格剖分图图3-b,速度矢量图

图3-c,速度等值线图图3-d,位移等值线图

最终计算边坡的稳定性系数为:Fs=

分析:

60°边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数<1,从稳定性系数系数可以判断该边坡处于不安全状态。坡面最大速度为s,随着深度的增加,竖向应力逐渐增大。坡肩处出现下沉,最大值达到,故应采取措施以保证边坡安全。

图4 边坡开挖算例分析 计算命令流如下: new

gen zone brick p0 0 0 0 p1 100 0 0 p2 0 1 0 p3 0 0 40 size 100 1 10

gen zone brick p0 40 0 40 p1 100 0 40 p2 40 1 40 p3 50 0 50 p4 100 1 40 p5 50 1 50 p6 100 0 50 p7 100 1 50 size 60 1 5

gen zone brick p0 53 0 50 p1 100 0 50 p2 53 1 50 p3 63 0 60 p4 100 1 50 p5 63 1 60 p6 100 0 60 p7 100 1 60 size 47 1 5 attach face range z attach face range z fix x range x fix x range x fix y

fix z range z model elas

prop density 2500 bulk 3e9 shear 1e9 set gravity 0 0 -10 solve

ini xdisp 0 ydisp 0 zdisp 0 ini xvel 0 yvel 0 zvel 0 model mohr

prop density 2500 bulk shear c 42000 fric 17 ten 800000 solve fos file associated 计算结果如下:

图4-a ,网格剖分图 图4-b ,速度矢量图

图4-c ,速度等值线图 图4-d ,位移等值线图

最终计算边坡的稳定性系数为:Fs=

分析:

60°开挖后边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数>1,从稳定性系数系数可以判断该边坡处于安全状态。坡面最大速度为s,随着深度的增加,竖向应力逐渐增大。坡肩处出现下沉,最大值达到。

第三部分:数值模拟技术研究应用实例分析

基于FLAC3D在不同土体参数条件下的边坡稳定性研究

摘要:边坡稳定性的影响因素很多,最直接的是边坡岩土体的性质、地下水、边坡坡脚等。对于人工填土的路堤边坡而言,主要是填土的物理参数。本文介绍了数值模拟法的工程应用的历史及现状,数值模拟在边坡中的应用。然后利用FLAC3D软件,采用控制变量法,在保持其他土体物理参数不变的情况下,分别依次改变弹性模量、泊松比、密度、凝聚力、内摩擦角,计算边坡的稳定性,观察边坡稳定性系数变化,以及各点位移量的变化,从而得出土体物理参数变化对路堤边坡稳定性的影响,为路堤边坡填土土类提供依据和建议。

关键词:边坡、物理参数、FLAC3D

1 研究背景

21世纪以来,中国处于快速发展的阶段,国内基础建设蓬勃发展。随着水利工程、公路等基础设施建设的大力开展,尤其是我国西部大开发战略的实施,大量公路建设深入西部山区,严重地破坏了局部区域内地质环境的平衡,大量的工程活动对地质环境的改变日益加剧,导致了大量地质灾害的发生,所以边坡的稳定性研究显得越来越重要。边坡稳定性评价一直是边坡工程的一项主要内容,也是边坡工程设计和施工的基础。边坡稳定性计算理论和判别方法可靠与否,关系到工程的安全问题,一旦边坡失稳,不仅会给国家带来巨大的经济损失,而且会危及人民生命财产安全。

2 国内外研究状态

目前边坡稳定性分析方法研究主要集中在与计算机技术、岩土力学、数学模型结合上,也产生和发展了一些新方法,其中三维稳定性分析是研究热点之一,以有限元法为代表的数值分析法以及各种不确定性分析方法发展迅速,而传统的极限平衡法主要以改进为主。根据分析认为边坡稳定性分析研究在以后需要解决以下主要问题:继续完善和发展现有理论和方法,扬长避短;建立具有普遍意义的边坡失稳机理和稳定性评价方法;统一评价标准,增加各方法之间的对比性;建立多因素的综合评价方法;建立反映边坡各个时段稳定状态的全过程评价方法;建立符合边坡稳定分析的理论体系或组合理论体系;重视人类活动动态,加强人类活动与边坡稳定的相互作用研究。

3 FLAC3D模拟计算

基本模型

以下面的简单的模型为基础,计算不同物理参数下的稳定性系数,来进行本次研究,模型及形体参数见图1。基本物理参数见表1。

图1 基本模型及形体参数

在FLAC3D中建立模型,并计算边坡稳定性

;创建几何模型:

new

gen zone brick p0 0 0 0 p1 80 0 0 p2 0 2 0 p3 0 0 20 size 40 1 10 gen zone brick &

p0 40 0 20 p1 80 0 20 p2 40 2 20 p3 60 0 40 &

p4 80 2 20 p5 60 2 40 p6 80 0 40 p7 80 2 40 &

size 20 1 10

;赋予材料模型属性

model elas

set gravity 0,0,-10

property bulk=8e9 shear=5e9 density=2500

;施加边界约束

fix x range x

fix x range x

fix y

fix z range z

;试算

solve

;设置重力场

ini xdis=0 ydis=0 zdis=0

ini xvel=0 yvel=0 zvel=0

;赋予材料模型属性

model mohr

property bulk= shear= friction=17

property cohesion= tension=

;fos计算

solve fos file associated

图2 基本模型的稳定性系数和剪应变增量图

填土物理力学性质对路堤稳定性的影响分析

填土弹性模量对路堤稳定性的影响

在表1 基本参数的情况下,改变路堤填土弹性模量E的大小,考虑弹性模量为10MPa、15 MPa、20 MPa、25MPa、30 MPa 等5种取值,采用FLAC3D软件分析路堤边坡安全系数Fs随弹性模量E的变化情况及其弹性模量E对路堤沉降的影响情况,计算得到的填土不同弹性模量E下路堤边坡的值Fs见下表2。

从表2 可以看出安全系数为定值Fs=,即路堤填土的弹性模量E 对路堤的稳定性几乎没有影响.

图3 路堤表面在不同弹性模量E下的z方向位移情况

图3为路堤表面在不同弹性模量E下的z方向位移(即路堤表面沉降)情况,从中可以看出:

(1)同一弹性模量E下,路堤表面各点的沉降量由路堤中心向边缘逐渐减小,并不成线性变化。

(2)路堤表面距路堤边缘10 m内沉降量随填土弹性模量E的增加而大幅增大。10 m 范围外,路堤表面沉降量缓慢增加,距路堤边缘位置13m 位置沉降量最大,即此处为路堤滑动面贯通位置。

图4 路堤表面各点在不同弹性模量E下的z方向位移情况

从图4当中可以得出结论:随着弹性模量的增大,各点沉降量逐渐增大,且增加速率也逐步增大。

填土泊松比对路堤稳定性的影响

在表1基本参数的情况下,改变路堤填土泊松比μ的大小,考虑泊松比为、、、、等5种取值,采用FLAC3D软件分析路堤边坡随泊松比μ的变化情况,计算得到填土不同泊松比μ下路堤边坡的Fs值见表3。

从表3可以看出安全系数为定值Fs=,即路堤填土的泊松比μ对路堤边坡的稳定性几乎没有影响.

图5 为μ= 下的路堤边坡剪应变增量及其位移图。从中可以看出,边坡滑动位置贯穿于坡底和左半幅路基表面1/4 处的位置,边坡的最大水平位移在坡底位置。

图5 μ=下的路堤边坡剪应变增量及其位移图

图6 和图7 为在不同泊松比μ下路堤表面的z方向位移(即路堤表面沉降)情况,从中可以看出:

(1)同一泊松比下,路堤表面各点的沉降量由路堤中心向边缘逐渐减小,并不成线性变化,在距路堤中心10 m内,z方向变化较平缓,几乎为水平直线;

10 m以外,沉降量变化较快且数值较大,最大沉降位置在距边坡边缘约5 m 位置,可以认为该位置为路堤边坡表面最危险破坏滑动位置.

(2)路堤表面的沉降量随填土泊松比μ的增加而减小,距路堤中心10 m 内的具有线性关系,距路堤中心10 m 外沉降量变化较大. 当泊松比μ=时,沉降量发生突变,其大小比相邻泊松比的情况下较小,总体趋势还是沉降量随泊松比增多而减小,且线性较陡。

图6 路堤表面在不同泊松比μ下的z方向位移情况

图7 路堤表面各点在不同泊松比μ下的z方向位移情况

填土凝聚力对路堤稳定性的影响

在表1基本参数的情况下,改变路堤填土凝聚力c的大小,考虑凝聚力为

10kPa、20 kPa、30 kPa、42 kPa、50 kPa等5种取值,采用FLAC3D软件分析路堤边坡随凝聚力c 的变化情况,绘制c-Fs关系曲线及其拟合公式如图8. 图9 为

c=42 时路堤边坡的安全系数、剪应变增量云图和速度矢量图。

图8 c-Fs关系曲线及其拟合公式

图9 c=42 时路堤边坡的剪应变增量云图、安全系数和速度矢量图

从图8和图9可以看出,随着粘聚力的增大,边坡的安全系数呈线性增大。分析原因主要是粘聚力的增大,边坡的抗剪强度也增大,使得边坡的抗滑能力也增加,从而使边坡趋于稳定,即安全系数增大。图9 还可以明显看出塑性贯通区域,即路堤边坡的潜在滑动面,速度矢量图表明滑动面外侧区域各网格点的速度明显大于其他区域,说明这一区域已经出现滑动,即该区域发生了破坏。

填土内摩擦角对路堤稳定性的影响

在表1 基本参数的情况下,改变路堤填土内摩擦角ψ的大小,考虑填土内摩擦角为13、15、17、19、21等5种取值,采用FLAC3D软件分析路堤边坡安全系数Fs随填土内摩擦角ψ的变化情况,绘制ψ-Fs关系曲线及其拟合公式如图10。

图10 ψ-Fs关系曲线及其拟合公式

从图10可以看出,随着粘聚力的增大,边坡的安全系数呈线性增大。

对比图9和图10,尤其是其中的拟合公式,由图10的拟合公式中斜率大于图9中的拟合公式中的斜率,故知内摩擦角对稳定性系数的影响大于凝聚力对稳定性系数的影响。

4 结论

经过对影响路堤边坡稳定性的填土物理力学性质进行数值模拟分析,可以得出以下结论:

(1)路堤填土弹性模量和泊松比对路堤边坡的稳定性没有影响,安全系数为定值. 但对路堤的沉降有一定程度的影响,沉降量随填土弹性模量、泊松比的增加而成非线性减小。

(2)路堤边坡安全系数与填土粘聚力、内摩擦角分别成线性关系,安全系数随着粘聚力、内摩擦角的增大而成线性增大,边坡趋于稳定,通过分析c-Fs 和ψ-Fs的关系,得出摩擦角比粘聚力对路堤边坡的稳定性影响较大。

(3)路堤边坡的安全系数随边坡的坡率、填土高度的增加而减小。考虑路堤填料的物理力学性质对路堤边坡稳定性的影响,对公路建设过程中路堤填料的选择具有一定的指导作用。

=====油藏数值模拟简介

油藏数值模拟 油藏数值模拟是随着电子计算机的出现和发展而成长的一 门新学科,在国内外都取得了迅速的发展和广泛的应用。 1953年美国G..H.BUCE等人发表了《孔隙介质不稳定气体渗流的计算》后,为用数值方法计算油气藏渗流问题开辟了道路。三十多年来,由于大型快速电子计算机的迅速发展,大大地促进了数值模拟方法的广泛应用。20世纪60年代初期研究了多维多相的黑油模型;20世纪70年代初期研究了组分模型、混相模型和热力采油模型;20世纪70年代末期研究各种化学驱油模型。目前,黑油、混相和热力采油模型已经投入工业性应用,并已经成为商业性软件,化学驱油模型也正日趋完善。 油藏数值模拟方法是迄今为止定量地描述在非均质地层中 多相流体流动规律的惟一方法。例如许多常规方法要假定油层为圆形的均匀介质,如油藏几何形状稍复杂一些,且为非均质介质,则求解非常困难,甚至无法求解。而对油气藏数值模拟而言,计算形态复杂的非均质油藏和计算简单形态的均质油藏工作量几 乎是一样的。因此油藏数值模拟可解决其它方法不能解决的问题。对于其它方法能解决的问题,用数值模拟方法可以更快、更省、更方便、更可靠地解决,并增加其它分析方法的可信度。 一个油气藏,在现实中只能开发一次。但应用油藏数值模拟,可以很容易地重复计算不同开发方式的开发过程,因此人们可以从中选出最好的开发方法。

因此,对油藏工程师而言,数值模拟给动态分析提供了一种快速、精确的综合性方法;对管理者而言,数值模拟提供了不同开采计划的比较结果;对尚无经验的工程师而言,数值模拟则是有效的培训工具。 数值模拟研究的主要工作程序对一个油气藏进行综合的数模研究,往往需要花较大的精力和较长时间(有时会达一年甚至更长的时间),同时还对计算机硬件和技术人员有很高的要求,然而尽管在不同的项目中,面对的问题会千差万别,但大多数油藏数值模拟的基本研究过程是一样的。为了使读者一开始就对数模研究工作有一个明确的整体概念,下面简要地介绍一下油藏数值模拟的主要工作程序。 问题的定义:开展油藏数模工作的第一步,是确定研究的目标和范围。即首先要给本次数模研究一个明确的定位,明确本次模拟要解决的主要问题是什么,需要研究哪些油藏动态特性,这些项目的完成对油藏的经营管理者会产生什么影响等等。从而根据项目的要求进行数值模拟研究程序设计,并收集有关的油藏基础地质、流体及生产动态数据。 数据的检查:一旦把数据收集起来以后,必须对这些来自不同渠道的数据进行鉴别,再组织和再检查,看收集到的数据是否足够,是否都合格。如果取得的数据,依靠经验和评价方法进行修正和补充后仍不合要求,那就需要修正或重新确定研究目标。

油藏数值模拟

名词解释 油藏模拟油藏数值模拟数学模拟物理模型数值模型质量守恒定律适定问题初始条件黑油模型组分模型网格节点块中心网格点中心网格离散化有限差分法显示差分 隐式差分前差分后差分中心差分点交替排列格式交替对角排列格式标准排列格式 对角排列格式隐式差分格式差分方程稳定性截断误差松弛法IMPES方法历史拟合 动态预测灵敏度实验 选择题 由于油藏各点的渗透率不同,束缚水饱和度不同,因而需要对相对渗透率曲线进行归一化处理 以X方向为例,传导系数为 块中心网格是用()来表示小块坐标的 A网格块中心B节点C网格块边缘D网格块夹角 下述表达式表示定产量内边界条件的是 认识油田的主要方法有直接观察法和模拟法 相对渗透率取值一般取上游权的处理方法 IMPES方法是()的求解方法 A隐式压力B隐式饱和度C全隐式 历史拟合在含水拟合时主要是对()的修改 A孔隙度B相对渗透率曲线C渗透率D地层厚度 在隐式差分格式中,有多个未知数,当已知第n时刻的值P i n时,为了求出第n+1时刻的P i n+1,需要() A解n个方程B解一个线性代数方程组C直接求解D解一个方程 根据每一组分的质量守恒建立的渗流数学模型称为()模型 A热采B化学驱C黑油D组分 一维径向模拟时r=10cm,r=40cm,那么可以推断r s的大小是 A120 B200 C400D 640 下列哪一种方法不属于迭代求解方法 A雅克比法B超松弛法CLU分解法D交替方向隐式法 对于二位6*4网络系统,如果按行标准排列,气半带宽W= A6 B4 C12 D8 克兰克?尼克森差分格式的截断误差为() 块中心网格和点中心网格的差分方程相比较,结果() A一样的B有半个网格的误差C相差流动项系数D维数不同 三.判断题2分*10 1.黑油模型中水相与其他两相不发生质量转移,气可以从油中出入,但不能汽化液相 2.离散化的核心是把整体分为若干单元来处理,它是油藏对象的空间离散 3.显式差分格式是有条件收敛的 4.差分方程组的直接解法的特点是计算工作量小,精确度较高,计算程序简单 5.差分方程组的迭代解法主要用于处理系数矩阵阶数较高的问题 6.相对渗透率取值一般取上游权的处理方法 7.油藏模拟的基础在于油藏描述和生产动态,若油层参数和生产数据不准确,通过数值模 拟的算法也可以消除 8.显示差分格式的稳定条件是△t/△x2≤0.5 9.有限差分法就是用差商来代替微商

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

武汉大学计算机学院 嵌入式实验报告

武汉大学计算机学院 课程实验(设计)报告 课程名称:嵌入式实验 专业、班: 08级 姓名: 学号: 学期:2010-2011第1学期 成绩(教师填写) 实 一二三四五六七八九总评验 分数 分数 (百分制)

实验一80C51单片机P1口演示实验 实验目的: (1)掌握P1口作为I/O口时的使用方法。 (2)理解读引脚和读锁存器的区别。 实验内容: 用P1.3脚的状态来控制P1.2的LED亮灭。 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台 (3)连线若干根 (4)计算机1台 实验步骤: (1)编写程序实现当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什 么不能正确执行,理解读引脚和读锁存器区别。 实验结果: (1)当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)不正确。因为先执行CLR P1.3之后,当读P1.3的时候它的值就一直是0,所以发光管会一直亮而不 会灭。单片机在执行从端口的单个位输入数据的指令(例如MOV C,P1.0)时,它需要读取引脚上的数据。此时,端口锁存器必须置为‘1’,否则,输出场效应管导通,回拉低引脚上的高输出电平。 系统复位时,会把所有锁存器置‘1’,然后可以直接使用端口引脚作为输入而无需再明确设置端口锁存器。但是,如果端口锁存器被清零(如CLR P1.0),就不能再把该端口直接作为输入口使用,除非先把对应的锁存器置为‘1’(如 SETB P1.0)。 (3)而在引脚负载很大的情况(如驱动晶体管)下,在执行“读——改——写”一类的指令(如CPL P1.0) 时,需要从锁存器中读取数据,以免错误地判断引脚电平。 实验二 80C51单片机RAM存储器扩展实验 实验目的: 学习RAM6264的扩展 实验内容: 往RAM中写入一串数据,然后读出,进行比较 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台

油藏数值模拟方法

第一章油藏数值模拟方法分析 油藏数值模拟 油藏数值模拟简述 油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律 的数学模型,并利用计算机求得数值解来研究其运动变化规律。其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。其基础理论是基于达西渗流定律。 油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模 拟实际的油田开采的一个过程。基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。这组流动方程组由运动方程、状态方程和连续方程所组成。油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。 油藏数值模拟技术从50年代的提出到90年代间历经40年的发展,日益成熟。现在进入另外一个发展周期。近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用 非常广泛。 油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模 拟研究,且可重复、周期短、费用低。

图1油藏数值模拟流程图 油藏数值模拟的类型 油藏数值模拟类型的划分方法有多种, 划分时最常用的标准是油藏类型、 需要模拟的油 藏流体类型和目标油藏中发生的开采过程, 也可以根据油气藏特性及开发时需要处理的各种 各样的复杂问题而设定, 油气藏特性和油气性质不同, 选择的模型也不同, 还可以根据油藏 数值模拟模型所使用的坐标系、空间维数和相态数来划分。 以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型; 以开采过程来 划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。 以油藏和流体描述为基础的油藏模型分为两类:黑油模型和组分模型。 (1) 黑油模型,是常规油田开发应用的油藏数值模型,用于开采过程中,对油藏 流体组分变化不敏感的情况, 是最完善、最成熟的。黑油模型假设质量转移完全取决于 压力变化,适应于油质比较重的油藏类型,在这些模型中,流体性质 E O 、B g 、R S 决定PVT 的 变化,如普通稠油及中质油的油气藏。 (2) 组分模型,应用于开采过程中对组分变化敏感的情况。这些情况包括:挥发性油 藏和凝析气藏的一次衰竭采油阶段, 用组分模型进行模拟。在组分模型中,适用于油质比较轻、气体组分比较高的油气藏, 使用 数据化 流体的PVT 数据、相 渗曲线、岩石数据 建立地质模型 建立网格 参数场 表格数据 油水井产量、井史 数据 T 动态模拟 含油边界拟合 非井点地质静态参数拟合 区块、单井压力拟合 生产指数拟合 以及压力保持阶段。同时,多次接触混相过程通常也采

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

油藏数值模拟学习心得

通过了几节课的“油藏数值模拟课”的学习,我知道了“油藏数值模拟”是应用计算机研究油气藏中多相流体渗流规律的数值计算方法,它能够解决油气藏开发过程中难以解析求解的极为复杂的渗流及工程问题,是评价和优化油气藏开发方案的有力工具。它主要是让我们石油石油工程专业的学生掌握一些基本的油藏数值模拟技术和技巧,学习基本的油藏渗流数学模型及其解法、计算方法和应用方法,培养我们用计算机解决油藏开发问题的能力。 “油藏数值模拟”涉及的学科较多,利用数学知识和计算机知识较多,我认为是非常难的。虽然教师教的很认真也很耐心,我仍然不能跟着老师的节奏。因为一开始就知道这个软件很有实际应用价值,所以我也就特别的想好好的学习它。可惜现在我面临着考研这座大山,我实在是没有充分的时间课下来好好的温习与研究老师上课所讲的东西。很遗憾,后来老师讲的东西我有些就不会了。好在前三四节课讲的内容还学会了,学会了模拟三层的油层概况。也许这点知识对我以后的再次学习会有不错的基础作用吧!总之还是很感谢老师的耐心教导。 在学习的过程中,我觉得油藏原始参数,如渗透率、孔隙度等的收集,以及油藏原始数据是否齐全准确非常重要,尤其是一开始填date时的单位的选择,这些都关系到数值模拟的效果。如果原始资料很少,数值模拟的效果就不可能好。数值模拟方法越复杂,所需的原始资料也越多。收集资料时,如发现必需的资料不够或不准确,应采取补救措施。通常要求准备的参数包括:①油藏地质参数。产层构造图,油、气、水分布图,油层厚度、孔隙度、渗透率、原始含油饱和度的等值图等。②流体物理性质参数。地面性质和地层状态下的物性数据,原始压力和地层温度数据,对凝析气田还需要相图和相平衡的资料。③专项岩心分析资料。油水相渗透率曲线,油气相渗透率曲线,油层润湿性,吸入和排驱毛细管压力曲线;对碳酸盐岩孔隙裂缝双重介质储层,还需渗吸曲线。④单井和分层分区的生产数据和有关测试资料。⑤油田建设和经济分析的有关数据。 将收集的油藏地质资料进行系统整理后,要将油藏的地质特征模式化,以充分反映油藏的构造特征和沉积特征,如油层物理性质参数的分布、油气水的分布、油气水在地面和地下的性质、驱油动力、压力系统和地温梯度等。油藏地质模型是否符合实际情况,直接影响数值模拟成果的准确性。 由于人们对油田实际地质条件的认识有一定的限度,计算时所用的参数也就有一定的局限性,因此,第一次模拟计算的结果,如压力、产量、气油比、含水率等与油田实际生产状况常有较大的出入。必须进行分析,修改相关的计算参数,重新进行计算。通常,经过多次修改可使计算结果与实际生产历史基本相符,误差在允许范围以内。从工程应用的角度看,可认为此时所应用的计算参数,反映了油田地下的实际状况,使用这些参数来计算和预测油田未来的动态,能够达到较高的精度。在油田开采过程中这类历史拟合要进行多次,使油田的模型逐步更接近实际而得到更适用的结果。

油藏数值模拟入门指南

[转]【推荐】油藏数值模拟入门指南 尝试写一写油藏数值模拟入门指南,希望对那些刚刚开始进入油藏数值模拟领域的工作者有所帮助。 第一:从掌握一套商业软件入手。 我给所有预从事油藏数值模拟领域工作的人员第一个建议是先从学一套商业数值模拟软件开始。起点越高越好,也就是说软件功能越强越庞大越好。现在在市场上流通的ECLIPSE,VIP 和CMG都可以。如果先学小软件容易走弯路。有时候掌握一套小软件后再学商业软件会有心里障碍。 对于软件的学习,当然如果能参加软件培训最好。如果没有机会参加培训,这时候你就需要从软件安装时附带的练习做起。油藏数值模拟软件通常分为主模型,数模前处理和数模后处理。主模型是数模的模拟器,即计算部分。这部分是最重要的部分也是最难掌握的部分。它可以细分为黑油模拟器,组分模拟气,热采模拟器,流线法模拟器等。数模前处理是一些为主模拟器做数据准备的模块。比如准备油田的构造模型,属性模型,流体的PVT参数,岩石的相渗曲线和毛管压力参数,油田的生产数据等。数模后处理是显示模拟计算结果以及进行结果分析。 以ECLIPSE软件为例,ECLIPSE100,ECLIPSE300和FrontSim是主模拟器。ECLISPE100是对黑油模型进行计算,ECLISPE300是对组分模型和热采模拟进行计算,FrontSim是流线法模拟器。前处理模块有Flogrid,PVTi,SCAL,Schedule,VFPi等。Flogrid用于为数值模拟建立模拟模型,包括油田构造模型和属性模型;PVTi用于为模拟准备流体的PVT参数,对于黑油模型,主要是流体的属性随地层压力的变化关系表,对于组分模型是状态方程;SCAL为模型准备岩石的相渗曲线和毛管压力输入参数;Schedule处理油田的生产数据,输出ECLIPSE 需要的数据格式(关键字);VFPi是生成井的垂直管流曲线表,用于模拟井筒管流。ECLIPSE OFFICE和FLOVIZ是后处理模块,进行计算曲线和三维场数据显示和分析,ECLIPSE OFFICE同时也是ECLIPSE的集成平台。 对于初学者,不但要学主模型,也需要学前后处理。对于ECLISPE的初学者,应该先从ECLISPE OFFICE学起,把ECLISPE OFFICE的安装练习做完。然后再去学Flogrid,Schedule 和SCAL。PVTi主要用于组分模型,做黑油模型可以不用。 第二:做油藏数值模拟都需要准备什么参数 在照着软件提供的安装例子做练习时经常遇到的问题是:虽然一步一步按照手册的说明做,但做的时候不明白每一步在做什么,为什么要这么做。这时候的重点在于你要知道你一开始做的工作都是为数值模拟计算提供满足软件格式要求的基础参数。有了这些基础参数你才能开始进行模拟计算。这些基础参数包括以下几个部分: 1。模拟工作的基本信息:设定是进行黑油模拟,还是热采或组分模拟;模拟采用的单位制(米制或英制);模拟模型大小(你的模型在X,Y,Z三方向的网格数);模拟模型网格类型(角点网格,矩形网格,径向网格或非结构性网格);模拟油藏的流体信息(是油,气,水三相还是油水或气水两相,还可以是油或气或水单相,有没有溶解气和挥发油等);模拟油田投入开发的时间;模拟有没有应用到一些特殊功能(局部网格加密,三次采油,端点标定,多段井等);模拟计算的解法(全隐式,隐压显饱或自适应)。 2。油藏模型:模型在X,Y,Z三方向的网格尺寸大小,每个网格的顶面深度,厚度,孔隙度,渗透率,净厚度(或净毛比)。网格是死网格还是活网格。断层走向和断层传导率。

油藏数值模拟目的

数值模拟的目的 (一)、为什么开展油藏数值模拟工作 研究和开发一个油田是一个复杂的综合性的科技问题,高精度的地震资料的处理解释提供研究区域的构造、断层、边界及其走向,但地震纵向分辨率受到限制,不能很好的反映一个同相轴(地震道) 中沉积砂体的物性变化特征;测井可较好的反映到小于1米以下沉积砂体的物性特征,提供可靠的地层对比结果。但作为新老油田开发方案的研究及剩余油分布的研究,是地震、地质、测井理论方法都无法做到的。地质上仅定性或半定量分析,测井用于生产监测不能以点带面。惟独油藏数值模拟工作可再现生产历史,定量分析剩余油潜力;并做到室内研究投入少、时间短,还可进行开发方案优选及经济评价工作。所以总公司强调开发方案的部署一定要开展数值模拟工作。值得强调的是油藏数值模拟工作提倡一体化,注重前期的地震解释和测井解释即油藏描述工作。 (二)、油藏数值模拟的目的 在进行油藏数值模拟工作前,首先应根据油田开发过程中存在难以解决的实际问题,提出开展此项工作的目的及意义,即最终所要达到解决问题的目标是什么?一般通过油藏数值模拟可进行以下研究工作: 1. 初期开发方案的模拟 1) .评价开发方式;如:枯竭开采、注水开发等。 2) .选择合理井网、开发层系、确定井位; 3) .选择合理的注采方式、注采比; 4) .对油藏和流体性质敏感性研究。 2. 对已开发油田历史模拟 1) . 核实地质储量,确定基本的驱替机理(如:是天然驱,还是注水开发。); 2) .确定产液量和生产周期; 3) .确定油藏和流体特性; 4) .提出问题、潜力所在区域。 3. 动态预测 1) .开发指标预测及经济评价 2) .评价提高采收率的方法(如:一次采油、注水、注气、化学驱等) 3) . 剩余油饱和度分布规律的研究,再现生产历史动态诸如:研究剩余油饱和度分布范围和类型; ?单井调整:改变液流方向、注采井别、注水层位; ?扩大水驱油效率和波及系数; 4) .潜力评价和提高采收率的方向 诸如: ? 确定井位、加密井的位置;

有限单元法读书报告

有限单元法读书报告 摘要:有限单元法以变分原理和加权余量法为基础,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限单元法;插值函数;网格划分;实例分析 1 有限单元法概述 1.1 有限单元法的简介 有限单元法[1]是应用局部的近似解来建立整个定义域的解的一种方法。先把注意力集中在单个单元上,进行上述所谓的单元分析。基本前提是每一单元要尽可能小,以致其边界值在整个边界上的变化也是小的。这样,边界条件就能取某一在结点间插值的光滑函数来近似,在单元内也容易建立简单的近似解。因此,比起经典的近似法,有限元法具有明显的优越性。比如经典的Ritz法,要求选取一个函数来近似描述整个求解区域中的位移,并同时满足边界条件,这是相当困难的。而有限元法采用分块近似,只需对一个单元选择一个近似位移函数,且不必考虑位移边界条件,只须考虑单元之间位移的连续性即可。对于具有复杂几何形状或材料、荷载有突变的实际结构,不仅处理简单,而且合理适宜。 1.2 有限单元法的基本方法简介 有限单元法,是一种有效解决数学问题的解题方法。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中[2],常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

油藏数值模拟实验报告

目录 1. 前言 (1) 上机实践的目的及要求 (1) 主要完成的实践内容 (2) 2. 油藏特征分析 (2) 储层物性特征 (2) 流体物性特征 (2) 储层岩石物性特征 (2) 气藏数值模型建立 (2) 模型网格的划分 (2) 模型物性 (3) 模型流体性质及相渗曲线 (3) XX气藏地质储量 (3) 4. XX气藏方案优选 (3) 开发方案的优选 (3) 采速与稳产时间的关系 (4) 5. 结论认识 (4) 结论 (4) 对本实践课程的建议 (4) 1. 前言 上机实践的目的及要求 1. 掌握油藏数值模拟的上机操作流程; 2. 掌握ECLIPSE软件的数据录入、编辑和修改方法; 3. 掌握ECLIPSE软件结果输出及三维可视化方法;

4. 掌握机理模型研究方案设计的思路及方法 主要完成的实践内容 1. 油藏数值模拟数值整理; 2. 依据现有数据,应用块中心网络系统建立一个三维油藏数值模拟模型; 3. 预测单口气藏天然能量开发的最终采收率(20年)(不考虑水体能量); 4. 预测多口气井采收率(20年); 5. 预测不同稳产年限下,气井的合理产量(稳产5年); 6. 水平井开发和直井开发效果对比; 2. 油藏特征分析 储层物性特征 表2-1 储层物性特征 流体物性特征 气藏数值模型建立 模型网格的划分

模型流体性质及相渗曲线 XX气藏地质储量 4. XX气藏方案优选开发方案的优选 水平井方案

水平井方案 采速与稳产时间的关系 采油速度越快,稳产时间越短。采油速度越慢,稳产时间越长。由此可见采油速度与稳产时间成反比。 5. 结论认识 结论 通过这个实验,我们了解了eclipse软件的基本操作,并且建立了一个简单的均质油藏的模型,并且成功计算了产量。这个实验然我们获益匪浅。 对本实践课程的建议 建议增加实验课的课时,其余的方面都很好。老师讲的不错,需要学习的内容都学会了。

油藏数值模拟方法

第一章油藏数值模拟方法分析 令狐采学 1.1油藏数值模拟 1.1.1油藏数值模拟简述 油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。其基础理论是基于达西渗流定律。 油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。这组流动方程组由运动方程、状态方程和连续方程所组成。油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层

模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。 油藏数值模拟技术从50 年代的提出到90 年代间历经40 年的发展,日益成熟。现在进入另外一个发展周期。近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。 油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。 图1 油藏数值模拟流程图 1.1.2油藏数值模拟的类型 油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。 以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型;以开采过程来划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。 以油藏和流体描述为基础的油藏模型分为两类:黑油模型

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

分析化学实验报告(武汉大学第五版)

分析化学实验报告 陈峻 (贵州大学矿业学院贵州花溪 550025) 摘要:熟悉电子天平得原理与使用规则,同时可以学习电子天平得基本操作与常用称量方法;学习利用HCl与NaOH相互滴定,便分别以甲基橙与酚酞为指示剂得 滴定终点;通过KHC 8H 4 O 4 标定NaOH溶液,以学习有机酸摩尔质量得测定方法、熟 悉常量法滴定操作并了解基准物质KHC 8H 4 O 4 得性质及应用;通过对食用醋总浓度 得测定,以了解强碱滴定弱酸过程中溶液pH得变化以及指示剂得选择。 关键词:定量分析;电子天平;滴定分析;摩尔质量;滴定;酸度,配制与标定 前言 实验就是联系理论与实际得桥梁,学好了各种实验,不仅能使学生掌握基本操作技能,提高动手能力,而且能培养学生实事求就是得科学态度与良好得实验习惯,促其形成严格得量得观念。天平就是大多数实验都必须用到得器材,学好天平得使用就是前提,滴定就是分析得基础方法,学好配制与滴定就是根本。 (一)、分析天平称量练习 一、实验目得: 1、熟悉电子分析天平得使用原理与使用规则。 2、学习分析天平得基本操作与常用称量法。 二、主要试剂与仪器 石英砂电子分析天平称量瓶烧杯小钥匙 三、实验步骤 1、国定质量称量(称取0、5000g 石英砂试样3份) 打开电子天平,待其显示数字后将洁净、干燥得小烧杯放在秤盘上,关好天平门。然后按自动清零键,等待天平显示0、0000 g。若显示其她数字,可再次按清零键,使其显示0、0000

g。 打开天平门,用小钥匙将试样慢慢加到小烧杯中央,直到天平显示0、5000 g。然后关好 天平门,瞧读数就是否仍然为0、5000g。若所称量小于该值,可继续加试样;若显示得量超过 该值,则需重新称量。每次称量数据应及时记录。 2、递减称量(称取 0、30~0、32 g石英砂试样 3 份) 按电子天平清零键,使其显示0、0000 g,然后打开天平门,将1个洁净、干燥得小烧杯 放在秤盘上,关好天平门,读取并记录其质量。 另取一只洁净、干燥得称量瓶,向其中加入约五分之一体积得石英砂,盖好盖。然后将 其置于天平秤盘上,关好天平门,按清零键,使其显示0、0000 g。取出称量瓶,将部分石英 砂轻敲至小烧杯中,再称量,瞧天平读数就是否在-0、30~-0、32 g 范围内。若敲出量不够, 则继续敲出,直至与从称量瓶中敲出得石英砂量,瞧其差别就是否合乎要求(一般应小于 0、4 mg)。若敲出量超过0、32 g,则需重新称量。重复上述操作,称取第二份与第三份试样。 四、实验数据记录表格 表1 固定质量称量 编号 1 2 3 m/g 0、504 0、500 0、503 表2 递减法称量 编号 1 2 3 m(空烧杯)/g 36、678 36、990 37、296 称量瓶倒出试样m1 -0、313 -0、303 -0、313 M(烧杯+试样)/g 36、990 37、296 37、607

相关主题
文本预览
相关文档 最新文档