当前位置:文档之家› 纤维级超高分子量聚乙烯的制备及性能研究

纤维级超高分子量聚乙烯的制备及性能研究

纤维级超高分子量聚乙烯的制备及性能研究
纤维级超高分子量聚乙烯的制备及性能研究

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

玄武岩纤维混凝土的特性及应用

Ana lysis on Ulti m a te Bear i n g Capac ity of Rock Founda ti on HOU Da 2wei (Chongqing Survey I nstitute,Chongqing 400020,China ) Abstract:Many high 2risie buildings are based on r ock foundati on in mountainous city,s o how to evaluate the bearing capacity of r ock foundation is the core for r ock foundation engineering . In view of the influence of central major stress and lithology and rock structure characteristics on rock foundati on bearing capacity,this paper equates j ointing r ock with discontinuous mediu m characteristics to continuous medium,and then seeks for s olution with instant fricti on angle and slip 2line field theory . It establishes analysis model for ulti m ate bearing capacity of r ock foundation and verifies feasibility of the model through calculati on .Key words:r ock foundation;ulti m ate analysis;slip 2line field theory;bearing capacity 收稿日期:2009-02-23 作者简介:武 迪(1984-),男,山东泰安人。硕士研究生,主 要从事钢筋混凝土结构方面的研究。E 2mail:wudi610@ https://www.doczj.com/doc/831312644.html, 。 玄武岩纤维混凝土的特性及应用 武 迪,邵式亮 (空军工程大学工程学院,西安 710038) 摘 要:介绍玄武岩纤维的发展及特点,归纳、总结了玄武岩纤维混凝土(BFRC )的主要特征。 对近年来玄武岩纤维在混凝土结构的抗冲击、加固补强、耐腐蚀性和动态能量耗散等方面的研究进行了阐述,有助于玄武岩纤维混凝土在实际工程中的推广应用。 关键词:玄武岩纤维混凝土;增强增韧;加固补强;动态能量耗散中图分类号:T U5281572 文献标志码:A 文章编号:1003-8825(2010)02-0037-03 0 引言 玄武岩纤维是一种由火山喷发形成的玄武岩矿石经高温熔融、拉丝而成的无机纤维材料,其外观为深褐色,色泽与碳纤维相似。作为国内最近几年刚刚研发出的一种新型纤维材料,玄武岩纤维具有独特的力学性能、良好的稳定性以及较高的性价比,这使其成为一种良好的混凝土增强材料,在建筑领域有着广阔的应用前景。 1 玄武岩纤维111 发展概况 玄武岩纤维于1953~1954年由前苏联莫斯科玻璃和塑料研究院开发。1985年,第一台工业化生产炉于乌克兰纤维实验室(TZI )建成投产,采用200 孔漏板、组合炉拉丝工艺。在2002年前,前苏联诸国每年大约有500t 连续玄武岩纤维产品,主要用于军工行业。现今玄武岩纤维生产池窑已发展到年产 700t 规模,使用400孔漏板拉丝技术 [1] 。俄罗斯与 乌克兰在玄武岩纤维研究、生产及制品的开发上,代表了世界的最高水平,其生产的玄武岩纤维产品性能稳定,且已开发出了上百个品种。美国对玄武岩纤维的研究虽然起步较晚,但其生产池窖现已发展到 1000~1500t 规模,使用800孔漏板拉丝技术。近 几年来,德国、日本等国也相继展开了这方面的研究工作,并取得了一系列新的应用研究成果。目前,我国玄武岩纤维的研究开发、制备和应用尚处于较为初级的阶段,但部分技术已经达到了国际先进水平,且其应用领域也在不断拓展。 112 主要特点 玄武岩纤维与碳纤维、芳纶纤维等其它高科技纤维相比,具有很多独特的优点。它具有很好的耐温性能,可在-269~700℃范围内连续工作;有优良的化 ? 73?武 迪,等;玄武岩纤维混凝土的特性及应用

超高分子量聚乙烯纤维

超高分子量聚乙烯纤维 (1)原料的选择 包括分子量、分子量分布、颗粒大小、颗粒度分布及堆砌密度、色相等。选用UHMWPE 可以降低纤维中端基的浓度,增加大分子链之间的相互作用力,使成品纤维的力学性能得以大幅度提高。以不同分子量的UHMWPE 进行冻胶纺丝,所得纤维的强度随分子量的增大而提高,但分子量越大,分子链内缠结越严重,溶解越困难,溶液浓度越低。若以降低原液浓度制取高强度纤维无疑对工业化生产是不可取的。改善UHMWPE 溶解的均匀性可使Mw=106 的UHMWPE 用于冻胶纺丝。适当地控制分子量分布是必要的。分子量分布过宽,影响UHMWPE 的均匀溶解,由于分子量不同,具有不同的溶胀、溶解温度和速率,所以低分子量PE 易于溶胀和溶解,率先进人溶解阶段,引起溶液粘度剧增,并占据大量溶剂,阻碍了高分子量PE 的溶解。这种溶解不均匀性在制备较高粘度溶液时尤为突出。适当地控制UHMWPE 颗粒尺寸和堆砌密度也是十分必要的,不同颗粒尺寸和堆砌密度的UHMWPE溶胀和溶解程度不同。粗颗粒溶解时在其表层形成高粘度的溶胀层,阻止溶剂继续向内部渗透,并将未充分溶胀的颗粒粘接在其表层,使纺丝原液中含有未溶解的颗粒,造成原液不均匀。颗粒宜在80 目以下,堆砌密度则在0.4 g/cm3 以上为宜。 (2)均质冻胶溶液的制备 ①溶剂 UHMWPE 极难溶解,按常规的溶解方法需在较高温度下(170℃)长时间搅拌,分子量会急剧下降。将Mw 大于106 的粉状UHMWPE 聚合物在适当的溶剂中溶解,使超长分子链从初生态堆砌体,分子链间及分子链内部缠结等多层次的复杂形态结构转变成解缠大分子链。用于UHMWPE 冻胶纺丝的溶剂有十氢萘、石蜡油、石蜡和煤油,其中以十氢萘为最佳,可在较低温度下溶解UHMWPE,溶液均匀性好。十氢萘易于挥发,制得的冻胶原丝可以不经萃取而直接拉伸,获得性能优良的UHMWPE 纤维。以烷烃类(石蜡油、石蜡和煤油)溶剂取代十氢

玻璃纤维的成分及性能[1]

玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻璃纤维,已用在生产玻璃棉中,据称在作玻璃钢增强材料方面也有潜力。此外还有无氟玻璃纤维,是为环保要求而开发出来的改进型无碱玻璃纤维。 玻璃纤维制品品种与用途 1、无捻粗纱 无捻粗纱是由平行原丝或平行单丝集束而成的。无捻粗纱按玻璃成分可划分为:无碱玻璃无捻粗纱和中碱玻璃无捻粗纱。生产玻璃粗纱所用玻纤直径从12~23μm。无捻粗纱的号数从150号到9600号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如缠绕、拉挤工艺,因其张力均匀,也可织成无捻粗纱织物,在某些用途中还将无捻粗纱进一步短切。 (1)喷射用无捻粗纱适合于玻璃钢喷射成型使用的无捻粗纱要具备如下性能:①良好的切割性,在连续高速切割时产生的静电少; ②无捻粗纱切割后分散成原丝的效率要高,也即分束率高,通常要求90%以上;③短切后的原丝具有优良的覆模性,可覆盖在模具的各个角落;④树脂浸透快,易于被辊子辊平并易于驱赶气泡;⑤原丝筒退解性能好,粗纱线密度均匀,适合于各种喷枪及纤维输送系统。喷射用无捻粗纱都是由多股原丝络制而成,每股原丝含200根玻纤单丝。 (2)SMC用无捻粗纱 SMC即片状模塑料,主要用于压制汽车部件、浴缸、水箱板、净化槽、各种座椅等。SMC用无捻粗纱在制造SMC片材时要切成lin(25mm)的长度,分散在树脂糊中,因此对SMC用无捻粗纱的要求是短切性好,毛丝少,抗静电性优良,在切 割时短切丝不会粘附在刀辊上。对着色的SMC而言,无捻粗纱要在高颜料含量的树脂糊中被树脂浸透。通常SMC无捻粗纱一般为2400tex,少数情况下也有用4800tex的。 (3)缠绕用无捻粗纱缠绕法用于制造各种口径的玻璃钢管、贮罐等。缠绕用无捻粗纱的号数从1200号到9600号,缠绕大型管道及贮罐多倾向于直接无捻粗纱,如4800tex的直接无捻粗纱。对缠绕用无捻粗纱的要求如下:a)成带性好,呈扁带状;b)无捻粗纱退解性好,在从纱筒退解时不脱圈,不形成"鸟巢"状乱丝;c)张力均匀,无悬垂现象;d)线密度均匀,一般须小于±7%;⑤无捻粗纱浸透性好,从树脂槽通过时易为树脂润湿及浸透。 (4)拉挤用无捻粗纱拉挤用于制造断面一致的各种型材,其特点是玻纤含量高,单向强度大。拉挤用无捻粗纱可以是多股原丝并合的也可以是直接的无捻粗纱,其线密度范围为1100号到4400号。各种性能要求与缠绕无捻粗纱大体相同。 (5)织造用无捻粗纱无捻粗纱的一个重要用途是织造各种厚度的方格布或单向无捻粗纱织物,它们大多用于手糊玻璃钢成型工艺中。对强造用无捻粗纱有如下要求:a)良好的耐磨性;b)良好的成带性;c)织造用无捻粗纱在织造前需经强制烘干;d)无捻粗纱张力均匀,悬垂度应符合一定标准;e)无捻粗纱退解性好;f)无捻粗纱浸透性好。

棉纤维的吸湿性能

(一)棉纤维得吸湿性能 棉纤维就是一种多孔性物质,由于纤维素大分子上存在很多得游离亲水性基团(羟基),所以能从潮湿空气中吸收水分与向干燥空气放出水分,这种现象称为棉纤维得吸湿性。棉纤维得吸湿性,对其她各项物理性能都有影响。如棉纤维吸湿后,重量增加,密度先增大后减小,强伸度增加,导电性能增强,纤维膨胀等。因此,在籽棉加工、农商交接、纤维性能测试以及纺织生产等过程中,都要规定并控制棉纤维得吸湿量。 棉纤维得吸湿就是比较复杂得物理化学现象。棉纤维含水得原因,主要有纤维本身结构以及大气温度与相对湿度等。 1.影响棉纤维吸湿得内部因素 亲水基因:棉纤维得主要成分就是纤维素。纤维素大分子上每个葡萄糖剩基上有3个羟基,它们属于亲水基因,对水分子有相当得亲与力,所以棉纤维分子结构中得自由羟基得数目越多,棉纤维得吸湿能力就越大。 棉纤维内得纤维素大分子上除羟基直接吸附水分以外,已被吸附得水分子,由于它本身也具有极性,帮也可吸附其她水分子,使后来吸附得水分子积聚在上面,称为间接吸附得水分,这些水分子排列不定,结合力也比较弱,存在于纤维内部得微小间隙成为微毛细水;当温度很高时,这种间接吸收得水分可以填充到纤维内部较大得间隙中,成为大毛细水。随着微毛细水与大毛细水得增加,棉纤维发生溶胀可以拆开分子间得一些联结点,使得更多得自由羟基与水分子结合。 分子排列:棉纤维中纤维素分子链相互间排列不匀,存在着结晶区与非结晶区。在结晶区,纤维素分子链排列整齐,分子间距较大,仅在少数点联结,结合力弱,就是一种松弛得网状结构,大多数自由羟基都向水分子开放,水分子很容易进入,所以棉纤维得吸湿主要发生在非结晶区。因此棉纤维得结晶度越低,吸湿能力越强。对单根棉纤维来说,初生层得非结晶区比次生层得多,不成熟得棉纤维非结晶区所占得比例比成熟棉纤维得大。因此,不成熟得低级棉常含有较高得水分。 除了结晶度影响纤维得吸湿性外,在同样得结晶度下,微晶体得大小对吸湿性也有影响。一般说来,晶体小得吸湿性较大。另外,大分子得取向度一般对吸湿性得影响较小,但聚合度有时对纤维得吸湿能力有一定得影响。 表面吸附:棉纤维暴露在大气中,就会在纤维表面吸附一定量得水汽与其她气体,这一般称为物理吸附。表面吸附能力得大小与纤维比表面积有一定得关系。单位体积得棉纤维所具有得表面积,叫棉纤维得比表面积。棉纤维愈细,棉纤维中缝隙孔洞愈多,比表面积愈大,吸湿性也要大一些。所以棉纤维得比表面积得大小,也就是影响吸湿性得一个因素。例如,在同样条件下,成熟差得棉纤维比成熟好得棉纤维比表面积大,其吸湿性也较大。 纤维素伴生物:棉纤维除主要成分就是纤维素外,还有少量得果胶、蛋白质、多缩戊糖、脂肪与蜡质、以及某些无机盐类等伴生物。脂肪与蜡质就是疏水物质,能保护棉纤维不易受潮。果胶、蛋白质、多缩戊糖,以及无机盐类中得氧化铁、氧化镁、氧化钙等就是亲水物质,能使棉纤维得吸湿性增强。因此,棉纤维中纤维素伴生物得性质与含量,也影响棉纤维得吸湿程度。另外,棉纤维在采集与初加工过程中还保留一定数量得杂质,这些杂质往往具有较高得吸湿能力。因此,棉纤维中含杂得多少,对棉纤维得吸湿性也有一定得影响。 2.影响棉纤维吸湿得外部因素 与棉纤维含水有关得外部因素有大气压力、温度与相对湿度。由于地球表面上大气压力得变化不大,这里主要讨论空气温度与相对湿度对棉纤维吸湿能力得影响。 相对湿度:棉纤维含水大小与空气得相对湿度密切相关。在一定得大气压力与温度下,相对湿度愈高,空气中水蒸气分压愈大,即单位体积内得空气中水分子数目愈多,水分子进入棉纤维中得机会愈多,其吸湿时就愈大。反之,当空气中水蒸气分压与相对湿度降低时,棉纤

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

超高分子量聚乙烯纤维的发展

超高分子量聚乙烯纤维的发展 在总结阐述超高分子量聚乙烯纤维概念、用途的基础上,分析其在国内外不同国家的发展与应用现状,并重点阐释其在我国的产生、发展历程及取得的巨大成果;对世人了解我国超高分子量聚乙烯纤维发展状况,具有重要的释疑意义。 1超高分子量聚乙烯纤维概述 超高分子量聚乙烯纤维是继碳纤维和芳纶纤维之后的世界第三代高强、高模、高科技的特种纤维。超高分子量聚乙烯纤维在水中的自由断裂长度可以延伸至无限长,而在相同粗细的情况下,超高分子量聚乙烯纤维能承受8倍于钢丝绳的最大质量,在军事、工业、航空、航天等领域均有重要应用。超高分子量聚乙烯纤维最重要的功能就是能够起到防弹、防刺的作用,用其制作的防弹衣质量、强度与传统的防弹衣相比都要轻得多,强度也高很多。超高分子量聚乙烯纤维若按质量计算其强度,要比芳纶高出40%,可以称之为当今世界上强度最高的聚乙烯纤维。在世界三大特种纤维中,超高分子量聚乙烯纤维质量最轻,化学稳定性也最好,而且具有耐磨、耐弯曲性能、张力疲劳性能以及抗切割性能。但超高分子量聚乙烯纤维在世界上也属于稀缺物资,其生产技术难度是很大的,目前,在国际上只有美国、荷兰、日本的三家化工公司能够进行工业化生产,而国内年产量则较少,多存在装置规模小等问题。据预测,在未来10年,世界对超高分子量聚乙烯纤维的年需求量将达到20万吨以上,市场发展潜力巨大。在我国,其已被列为国家"十一五"期间重点研发产品。 2国外超高分子量聚乙烯纤维生产与发展现状 1)超高分子量聚乙烯纤维在荷兰的发展 荷兰帝斯曼公司是世界上生产迪尼玛品牌高性能聚乙烯纤维的最大厂商。该公司于2006年在美国北卡罗来纳州建成并投产了高强聚乙烯纤维迪尼玛的生产线,这是该公司的第三次扩产扩能,这就使该公司生产超高分子量聚乙烯纤维的生产线数量达到了9条。自此,其在全球的迪尼玛纤维生产能力提高了约18%,达到了4700吨/年。而主要应用于单向防弹板制作的此类纤维生产能力则提高25%,达到了2500吨/年。目前,北卡罗来纳州的格里维尔装置可以向全球用户生产供应这种纤维,但必须首先满足美国军事工业的需要。世界对该种纤维的需求正在快速的增长。 2)超高分子量聚乙烯纤维在美国、日本等国家的发展

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

玻璃纤维

玻璃纤维 玻璃纤维应用知识 作者: 赵工来源: 聚和成日期: 2009-4-18 点击数: 74 第一部分:玻纤知识: 1、玻纤分类 从长度分类分可以分连续玻纤、短玻纤(定长玻纤)和长玻纤(LET),连续玻纤是国内目前应用最广的玻纤,就是通常说的“长纤”,代表厂家有巨石,泰山、兴旺等。定长玻纤就是通常说的“短纤”,一般是外资改性厂与国内部分企业在用,代表厂家有PPG,OCF及国内的CPIC,巨石泰山也有少部分,但质量不如人意。LET是最近在国内兴起的,代表厂家有PPG,CPIC及巨石,目前国内金发,浙江俊尔,南京聚隆产量较大。 从碱金属含量分可分为无碱,低中高,通常改性增强用无碱,也就是E玻纤,国内改性一般使用E玻纤。 2、玻纤的应用 玻纤增强塑料的原理主要是由于玻纤/树脂界面上连接必然是使作用到模塑件上的力传导到玻纤上,因此玻纤的长度被充分利用,起到树

脂增强的目的,但玻纤在树脂基体中长度必须满足一定的要求,这就是临界玻纤长度,玻璃纤维的临界纤维长度(即可将力从基材传递给纤维的最小长度)在0.3~0.6mm之间,临界长度只与剪切力与玻纤单丝直径有关,上面的临界长度是指玻纤在最终产品里的长度,如是果是塑料粒子里话,此长就就在0.6~0.8mm之间,从理论上讲,临界长度与玻纤的原始长度没有关系,如果增强产品把玻纤的长度都控制在这个范围的话,此时产品的力学性能与表面外观都是最好的,最平衡的,如果长度过长,力学性能上升,但制品表面会变粗糙与翘曲,如果长度过短,就会导致力学性能不足。要控制玻纤的长度应该从调整螺杆结构及转速入手,如果玻纤长径控制在400效果最佳。 3、评价玻纤好坏的主要指标 第一个指标:玻纤在拉丝过程中所使用的表面活性处理剂。表面活性处理剂也就是通常所说的浸润剂,浸润剂主要是偶联剂与成膜剂,另外还有一些润滑剂、抗氧剂、乳化剂、抗静电剂等,成膜剂的成分与其它助剂的种类对玻纤有决定性的影响,所以在选择玻纤时就根据基料与成品要求选择合适的玻纤。像PPG、CPIC等公司短纤牌号较多,就是因为表面浸润剂不一样,这样就针对性比较强。 第二个指标:单丝直径。以前介绍过临界玻纤长度只与剪切力和单丝直径有关,从理论上讲,如果单丝直径越小,产品的力学性能与表面外观越佳。目前国内玻纤直径一般都在10μm,13μm,像CPIC就有开发7μm的玻纤。 4、浮纤原因分析

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

连续玄武岩纤维的发展和应用前景

连续玄武岩纤维的发展及使用前景 2010年3月15日中国纤检 摘要:介绍了连续玄武岩纤维的国内外发展历程和现状,连续玄武岩纤维性能和使用领域,表明连续玄武岩纤维用于防火隔热材料,过滤材料,增强复合材料,电子技术等具有明显的优势。结合连续玄武岩生产工艺目前存在的问题,给出了几点建议并提出了要尽快制定玄武岩纤维的国家标准,促进连续玄武岩纤维的安全可持续发展。 关键词:连续玄武岩纤维;防火隔热;过滤环保;增强复合;高技术纤维 连续玄武岩纤维(CBF)是以天然的火山喷出岩作为原料,将其破碎后加入熔窑中,在1450℃~1500℃熔融后,通过铂铑合金拉丝漏板制成的连续纤维。以CBF为增强体可制成各种性能优异的复合材料,可广泛使用于消防、环保、航空航天、军工、车船制造、工程塑料、建筑等军工和民用领域,故CBF被誉为21世纪的新材料[1]。随着国外工艺技术的不断改进以及新市场的不断开拓,玄武岩纤维有望成为第四大高强高模纤维。 1国内外发展研究状况 1.1国外发展研究状况 以玄武岩为主要原料生产的岩棉自从1840年首先在英国威尔斯试制成功到现在已有160多年的历史[2]。1922年在美国专利(OS1438428)出现由法国人Paul提出玄武岩纤维制造技术,但没有实质性生产。

20世纪50年代初期,德国、捷克和波兰等东欧国家以玄武岩为原料,采用离心法生产出了纤维平均直径为25μm~30μm的玄武岩棉。随后60年代初期,美国、前苏联、德国等大力发展垂直立吹法生产工艺,使玄武岩棉产量迅速增长前苏联引进了德国立吹法制造矿物棉的生产专利,在消化、吸收的基础上,成功地将该项技术使用于玄武岩棉的生产,设计生产能力为日产38吨~40吨玄武岩棉。玄武岩纤维的研究工作主要集中在前苏联。玄武岩纤维于1953~1954 年由苏联莫斯科玻璃和塑料研究院开发出[3]。苏联早在20世纪60~70年代就致力于连续玄武岩纤维的研究工作,乌克兰建筑材料工业部设立了专门的别列切绝热隔音材料科研生产联合体,主要任务是研制CBF及其制品制备工艺的生产线。联合体的科研实验室于 1972 年开始研制制备CBF,曾经研制出 20 多种CBF制品的生产工艺[4]。1973年,前苏联新闻机构报道了有关玄武岩纤维材料在其国内广泛使用的情况。1985年在前苏联的乌克兰率先实现工业化生产,产品全部用于前苏联国防军工和航天﹑航空领域。 1991年前苏联解体后,此项目开始公开,并用于民用项目。目前连续玄武岩主要研发及生产基地在俄罗斯及乌克兰两个国家。苏联的解体,客观上影响了CBF的推广使用,但是,由于玄武岩纤维具有有别于碳纤维、芳纶、超高分子量聚乙烯纤维的一系列优异性能,而且性价比好,引起了美国、欧盟等国防军工领域的高度重视。 1.2国内发展研究现状 我国自20世纪70年代起,就断断续续地开展对CBF的研究,但未获得成功。2001年我国哈尔滨工业大学组建了专门的研究队伍致力于玄武岩纤维制备技术的研发。2004年哈尔滨工业大学深圳研究院和成都航天万欣科技有限公司组建了成都航天拓鑫科技有限公司,进一步研究改进玄武岩连续纤维制造设备功能,开发出玄武岩纤维终端产品。

玻纤增强尼龙材料的特点及应用

玻纤增强尼龙材料的特点及应用 玻纤增强尼龙材料是在尼龙树脂中加入一定量的玻璃纤维进行增强而得到的塑料。玻纤增强尼龙具有非常优越的综合性能,广泛应用于电工工具、汽车行业、机械工业、运动器材、办公设备等领域。 玻纤增强尼龙材料的特点 优良的机械力学性能; 良好的耐热性; 良好的尺寸稳定性; 良好的自润滑性和耐磨性; 良好的注塑成型性能和外观; 良好的着色性能; 耐低温; 其它性能。 玻纤增强尼龙的应用领域 电动工具:切割机、电锯、电钻、角磨机、抛光机、电锤、电镐、热风枪、锂电螺丝批、砂光机、雕刻机等; 汽车行业:散热水室、进气歧管、镜框支架、通风格栅、门把手、节流阀体、风扇罩、变速控制杆罩、手刹、加速器踏板、齿轮等; 机械工业:水泵、水阀、轴承、轴套、齿轮、支架、托辊等; 运动器材:滑雪器材、童车、自行车、健身器材零部件等; 办公装备:座椅支架、滑轮、转轴、碎纸机齿轮、打印机部件等。 电动工具PA6GF30关键性能特点: 1、高刚性 2、良好的耐低温韧性 3、良好的耐候性 4、优良的着色性能 5、良好的表面外观 6、成本较合算 材料牌号:PA6G308 进气歧管PA6GF30关键性能特点: 1、刚性 2、长期耐热稳定性 3、轻量化 4、良好的焊接性能 5、高爆破强度 6、低噪音 7、耐油性

材料牌号:PA6G308 散热水室PA66GF30关键性能特点: 1、耐醇解性 2、耐热稳定性 3、刚性 4、低蠕变性 5、耐疲劳性 材料牌号:SE8066HS 运动器材PA6GF30关键性能特点: 1、高刚性 2、高冲击强度 3、良好外观 4、良好着色性 5、耐低温 材料牌号:PA6G308 办公装备PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、刚性 5、耐磨性 6、成本合算 材料牌号:PA66G308 机械工业PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、高刚性 5、耐化学性 6、耐磨性 材料牌号:PA66G308

超高分子量聚乙烯纤维的技术与市场发展

超高分子量聚乙烯纤维的技术与市场发展 第1期50 2011年3月 纤维复合材料 FIBERCoMPoSITES Nl Mar.,2011 超高分子量聚乙烯纤维的技术与市场发展 赵刚,赵莉,谢雄军 (中国航天第三研究院,北京100074) 摘要本文简要介绍了世界高性能纤维主要品种——超高分子量聚乙烯纤维的基本性能和主要应用领域,重点 归纳了十几年来国内外相关企业的生产,技术和行业发展状况,综合分析了国内外超高分子量聚乙烯纤维及其复 合材料市场的供需趋势,指出了该种纤维行业具有良好的产业发展优势与前景. 关键词高性能纤维;超高分子量聚乙烯纤维(UHMW—PE纤维,HS—HMPE纤维);复合材料市场 UltraHighMolecularWeightPolyethyleneFiberMaterial TechnologyandMarketDevelopmentProspect ZHAOGang,ZHAOLi,XIEXiongjun (TheThirdResearchAcademyofChinaAerospace,Beijing100074) ABSTRACTThissummarydescribeshighperformancefiber_一ultrahighmolecularweightpolyethylene(UHMW— PE)fiberintheword,anditsbasicperformanceandmainapplicationarea,focusrelatedenterp riseofproduction,technolo? gYandindustrydevelopmentstatus,analysisthemarketofthesupplyanddemandtrendsofthe fiberanditscomposites,

玻纤增强PP的特性

玻纤增强PP的特性 PP加玻纤,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想 把PP用在工程结构件上,就必须使用玻璃纤维进行增强。 PP加玻纤,通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。具体来说,拉伸强度达到了65MPa~90MPa,弯曲强度达到了70MPa~120MPa,弯曲模量达到了3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美,并且更耐热。 PP加玻纤,一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。 增强改性PP所用的玻璃纤维,要求长度为0.4~0.6ram,若长度小于0.04mm,玻璃纤维只起填充作用而无增强效果,发达国家都在开发长丝增强注射材料。玻璃纤维含量在40%(质量分数)含量内,玻 璃纤维含量越高,PPR弹性模量、抗张、抗弯强度也越高。但一般不能超过40%,否则流动量下降,失去补强作用,一般在10%~30%。 PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳 纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能; 填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶 体,从而提高透明性和冲击强度。因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。 玻纤增强PP的应用 PP作为四大通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存 在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺 点。因此,必须对其进行改性,以使其能够适应产品的需求。对PP材料 的改性一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量 应用。 PP加玻纤材料,可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇。此外,它也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。

玻纤特性

电绝缘用玻璃纤维的特性 一、电气特能 电气工业中采用的是碱金属氧化物含量与0.8%的无碱铝硼硅酸盐玻璃成分。研究表明,E玻璃纤维具有和E玻璃同样优良的介电性能。不同的是,纤维具有很大的表面积,相应的织物具有很大的空隙率,直接使用时介电强度很小,仅与相同厚度的空气层的介电强度相当。另一方面,由于空隙的吸附作用,使得织物的绝缘电阻对于环境相对湿度的变化十分敏感。据报道,当相对湿度从35%增加到95%时,经脱蜡热清洗的E玻璃纤维布的体积电阻率下降了4次方,而采用憎水处理的玻璃纤维布的下降幅度则较小。见表10-1。因此,电绝缘用玻璃纤维布必需浸渍绝缘漆或树脂等液体绝缘材料,来填充织物中的空隙,并在织物表面形成一层连续、平整和厚薄均匀的漆膜,才能提高其防潮性能和介电强度。尤其是湿态介电强度。 温度是影响电介质介电性能的另一个重要因素。硅酸盐玻璃属离子导电,其绝缘电阻随温度的升高而降低,而介质损耗却随温度的升高而增大。玻璃布的体积电阻率和介质损耗与温度的关系见表10—2。E玻璃介电性能与温度和频率的关系见表10—3。

E玻璃纤维的介质损耗小,在交流电压作用下所产生的介质损耗也小,是一种适于在高频、高压下工作的绝缘材料。此外,E玻璃纤维还具有良好的抗电晕、抗电弧性能。 二、力学性能 (一)抗拉强度 抗拉强度高,尤其是高温保留强度高,是E玻璃纤维的一个重要特性。E玻璃纤维纱的强度与热处理温度的关系如图10-1所示。从图中可以看出,在200℃以下时,曲线呈平缓下降,纱线的强度保留率均在80%以上。而有机纤维在200℃以下热处理时,其强度几乎完全丧失。因此,E玻璃纤维织物适用于制造不同耐热等级的绝缘材料,同时也是一种性能良好的补强材料。 (二)伸长率 玻璃纤维是完全弹性体,其断裂伸长率为3%。这个数值与粉云母纸断裂时的伸长率相近。这样在玻璃粉云母带中由于玻璃布的有效补强作用,克服了粉云母纸对机械负荷敏感的弱点,从而解决了粉云母带在使用中产生的屏障性损坏的问题。因此,E玻璃纤维织物是制造粉云母带的理想的补强材料。 (三)耐磨性 玻璃纤维是一种脆性材料。即使经绝缘漆或树脂浸渍处理,其耐磨性仍得不到有效的改善。因此,在生产和安装的过程中,应避免撞击、锤击等外力作用,以免损伤绝缘材料,导致机械强度和电气绝缘性能的下降。 耐磨性差是玻璃纤维的致命弱点,因此它无法代替棉织物而用于受机械摩擦和撞击的地方。 三、耐热性 温度是导致绝缘材料电气性能、力学性能下降和使用寿命缩短的重要因素。耐热性则表明绝缘材料承受高温作用的能力,是衡量绝缘材料性能的一项非常重要的指标。 无碱玻璃纤维及其织物具有很好的耐热性,在200℃的温度下,仍保持着较高的电绝缘性能和抗拉强度。同时,它还具有不燃性和高温下不产生挥发性物质等特点,因此是一种性能优良的绝缘材料和补强材料。但在实际应用中,玻璃纤维和其他纤维材料一样,需要用绝缘漆或树脂来填充其织物中的空隙,于是绝缘材料的耐热性不但取决于基材,而且取决于所用的绝缘漆或树脂的耐热性。 耐热等级确定了各种绝缘材料在正常运行状态下能长期使用的极限工作温度。它共分9级,其中Y级极限工作温度为90℃,现已淘汰。主要绝缘材料的耐热等级与相应的极限工作温度见表10-4。

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

相关主题
文本预览
相关文档 最新文档