当前位置:文档之家› 第十一讲 函数的递归调用及函数中的变量定义

第十一讲 函数的递归调用及函数中的变量定义

第十一讲 函数的递归调用及函数中的变量定义
第十一讲 函数的递归调用及函数中的变量定义

第十一讲函数的递归调用及函数中的变量定义

一、函数的递归调用

1.递归的概念

直接递归调用:调用函数的过程中又调用该函数本身,自己调用自己。

间接递归调用:调用f1函数的过程中调用f2函数,而f2中又需要调用f1。

以上均为无终止递归调用。为了让这种调用终止,一般要用if语句来控制使递归过程到某一条件满足时结束。

2、递归法

类似于数学证明中的反推法,从后一结果与前一结果的关系中寻找其规律性。

递归法:从结果出发,归纳出后一结果与前一结果直到初值为止存在的关系

编程思想:设计一个函数(递归函数),这个函数不断使用下一级值调用自身,直到结果已知处——选择控制结构

其一般形式是:

递归函数名f (参数n)

{ if (n=初值)

结果=常量;

else

结果=含f(x-1)的表达式;

return 结果;

}

例1.输入一个n,编写函数求n!,根据不同的算法,我们可以用三种方式。

方式一:用递推算法,Sn=n!的递推关系如下:

1 (n=1,0)

Sn=

Sn-1×n n>1

是一种累计乘积的关系,先得到上一个数的阶乘,然后再得到得到下个数的阶乘,用循环结构来实现。

程序代码如下:

main()

{ int n;

float sn;

float fac(int ); /*函数的声明*/

printf("Input n=");

scanf("%d",&n);

sn=fac(n); /*函数的调用*/

printf("%d!=%.0f",n,sn);

}

float fac(int n) /*函数的定义*/

{ float f=1.0;

int i;

if (n==0||n==1) return f;

for(i=1;i<=n;i++)

f=f*i;

return f;

}

方式二:用递归算法,f(n)=n!的递归求解关系如下:

1 (n=1,0)

f(n)=

f(n-1)×n n>1

递归程序分两个阶段执行——

①回推(调用):欲求n! →先求 (n-1)! →(n-2)! →…→ 1!

若1!已知,回推结束。

②递推(回代):知道1!→2!可求出→3!→…→ n!

注意:在此可画图来说明

程序清单如下:

main()

{ int n;

float sn;

float fac(); /*函数的声明*/

clrscr();

printf("Input n=");

scanf("%d",&n);

sn=fac(n); /*函数的调用*/

printf("%d!=%.0f",n,sn);

}

float fac(int n) /*函数的定义*/

{ float f;

if (n==0||n==1) f=1;

else f=fac(n-1)*n;

return f;

}

方法三:在函数中定义静态变量来实现,一般说来,在任何函数中,我们都可以定义变量:float f;而这种定义默认为f为自动变量atuo,当函数调用结束的时候,该变量的存储空间被释放,也就是说变量f不复存在。但如果我们在定义变量的时候,声明是静态变量:static float f;f的值在函数调用结束以后,占用的存储空间不被释放,下次调用时候,其初值就是上次调用结束的值,利用这一特性,我们可以用来解决阶乘的问题。

main()

{ int n,i;

float fac(); /*函数的声明*/

printf("Input n=");

scanf("%d",&n);

for(i=1; i<=n;i++) /*函数的循环调用*/

printf(“%d!=%f\n”,i,fac(i));

}

float fac(int n) /*函数的定义*/

{ static float f=1;

if n>0

f=f*n;

return f;

}

例2 在屏幕上显示杨辉三角形,行数由用户输入。

分析:若起始行为第1行,则:第x行有x个值,对第x行第y列,

其值(不计左侧空格时)为以下递归关系:

1 (y=1|| y=x)

c(x,y)=

c(x-1,y-1)+c(x-1,y)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

………………

程序如下:

main(){

int i,j,n;

printf("Input n=");

scanf("%d",&n);

for (i=1;i<=n;i++)

{ for (j=0;j<=n-i;j++)

printf(" "); /*为了保持三角形态,此处输出两个空格*/

for (j=1;j<=i;j++)

printf("%3d ",c(i,j));

printf("\n");

}

}

int c(int x,int y)

{int z;

if (y==1||y==x) return 1;

else

{ z=c(x-1,y-1)+c(x-1,y);

return z;

}

}

作业题1:用递归算法计算Fibonacci数列问题。输入一个n,输出前n 项的和

1 (n=1)

提示:fib(n)= 1 (n=2)

fib(n-1)+fib(n-2) (n>1)

例三.运行下列程序,当输入字符序列AB$CDE并回车时,程序的输出结果是什么?

#include

void rev()

{ char c;

c=getchar();

if (c=='$') printf("%c",c);

else

{ rev();

printf("%c",c);

}

}

main()

{

rev();

}

结果:$BA

思考题目:输入一个整数,将其转换为字符输出。。

二、变量的存储类别

存储类别:

●register型(寄存器型)

变量值存放在运算器的寄存器中——存取速度快,一般只允许2-3个,且限于char型和int型,通常用于循环变量(在微机的Turbo C中实际上自动转为auto型)。

●auto型(自动变量型)

变量值存放在主存储器的动态存储区(堆栈方式)。

优点——同一内存区可被不同变量反复使用

在函数中定义以上两个类型的变量以后,只能属于该函数,函数的调用结束时,变量的存储空间便被释放,不能被保存下来。下次调用时,又给

变量重新分配存储空间。

●static型(静态变量型)

变量值存放在主存储器的静态存储区,程序执行开始至结束,始终占用该存储空间,但在某个函数中定义的,也只能在该函数中有效,不能被其他的模块所访问。

●extern型(外部变量型)

同上,但作用范围大大拓宽,可以被其他模块和函数所访问。

以上两种均属于“静态存储”性质,即从变量定义处开始,在整个程序执行期间其值都存在。

未说明存储类别时,函数内定义的变量为auto型,函数外定义的变量为extern型。

例四、分析下列程序的输出:

f(int a)

{b=0;

static c=3;

b=b+1;

c=c+1;

return a+b+c;

}

main()

{int a=2,i;

for(i=0;i<3;i++)

printf(“%6d”,f(a));

}

三、局部变量和全局变量

1、局部变量——函数内部或复合语句内定义的变量

auto(默认)所在函数调用结束时,其值自动消失

局部变量 register 如不赋初值,取不确定值为初值

static 所有函数调用结束,其值仍保留(如不赋初值,取

初值为0(数值型)或空格(字符型)约定:所有形参都是局部变量,局部变量只在本函数或本复合语句内才能使用,在此之外不能使用(视为不存在)——main函数也不例外。

2、全局变量——在函数之外定义的变量

extern(默认)允许本源文件中其他函数及其他源文件使用

全局变量

static 只限本源文件中使用,在定义的函数内有效

有效作用范围:从定义变量位置开始直到本源文件结束

如果需要将全局变量的作用范围扩展至整个源文件——

法1:全部在源文件开头处定义

法2:在引用函数内,用extern说明

法3:在源文件开头处,用extern说明

如果要将全局变量作用范围扩展到其他源文件,只需在使用这些变量的文件中对变量用extern加以说明。

【注意】

1.所有全局变量加不加static,都属于静态存储,如不赋初值,取初值为0(数值型)或空格(字符型)(注意与函数内部定义的static型局部变量的区别)

2.如果在同一个源文件中,全局变量与局部变量同名,则在局部变量作用范围内,全局变量不起作用。

例五、分析下列程序的结果:

【1】求程序运行结果

int a=3,b=5;

max(int a,int b)

{ int c;

c=a>b?a:b;

return c;

}

main()

{ int a=8;

printf("%d\n",max(a,b));

}

结果:8

【讨论】如果主函数中没有int a=8,结果?(5)

如果让主函数中int a=4或a=-1,结果?(均为5)

【2】求程序运行结果

void num()

{ extern int x,y;

int a=15,b=10;

x=a-b;

y=a+b;

}

int x,y;

main()

{ int a=7,b=5;

x=a+b;

y=a-b;

num();

printf("%d,%d\n",x,y);

}

结果:5,25

【讨论】如果第二行不加上extern呢?(12,2)

【3】求程序运行结果

int a;

fun(int i)

{ a+=2*i;

return a; }

main(){

int a=10;

printf("%d,%d\n",fun(a),a);

}

结果:20,10

【4】求程序运行结果

int i=0;

main()

{ int i=5;

clrscr();

reset(i/2); printf("i=%d\n",i); /*此处i为局部变量值,即i=5*/ reset(i=i/2); printf("i=%d\n",i); /*局部变量i=i/2,即i=2*/ reset(i/2); printf("i=%d\n",i);/*局部变量i的值未变*/ workover(i); printf("i=%d\n",i); /*局部变量i的值未变*/

}

workover(int i)

{ i=(i%i)*((i*i)/(2*i)+4);

printf("i=%d\n",i);

return i;

}

reset(int i) /*此处形参i使用主函数中局部变量i的值*/

{ i=i<=2?5:0; /*此处i为全部变量*/

printf("i1=%d ",i);

return i;

}

结果:i1=5 i=5

i1=5 i=2

i1=5 i=2

i=0

i=2

【讨论】如果将主函数中第二个reset(i/2)改为reset(i=3)

结果:1=5 i=5

i1=5 i=2

i1=0 i=3

i=0

i=3

函数的概念学案

函数的概念学案 学习目标 1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用 2、了解构成函数的要素,进一步巩固初中常见函数(一次函数、二次函数、反比例函数)的图像、定义域、值域 3、理解区间的概念,能准确地利用区间表示数集 4、通过从实际问题中抽象概括函数概念的活动,培养抽象概括能力 教学重点体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 教学难点函数的概念、符号y=f(x)的理解、 教学流程 一、问题1、在初中,甚至在小学我们就接触过函数,在实际生产生活中,函数也发挥着重要的作用,那么,请大家举出以前学习过的几个具体的函数 问题2、请大家用自己的语言来描述一下函数 二、结合刚才的问题,阅读课本实例(1)、(2)、(3),进一步体会函数的概念问题3、在实例(1)、(2)中是怎样描述变量之间的关系的?你能仿照描述一下实例(3)中恩格尔系数和时间(年)之间的关系吗? 问题4、分析、归纳上述三个实例,对变量之间的关系的描述有什么共同点呢? 函数的概念 一般地,设、是,如果按照某种确定的对应关系,使对于集合中的一个数,在集合中都有和它对应,那么就称为从集合到集合的一个函数,记作其中叫做自变量,的取值范围叫做函数的;与的值相对应的值叫做函数值,函数值的集合叫做函数的 问题5、在实例(2)中,按照图中的曲线,从集合B到集合A能不能构成一个函数呢?请说明理由 练习1、 1、在下列从集合到集合的对应关系中,不可以确定是的函数的是()(1),对应关系 (2),对应关系 (3),对应关系 (4),对应关系 2、下图中,可表示函数的图像只能是() 三、区间的概念

19.1.1《变量与函数》反思

19.1.1《变量与函数》教学反思 本节课是八年级学生初步接触函数的入门课,必须让学生准确认识变量与常量的特征,初步感受现实世界各种变量之间相互联系的复杂性,同时感受到数学研究方法的化繁为简,知道在初中阶段主要研究两个变量之间的特殊对应关系。 函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。 在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现 为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答; 2.学生自主回答; 3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都

递归调用详解,分析递归调用的详细过程

递归调用详解,分析递归调用的详细过程 2009年05月23日星期六 22:52 一、栈 在说函数递归的时候,顺便说一下栈的概念。 栈是一个后进先出的压入(push)和弹出(pop)式数据结构。在程序运行时,系统每次向栈中压入一个对象,然后栈指针向下移动一个位置。当系统从栈中弹出一个对象时,最近进栈的对象将被弹出。然后栈指针向上移动一个位置。程序员经常利用栈这种数据结构来处理那些最适合用后进先出逻辑来描述的编程问题。这里讨论的程序中的栈在每个程序中都是存在的,它不需要程序员编写代码去维护,而是由运行是系统自动处理。所谓的系统自动维护,实际上就是编译器所产生的程序代码。尽管在源代码中看不到它们,但程序员应该对此有所了解。 再来看看程序中的栈是如何工作的。当一个函数(调用者)调用另一个函数(被调用者)时,运行时系统将把调用者的所有实参和返回地址压入到栈中,栈指针将移到合适的位置来容纳这些数据。最后进栈的是调用者的返回地址。当被调用者开始执行时,系统把被调用者的自变量压入到栈中,并把栈指针再向下移,以保证有足够的空间存储被调用者声明的所有自变量。当调用者把实参压入栈后,被调用者就在栈中以自变量的形式建立了形参。被调用者内部的其他自变量也是存放在栈中的。由于这些进栈操作,栈指针已经移动所有这些局部变量之下。但是被调用者记录了它刚开始执行时的初始栈指针,以他为参考,用正或负的偏移值来访问栈中的变量。当被调用者准备返回时,系统弹出栈中所有的自变量,这时栈指针移动了被调用者刚开始执行时的位置。接着被调用者返回,系统从栈中弹出返回地址,调用者就可以继续执行了。当调用者继续执行时,系统还将从栈中弹出调用者的实参,于是栈指针回到了调用发生前的位置。 可能刚开始学的人看不太懂上面的讲解,栈涉及到指针问题,具体可以看看一些数据结构的书。要想学好编程语言,数据结构是一定要学的。 二、递归 递归,是函数实现的一个很重要的环节,很多程序中都或多或少的使用了递归函数。递归的意思就是函数自己调用自己本身,或者在自己函数调用的下级

19.1.1变量与函数导学案(第一课时)

18.1变量与函数学案 Ⅰ、教学目标 1、知识与技能目标: 运用丰富的实例,使学生从具体的问题情境中了解常量与变量的含义,能分清实例中的常量与变量,领悟函数的概念,了解自变量与函数的意义。 2、过程与方法目标: 通过动手实践与探索,让学生参与变量的发现与函数的形成过程,感受获取知识的成功体验,提高学生分析问题和解决问题的能力。 3、情感态度价值观目标: 在引导学生探索实际问题的数量关系中,培养学生学习数学的兴趣并积极参与数学活动的热情,在解决问题的过程中体会数学的应用价值。 Ⅱ、教学重点 了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。Ⅲ、教学难点 函数概念的理解;函数关系式的确定 Ⅳ、教学过程 一、自主探究 (一)提出问题,创设情景 问题一:汽车以 60 千米/时的速度匀速行驶,行驶路程为 s 千米,行驶时间为 t 小时。 问题二:电影票的售价为10元∕张。第一场售出150张票,第二场场售出205张票,第三场场售出310张票,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y元.?怎样用含x的式子表示y ? 问题三:你见过水中涟漪吗?圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为 10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的变化而变化吗? 问题四:用100 cm长的绳子围一个矩形,当矩形的一边长x 分别为 30 cm,35 cm,40 cm,45 cm 时,它的邻边长y 分别为多少?y的值随x的变化而变化吗? 小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。 (二)归纳总结: 1、在一个变化过程中,我们称数值发生变化的量为________; 2、在一个变化过程中,我们称数值始终不变的量为________; (三)快速抢答: 练习1 指出下列问题中的变量和常量: (1)某市的自来水价为 4 元/t。现要抽取若干户居民调查水费支出情况,记某户月用水量为 x t,月应交水费为 y 元。 (2)某地手机通话费为 0.2 元/min ,李明在手机话费卡中存入30元,记此后他的手机通话时间为 t min ,话费卡中的余额为 w 元。 二、合作探究 (一)合作交流: 1、在研究的每个问题中,都出现了两个变量,它们之间是相互影响,相互制约的. 2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.) 归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。 (二)归纳概念: 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x?的每一个确定的值,y?都有唯一确定的值与其对应,?那么我们就说x?是______,y是x的_______. 如果当x=a时y=b,那么b?叫做当自变量的值为a时的_________. 用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式. (三)巩固练习 练习2下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式。 (1)改变正方形的边长x,正方形的面积S 随之变化; (2)每分向一水池注水0.1 m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化;

2.1.1(一)变量与函数的概念教案

第二章函数 §2.1函数 2.1.1 函数 第1课时变量与函数的概念 【学习要求】 1.通过丰富实例,加深对函数概念的理解,学会用集合与对应的语言来刻画函数,体会对应关系在刻 画函数概念中的作用. 2.了解构成函数的三要素. 3.能够正确使用“区间”的符号表示某些集合. 【学法指导】 通过实例体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会用集合与对应刻画函数的必要性的重要性. 填一填:知识要点、记下疑难点 1.函数的概念:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域. 2.区间概念:设a,b∈R,且aa,x≤a,x

新人教版高中数学《函数的概念》导学案

第6课时函数的概念 1.理解函数的概念,了解构成函数的三要素. 2.能正确使用区间表示数集. 3.会求一些简单函数的定义域、函数值. 我国著名数学家华罗庚说过这样一句话:从具体到抽象是数学发展的一条重要大道.我们来看三个现象:①清晨,太阳从东方冉冉升起;②随着二氧化碳的大量排放,地球正在逐渐变暖;③中国的国内生产总值在逐年增长. 问题1:在初中,我们学习过函数,函数是刻画和描述两个变量之间依赖关系的数学模型,上述三个事例,向我们阐述了一个事实,世界时刻都是变化的,那么变化的本质是什么呢? 从数学的角度看,我们发现在这些变化着的现象中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化.若当第一个变量确定时,另一个变量也随之确定,则它们之间具有. 问题2:设A、B是非空数集,如果按照某个确定的对应关系f,使对于集合A 中的数x,在集合B中都有的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作.其中x叫作,x的取值集合叫作函数的;与x的值相对应的y值叫作,函数值的集合叫作函数的. 问题3:在研究函数时常会用到区间的概念,区间的表示如何规定?

注:实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“+∞”读作“正无穷大”,“-∞”读作“负无穷大”. 问题4:(1)函数f:A→B应该满足什么样的对应关系?一个函数的构成要素有几部分? (2)两个函数的定义域和对应关系分别相同,值域相同吗?由此你对函数的三要素有什么新的认识? (1)应满足:①集合A、B都是;②对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有的元素y与之对应. 一个函数的构成要素:、和,简称为函数的三要素. (2)如果两个函数的和分别相同,那么它们的值域一定相同.由此可以认识到:只要两个函数的和分别相同,那么这两个函数就相等. 1.下列四个函数:(1)y=x+1;(2)y=x3;(3)y=x2-1;(4)y=. 其中定义域相同的函数有(). A.(1)(2)(3) B.(1)(2) C.(2)(3) D.(2)(3)(4)

C语言中变量和函数的声明与定义

变量 在将变量前,先解释一下声明和定义这两个概念。声明一个变量意味着向编译器描述变量的类型,但并不为变量分配存储空间。定义一个变量意味着在声明变量的同时还要为变量分配存储空间。在定义一个变量的同时还可以对变量进行初始化。 局部变量通常只定义不声明,而全局变量多在源文件中定义,在头文件中声明。 局部变量 在一个函数的内部定义的变量是内部变量,它只在本函数范围内有效。自动变量auto 函数中的局部变量,其缺省格式是自动变量类型。例如,在函数体中int b, c=3。和auto int b, c=3。是等价的。 自动变量是动态分配存储空间的,函数结束后就释放。自动变量如不赋初值,则它的值是一个不确定的值。 静态局部变量static 静态局部变量是指在函数体内声明和定义的局部变量,它仅供本函数使用,即其他函数不能调用它。静态局部变量的值在函数调用结束后不消失而保留原值,即其占用的存储单元不释放,在下一次函数调用时,该变量已有值,就是上一次函数调用结束时的值。 静态局部变量在静态存储区分配存储单元,在程序的整个运行期间都不释放。静态局部变量是在编译时赋初值的,即只赋初值一次。

在SDT编译器中,建议对静态局部变量赋初值,否则该静态局部变量的初值为不确定值。在其他编译器中,未初始化的静态局部变量的初值可能为零,这由具体的编译器所决定,使用前最好测试一下。 寄存器变量register 带register修饰符的变量暗示(仅仅是暗示而不是命令)编译程序本变量将被频繁使用,如果可能的话,应将其保留在CPU的寄存器中,以加快其存取速度。 对于现有的大多数编译程序,最好不要使用register修饰符。因为它是对早期低效的C编译程序的一个很有价值的补充。随着编译程序技术的进步,在决定哪些变量应当被存到寄存器中时,现在的C编译程序能比程序员做出更好的决定。 全局变量 在函数之外定义的变量称为外部变量,外部变量是全局变量,它可以为本文件中其他函数所共用。全局变量都是静态存储方式,都是在编译时分配内存,但是作用范围有所不同。 静态外部变量static 静态外部变量只能在本文件中使用。所以静态外部变量应该在当前源文件中声明和定义。 外部变量extern 定义函数中的全局变量时,其缺省格式是外部变量类型。外部变量应该在一个头文件中声明,在当前源文件中定义。外部变量允许其他文件引用。

变量与函数教案

变量与函数 教学目的: 1.了解常量与变量的意义,能分清实例中的常量与变量; 2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式; 3.通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。经历函数概念的抽象概括过程,体会函数的模型思想。让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学重点:函数概念的形成过程。 教学难点:理解函数概念。 教学过程: 一、创设情境 问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息? 看出回答: (1)这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低? 思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?

问题2:银行对各种不同的存款方式都规定了相应的利率,下表是20XX年7月中国工商银行为”整存整取”的存款方式规定的年利率. 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的? 问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值: 仔细的观察你能发现什么? 问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为 1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表: 由此你可以得到什么结论? 二、形成概念 (一)变量与常量概念的形成过程 1.举例、归纳 问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。 问题2:学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。 设问:一个量变化,具体地说是它的什么在变?什么不变呢? 引导学生观察发现:是量的数值变与不变。 归纳变量与常量的定义并板书。 在其他二个问题中有哪些是变量?哪些是常量?

函数的递归调用与分治策略

函数的递归调用与分治策 略 This manuscript was revised on November 28, 2020

函数的递归调用与分治策略 递归方法是算法和程序设计中的一种重要技术。递归方法即通过函数或过程调用自身将问题转化为本质相同但规模较小的子问题。递归方法具有易于描述和理解、证明简单等优点,在动态规划、贪心算法、回溯法等诸多算法中都有着极为广泛的应用,是许多复杂算法的基础。递归方法中所使用的“分而治之”的策略也称分治策略。 递归方法的构造 构造递归方法的关键在于建立递归关系。这里的递归关系可以是递归描述的,也可以是递推描述的。下面由一个求n的阶乘的程序为例,总结出构造递归方法的一般步骤。 [例1]从键盘输入正整数N(0<=N<=20),输出N!。 [分析]N!的计算是一个典型的递归问题。使用递归方法来描述程序,十分简单且易于理解。 [步骤1]描述递归关系递归关系是这样的一种关系。设{U1,U2,U3,…,Un…}是一个序列,如果从某一项k开始,Un和它之前的若干项之间存在一种只与n有关的关系,这便称为递归关系。 注意到,当N>=1时,N!=N*(N-1)!(N=1时,0!=1),这就是一种递归关系。对于特定的K!,它只与K与(K-1)!有关。 [步骤2]确定递归边界在步骤1的递归关系中,对大于k的Un的求解将最终归结为对Uk的求解。这里的Uk称为递归边界(或递归出口)。在本例中,递归边界为k=0,即0!=1。对于任意给定的N!,程序将最终求解到0!。 确定递归边界十分重要,如果没有确定递归边界,将导致程序无限递归而引起死

循环。例如以下程序: #include <> int f(int x){ return(f(x-1)); } main(){ cout<=1时 n!= 1 当N=0时 再将这种关系翻译为代码,即一个函数: long f(int n){ if (n==0) return(1); else return(n*f(n-1)); } [步骤4]完善程序主要的递归函数已经完成,将程序依题意补充完整即可。

实验7-2-函数调用

实验7-2 函数(二) 1 【实验目的】 (1)掌握函数的嵌套调用的方法 (2)掌握函数的递归调用的方法 (3)掌握全局变量和局部变量的概念和用法 【实验要求】 (1)熟练掌握函数的嵌套调用的方法 (2)熟练掌握函数的递归调用的方法 【实验环境】 (1) Microsoft XP操作系统 (2) Microsoft VC++ 6.0 【实验内容】 1、素数https://www.doczj.com/doc/8115239375.html,/acmhome/problemdetail.do?&method=showdetail&id=1098描述:输出100->200之间的素数的个数,以及所有的素数。 输入:无 输出:100->200之间的素数的个数,以及所有的素数。 样例输入:无 样例输出:

21 101 103 ... 197 199 2、字符串逆序https://www.doczj.com/doc/8115239375.html,/JudgeOnline/problem.php?id=1499 题目描述:写一函数,使输入的一个字符串按反序存放,在主函数中输入输出反序后的字符串。 输入:一行字符 输出:逆序后的字符串 样例输入:123456abcdef 样例输出:fedcba654321 3、字符串拼接https://www.doczj.com/doc/8115239375.html,/JudgeOnline/problem.php?id=1500 题目描述:写一函数,将两个字符串连接 输入:两行字符串 输出:链接后的字符串 样例输入: 123 abc 样例输出 123abc 4、输出元音https://www.doczj.com/doc/8115239375.html,/JudgeOnline/problem.php?id=1501

新人教B版必修1高中数学变量与函数的概念学案

2高中数学 变量与函数的概念学案 新人教B 版必修1 一、三维目标: 1.理解函数的概念,明确函数的两要素,即定义域和对应法则; 2.能正确使用区间表示数集; 3.会求一些简单函数的定义域,复合函数的定义域; 二、学习重、难点: 重点:函数的概念,定义域的概念和求法; 难点:抽象函数的定义域的求法; 1、函数的定义: 设集合A 是一 个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 ______________与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。 2、函数的定义域、值域: 函数的定义域对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 . 3、函数的值域: 如果自变量取值a ,则由法则f 确定的值y 成为函数在a 处的__________,记做_____,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 . 3、函数的两要素:_______________________; 。

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ; ② ; 5、区间的概念: 设a, b 是两个实数,且aa,x ≤a,xa:________________ x ≤a:_______________ x

17.1.1变量与函数

17.1.1变量与函数 知识技能目标 1.掌握常量和变量、自变量和因变量(函数)基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系. 过程性目标 1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义; 2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式. 教学过程 一、创设情境 在学习与生活中,经常要研究一些数量关系,先看下面的问题. 问题1如图是某地一天内的气温变化图. 看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃; (2)这一天中,最高气温是5℃.最低气温是-4℃; (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低. 从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢? 二、探究归纳 问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表:

观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快? 解随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快. 问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值: 观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f就________. 解(1) l 与f的乘积是一个定值,即 lf= 或者说 (2)波长 问题4 S与r之间满 时圆的面积,并将结果填入下表: 解S= 圆的半径越大,它的面积就越大. 在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable). 上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量

2011高一数学学案:2.1.1《变量与函数的概念》(新人教B版必修一)

2.1.1函数(第一课时) 【知识梳理】 自学课本P 29—P 31,填充以下空格。 1、设集合A 是一个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。 2、对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 ,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 【例题解析】 题型一:函数的概念 例1:下图中可表示函数y=f (x)的图像的只可能是( ) 题型二:相同函数的判断问题 例2:已知下列四组函数:①x y x = 与y=1 ②y =y=x ③y =y =④2 1y x =+与2 1y t =+其中表示同一函数的是( ) A . ② ③ B. ② ④ C. ① ④ D. ④ 题型三:函数的定义域和函数值问题 例3:求下列函数的定义域 1、 (1)1 ()1f x x =+ (2)、0()f x x =+ (3) 、()f x =2、 例4:求函数21()1f x x =+,()x R ∈,求(0)f ,(1)f ,(2)f ,(1)f -,(2)f - 【当堂检测】 1、下列图形哪些是函数的图象,哪些不是,为什么? 2、已知下列四组函数,表示同一函数的是( ) A. ()1f x x =-和21()1 x f x x -=+ B. 0 ()f x x =和()1f x = C. 2 ()f x x =和2 ()(1)f x x =+ D. ()f x =和()g x = 3、求下列函数的定义域 (1)、1 ()2 f x x =- (2)()f x = (3)、0 (x )(1)f x =+ (4)1 ()2f x x = +- 4、已知21()1f x x = +,21 ()1 x g x x +=+ (1)求(2),g(2)f 的值 (2)求(g(2))f 的值 A B C D

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

《变量与函数》教学设计

课题:19.1.1《变量与函数》 教 学 设 计

一、教学任务分析 教 学 目 标 知识技能 掌握函数的概念,初步理解对应的思想,能正确地判断 一些关系式是否是函数,能列出简单的函数关系式. 数学思考 通过对实际问题的分析、对比,归纳函数的概念,并在 此基础上理解掌握函数的概念. 解决问题 理解函数概念并且能从实际问题中提炼出函数关系式. 情感态度 学生通过对问题的分析,感受现实生活中函数的普遍性, 体会事物之间的相互联系与制约. 教学重点 理解函数概念并且能从实际问题中提炼出函数关系式. 教学难点 领悟函数概念;能把实际问题抽象概括为函数问题. 教学方法 探究发现、启发式教学. 教学手段 多媒体辅助教学. 二、教学准备 课件、学案、笔记本电脑、焟烛、网络等 三、教学流程 四、教学过程 1、导入新课 (1)复习变量、常量的概念; (2)利用网络,了解当日天气情况。进入“南康整点天气实况”, 导入新课 思考 概念详解 探究 拓展延伸 例题讲解 小结提高 课堂巩固 课后思考

从气温、湿度、风向风力和降水量等几个方面了解变化关系。 时间/h 9 11 13 15 …… 气温/0C …… (3)汽车以60千米/时的速度匀速行驶,设行驶里程为S千米,行驶时间为t 时,其中变量是.用含t的式子表示S:. 共同特征:1.两个变量;2.当其中一个变量取定一个值时,另一个变量就有唯一确定的对应值. 2、思考: (1).下图是体检时的心电 图,其中图上点的横坐标x 表 示时间,纵坐标y 表示心脏 部位的生物电流,它们是两个变量,在心电图中,对于x 的每一个确定的值,y 都有唯一确定的对应值吗?x y

递归算法详解

递归算法详解 C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。 许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。 这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。 我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系: ‘0’+ 0 =‘0’ ‘0’+ 1 =‘1’ ‘0’+ 2 =‘2’ ... 从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。 这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。 我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。 这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身。 在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。 /*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/

【习题】函数调用Word版

函数调用 【实验目的】: 1. 掌握函数的定义和调用方法。 2. 练习重载函数的使用。 3. 练习有默认参数值的函数的使用。 4. 练习使用系统函数。 5. 熟悉多文件工程结构。 【实验内容】: 1.编写函数int add(int x, int y),实现两个整型数据x,y的求和功能。 ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值 的变化。 2.编写一个求x的n次方的程序int pow(int m, int n),计算m的n次方的结果。 3.利用上题中设计两个函数,设计一个求两个整数的平方和的程序。要求如下: a)主函数中调用求和函数: int add(int x, int y);

求和函数add中调用上题设计的int pow(int m, int n)函数来计算其平方。 4.多文件程序结构:一个文件可以包含多个函数定义,但是一个函数的定义必须完 整的存在于一个文件中。要求: a)将add函数的声明部分放在头文件(add.h)中,实现部分放在源文件(add.cpp) 中。 b)将pow函数的声明部分放在头文件(pow.h)中,实现部分放在源文件(pow.cpp) 中。 c)在main函数中调用add函数,计算从屏幕终端输入的两个数据之和。(main 函数的实现在main.cpp中) 5.将第2题设计的pow函数修改成为递归函数。

6.设计一个函数int fac(int n),利用函数的递归调用,来计算n!(n的阶乘)。 ·要求:单步调试程序,记录递归函数的调用过程。 7.使用系统函数pow(x,y)计算x y的值,注意包含头文件cmath。 8.从键盘输入两个数字,分别赋值给变量a、b,设计一个子函数swap,实现这两个数字交换次序。(注:根据需要自己设计函数的参数及返回值) ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值的变化。 9.设计一个函数,求圆的面积。 要求:在主函数中调用子函数calArea计算圆的面积。并将calArea函数设计为内联函数。

人教版 八年级下册 19.1.1 变量与函数学案

变量与函数 一、目标认知 学习目标: 1.函数是刻画现实世界中变化规律的非常重要数学模型,对函数概念体会的深入程度是学好函数知识 的关键,在学习过程中一定要紧紧地结合实例体会引入函数概念的意义,紧紧地结合实例体会了解 常量、变量,理解函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解 析式法和图象法)。认真不浮躁地落实基本知识和基本技能。 2. 数学建模思想的体会理解,从分析探索实际问题中的数量关系和变化规律出发,经历体会“找出常 量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的每个过程细节,提高运用所学 知识分析解决问题的意识。 重点: 函数定义、解析式、自变量取值范围、函数的表示方法 难点: 运用函数定义辨析是否存在函数关系,分析具体材料背景写出函数解析式及自变量取值范围 二、知识要点梳理 知识点一:通过实例体会变量、常量、函数的概念 1、汽车以60千米/时的速度匀速行驶,行驶里程为S千米,行驶时间为t小时,请完成下表: t/时 1 2 3 4 5 S/千米60 120 240 300 思考:在上述变化过程中,有两个变量S、t,一个常量速度60,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?” 答案肯定:通过填表可以验证,当这里的两个变量中的任一个变量取定一个可以取的值时,另一个变量都有唯一确定的值与之相对应。

2、每张电影票售价为10元,早场售出150张,日场售出205张,晚场售出310张,三场电影的票房收入各是多少?请完成下表, 时段早场日场晚场 售出票数(张) 150 205 310 收入金额(元) 1500 2050 3100 思考:在上述变化过程中,有两个变量:售出票数和收入金额,一个常量:单价10,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?” 答案肯定:通过填表可以验证,当这里两个变量中的任一个变量随便取定一个可以取的值时,另一个变量都有唯一确定的值与之相对应。 3、在一根弹簧下端悬挂重物,弹簧原长10cm,若每1kg重物使得弹簧伸长0.5cm,请根据不同的重量m,填写对应的弹簧长度L 重量m/kg 1 2 5 8 10 弹簧长度L/cm 10.5 11 12.5 14 15 思考:在上述变化过程中,有两个变量重量和弹簧长度,一些常量弹簧原长、单位重量伸长的数值,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?” 答案肯定:通过填表可以验证,当这里两个变量中的任一个变量随便取定一个可以取的值时,另一个变量都有唯一确定的值与之相对应。两者之间的关系为: 圆的面积(S) 10 20 50 100 300 圆的半径(r) 1.78 2.52 3.99 5.64 9.77 思考:在上述变化过程中,有两个变量S、r,一个常量圆周率,两个变量之间是否有这样的关系:“当其中一个变量取定一个值时,另一个变量就有唯一确定的值与之相对应?” 答案肯定:通过填表可以验证,当这里两个变量中的任一个变量随便取定一个可以取的值时,另一个变量都有唯一确定的值与之相对应! 两者之间的关系为: 5、用10m长的绳子围成长方形,根据长方形一边的长度,观察长方形的另一边的长度和面积如何变化。请思考完成下表:

相关主题
文本预览
相关文档 最新文档