当前位置:文档之家› 图像压缩技术

图像压缩技术

图像压缩技术
图像压缩技术

图像压缩技术

(系别:生物与化学工程学院,学号:1101815081,上课时间:星期日早上1、2节,)

摘要:图像压缩就是把图像文件压缩变小,同时图像的质量不可失真到不能接受的程度,以便在一个给定的储存空间中,保存尽可能多的文件,并加快信息在网络上的传递速度,因此已成为当前的一项极其重要的研究课题,进展极为迅速。本文阐述了它的基本情况和原理,并介绍了传统图像压缩方法基本概念和小波变换实现压缩图像原理。

关键词:图像压缩、图像编码、小波变换、压缩比

一、传统的图像压缩方法

一幅数字化图片可以由一信息序列来刻画。选择信息序列存在着很多方式。唯一的要求是从信息序列重建出原始图片的忠实复本,并且降低其剩余度。选择信息及把码字赋于它们的特殊方法成为专门的压缩算法。例如,信息可以规范数字图片的每一个像素的亮度级,或一组像素的亮度级,或从一组像素计算的函数值。在这里,我们简述第一代图像压缩方式。

编码方式最初分成有信息损失法和无信息损失法两类。无信息损失法可以精确地重建出原始图片,而有损失信息法会引起失真,但能使它小到可允许的范围。第二种分类方法是基于图像是在空间域或变换域进行的,在空间域以适当方式组合像素值的方法称为空间域方法。相对而言,利用像素的变换系数的方法称为变换法。如果在空间域及变换域同时进行的压缩方法称为混合法。另一种分类方法是基于使压缩的参量是固定的或是自适应的意义而划分的,而适应法是让参量作为图像数据局部地变化而言的。

1、空间法

空间域图像压缩可以有六种形式,其中包括脉冲编码调制、预测编码、差分脉冲码调制、Delta 调制、内插编码及比特平面编码这六种方法。空间域图像压缩的主要特点有:

(1)脉冲编码调制

这种压缩方法可接受的图片质量是由每像素3比特量化值,压缩比C=2.6至C=1.0,颤动法可以用来改进图像的质量,全然没有利用人的视觉特性。

(2)预测编码

预测法通常不利用人的视觉系统的特性,对于8比特的规范形式运用两维预测所获得的压缩比约为4:1。若预测参量以适当方式与数据自适应,则预测法便为自适应的。例如,一局部性测量可以定义,则预测参量在每一显著的变化时可以被修正。用自适应修正,压缩比可以增加百分之一到二十左右。预测的特例是差分脉冲编码调制。

(3)差分脉冲编码调制

脉冲编码调制可获得压缩比为2.5:1,自主适应脉冲编码调制可使压缩比达3:5:1。(4)Delta调制

用这种方法所获得的压缩比虽然不高,但方法相当简单。

(5)内插编码

最通用的内插方法是零阶和一阶内插器,它能获得大约4:1的压缩比。高阶多项式或样条函数也能使用,但是其计算复杂性不能证明其结果的有效性,再则是未利用人的视觉系统的性质。

(6)比特平面编码

用比特平面编码法在未涉及人的视觉系统特性时可以获得平均压缩比约为4:1。

2、变换法

变换法编码的基本思想是把一组数据或像素变换成另一种数据,然后进行编码,逆变换复原出原始图像。大多数通用的变换是用快速算法实现的,一般是高效算法。主要的线性变换有卡享南—勒维变换、傅里叶变换、哈德码变换、哈尔变换、正弦、余弦及斜变换等等。(1)卡亨南—勒维变换

此变换在得到不相关的变换系数的意义上而言是最佳线性变换。不过,由于其计算的复杂性在实际上未被采用,它给出了去掉数据样本的相关性,计算上更有效的其它正交线性变换的上限。

(2)快速变换

这里有许多线性变换是傅里叶变换、哈德码变换、哈尔变换、正弦、余弦和斜变换等。这些变换和卡享南—勒维变换的一个重要区别是不取决于输入图像的统计特性。

(3)编码方法

在变换编码中有好几种编码方法。首先,要确定变换的维数。一幅静止的图片既可用二维变换也可用一维变换。变换后的系数再逐行进行编码。下一个固定的参量是变换的点数。一个通用的方法是把N×N的图像矩阵分成若干个M×M的子图像,M还小于N,比如说M=32,N=512,并且单独地变换每一个子图像。这些变换的重要特性是把所有“重要的系数”填满了变换域中的特定区域。重要压缩可以得到有效地依赖于给定区域中的系数的数目,压缩比达10:1。另一种途径是对变换系数的幅度设定一个门限值,并设低于门限值的系数为0。在得到较好质量编码图片的情况下,压缩比达15:1左右。虽然有些证据表明人的视觉系统不是一个线性变换器,其基本的特性也许包括在变换编码的设计中。

3、合成高系统

合成高系统的产生和发展经过了近三十年的历史,这一方法的重要性是它导致了第二代数据压缩技术的进展。在过去没有很好发展的直接原因是由于其计算量大而又使电脑存储量大,而在上世纪八十年代以来由于电脑速度猛增,使得这一方法的实现和普及得到令人满意的程度。它同现代一些方法相比,它能获得很高的压缩比。同时它为发展第二代图像编码压缩技术提供一条有益,而且十分有效的新途径。国际上许多研究都是基于把一幅图片分解成低频成份和高频成份两部份,它是直接或间接地利用合成高系统分别进行编码压缩,然后进行综合,获得原始图像的很高系统的压缩性能。合成高系统用的信息序列以下述方式来选择。原始图片分成两部份:低通图片没有很锐的围线而给出一般的面积亮度,高通图片含有很锐的边缘信息,根据两维抽样定理,低通图片可由很少的样本表示。这些样本是说明规范形式的低通信息的样本。边缘检测可用梯度算子或拉普拉斯算子来实现。非线性运算—取门限是对高通图片执行的,以确定是否边缘点是重要的。于是,这一方法是成为无损信息的。最后,每一个选择的边缘点的位置和幅值被编码。这些变量是说明高通图片的迅息。两维重建滤波,其特性唯一地用于低通图片的低能滤波来确定,同时用于综合从边缘信息来的高频分量。合成高系统精巧地利用了视觉系统的特性。利用横向禁止现象在早期处理级考虑视觉系统的性能。因而,它允许降低较大的剩余度。在合成高系统中,门限的正确利用是十分重要的。这样可以获得很高的压缩比及良好的图像质量。若门限选得太低,虽然图像质量很好,但压缩比很小。反之,若门限选择得太高,图像质量差,但压缩比很大。在压缩比和图像质量之间的折衷方法目前还没有,可以运用经验方法来获得很好的结果。指向性分解法是合成高系统的细化,在那里提取边缘和对边缘编码可以运用指向性滤波器。

二、小波变换压缩方法

小波图像压缩编码原理是基于Mallat塔式算法的基础上提出的。Mallat塔式算法的思想是:在选取好小波基的基础上将一幅图像经过小波变换分解为一许多不同尺度、方向、空间域上局部变化的子带图像。按照这种算法思想把一幅图像经过一次小波变换后分解为4个子图像:LL代表原始图像的特征分量,它包含原始图像的基本内容;LH、HL和HH分别表

示垂直向下、水平向右和斜对角线的高频特征分量,它们分别包含了图像数据垂直方向、水平方向与斜对角线方向的边缘、纹理和轮廓等。这里需要说明的是LL子带包含了图像的大部分数据,随后的小波变换都是在上一级变换产生的低频子带的基础上再进行小波变换。

小波变换实现图像压缩的一般步骤:首先选择一组合适的正交小波基函数,目的是保证多级小波分解时有正交特性,从而有利于图像压缩编码。其次对所要处理的图像进行多级小波分解,把原始图像分解为低频分量和水平向下、垂直向右以及斜对角线的高频分量。第三,根据所得到的不同频率分量分别实施不同的量化和编码操作。目前3个比较经典的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层小波树集合分割算法(SPIHT)和优化截断点的嵌入块编码算法(EBCOT)。

1、EZS编码算法

EZW算法中采用的零树结构充分利用了不同尺度间小波系数的相似特性,有效地剔除了对高频小波系数的编码,极大的提高了小波系数的编码效率。EZW 算法以极低的复杂度获得了高效的压缩性能,产生的码流还具有嵌入的特性,支持渐进传输,因此EZW 算法在小波图像编码史上就有里程碑式的意义。

零树小波编码基于三个关键的思想:(1)用小波变换去相关;(2)利用小波变换的内在自相似性在各级之间预测重要信息的位置;(3)用自适应算法编码进行无损压缩。

1)、零树结构

一个零树的数据结构可以定义如下:一个小波系数x,对于一个给定的阈值T,如果|x|

EZW 算法使用了四个符号进行编码:零树根、孤立零点、正重要值、负重要值。孤立零点表示当前系数值是不重要的,但它的子孙中至少有一个是重要的。正/负重要值表示当前系数是一个正/负的重要值。通过这四个符号,各子带按图1 所示的顺序对小波系数进行扫描,对小波系数进行判断,并将相应的符号放入一个表中,从而形成了一个符号表。

2)、基于SAQ的嵌入式编码

在EZW 编/解码过程中,始终保持着两个列表:主表和副表。主表包括编码中的不重要的集合或系数,其输出信息起到了恢复各重要值的空间位置的作用;而副表包括编码中的有效信息,输出为各重要系数的二进制值。编码分为主通、副通两个过程。在主通过程中,在给定阈值下,主表进行扫描编码,若为重要系数,则将其幅值加入副表,然后将该系数在数组中置为零,这样当阈值减小时,该系数不会影响新零树的出现;在副通过程中,对副表中的重要系数进行细化,细化过程相当于比特平面的编码过程。

零树结构和SAQ 相结合构成的编码器的工作过程可以概括如下:首先给出初始化阈值,进行第一次主扫描,若是重要系数,则将其幅值加入副表,然后将该系数在数组中置为零;接下来进行第一次副扫描,细化重要值的表示。更新阈值,进行新一轮主扫描,对已经发现的重要小波系数的位置不再扫描;主扫描结束,进入副扫描,对原已发现的重要值和新发现的重要值进行细化处理。重复上述过程,直到满足要求为止。

EZW的编码思想是不断扫描变换后的图像,生成多棵零树来对图像进行编码。由于编码时它形成多棵零树,因而需要多次扫描图像,造成效率很低。而在一颗零树中包含的元素越多,则越有利于数据压缩,在EZW 算法中存在这样的树间冗余。人们通过对小波系数的分析发现,在同一子带中相邻元素间有一定的相关性,尤其在高频子带中存在大量的幅值很低的系数,所以可以通过子带的集合把这种大量的系数组织到一起,达到数据压缩的目的,而

EZW 算法并没有充分利用这种相关性。在EZW算法的基础上,许多学者又进行了深入的研究,并提出了一些更为高效的小波图像编码方法,这类编码器被统称为“零树编码器”。

2、SPIHT编码算法

SPIHT 算法继承了EZW 算法的三个主要思想:(1)把小波系数按照幅值排序编码传输,同时解码器也按同样的算法,以实现从执行中复制编码的排序信息;(2)细化重要系数的位平面传输;(3)利用小波系数不同尺度同一方向的系数间的自相似性。

SPIHT 算法同样利用了树的结构,并且对重要的树集合进行进一步的分割,目的是使更多不重要系数包含在同一个集合里,从而提高压缩效率。

在SPIHT 算法中,使用了如下的集合定义:其中Z(i,j)为系数x(i,j)及其所有后代节点的集合,D(i,j)是系数x(i,j)的所有后代节点集合,O(i,j)是系数x(i,j)的直接后代节点的集合,L(i,j)是系数x(i,j)除去直接后代的其它所有后代节点的集合,集合分割策略为:

Z(i,j)=x(i,j)+D(i,j)(1)

D(i,j)=O(i,j)+L(i,j) (2)

L(i,j)=ΣD(i,j),(k,j)(3)

SPIHT 算法通过初始化、分类扫描、细化扫描和阈值更新四个子过程来完成图像的编码,过程中使用了三个链表来记录相关信息:不重要系数链表、不重要集合链表以及重要系数链表。

初始化就是把整个系数矩阵分成了树头节点x(i,j)(放入不重要系数链表)和剩余集合D(i,j)(放入不重要集合链表)。分类扫描就是从以上的所有x(i,j) 和D(i,j)中找出重要系数并放入重要系数链表中,以供细化处理,在这个过程中就用到了集合分割策略,不断地对重要集合进行分割,直到找出所有的重要系数,并放入重要系数链表中。细化扫描,就是对重要系数链表中的每一项(除了在当前阈值进入重要系数链表的系数) 。在阈值为2n时,输出它的第n个位平面的值。阈值更新,就是将n减1 ,即阈值减半,然后又重复进行分类扫描和细化扫描,直到编码结束,或达到目标码率,停止编码。

3、SPIHT编码算法

EBCOT算法包括嵌入式块编码和分层装配两个结构。嵌入式块编码是EBCOT 的基础, 其输出的码流不仅包含块信息, 而且也包含附加信息。

EBCOT 将待编码的小波图像分成尺寸相对较小的独立编码子块,对每个子块进行独立编码得到嵌入式码流,进而对块间的码流进行组织以进一步提高压缩性能,它的编码过程如下:(1)将原始图像进行小波变换,得到小波图像以降低图像数据的相关性;

(2)把小波图像分成许多较小的编码子块Bj,Bj是独立压缩编码的主体,通过对Bj的独立优化编码,可充分利用块内数据冗余,获取较高的压缩性能;

(3)将位平面进一步细分为“分数位平面”以获取更多的可截取点,并对这些截取点进行优化,达到更好的可嵌入性;

(4)设置专门的“第二层编码”,组织相互独立的块码流,从而提供功能上的丰富性。

在EBCOT 算法中,最小编码单位是编码子块,简称“码块”,用字母Bj表示,码块的分割是在图像经小波变换后得到的子带图像中进行。

量化是有损压缩的基础,通过量化处理可以进一步提高图像压缩倍数,这种压缩倍数的提高是以牺牲重构图像质量为代价。EBCOT 算法中量化产生的编码是嵌入式的,它包含两重含义:(1)分辨层渐进编码,即优先保留低分辨率系数,然后逐步加入高分辨率细节系数;(2)质量层渐进编码,即在同一码块内先保留系数的高位比特。对于每个子带图像,用户根据视觉特性或者编码比特率控制的要求选择合适的量化步长,将子带中的小波系数进行量化,量化过程会产生量化误差。

最终的压缩数据由各个编码块的码流组成。每一个编码块都在一个固定的分辨率上,所以这种简单的封包形式具有“分辨率可伸缩性”。同时,因为每一个编码块只影响图像的一个区域,所以此封包形式还具有一定的“空间可伸缩性”, 这样,如果对一个空间域上的图像感兴趣,就可以把感兴趣图像所在的编码块识别出来,然后进行相应的处理。尽管有些封包格式中每一个编码块都是嵌入式表示的,但是它并不具有“失真率可伸缩性”。为了解决这一问题,EBCOT算法中引入了“质量层”的概念,每一个质量层Qi由不同编码块的一部分码流组成。需要强调的是,一些编码块在某一层中可以为空。这样,由“质量层结构”构成的码流形式具有失真率可伸缩性,编码后的压缩数据就具有渐进传输的性质。

三、总结

基于提升的小波变换具有减小计算复杂度,实现原位计算,方便、简单逆变换形式以及能够实现整数系数的小波变换。自适应子带分解方法改变了小波变换后系数的统计分布,从而在低码率时用于衡量编码性能的峰值信号比(PSNR)得到一定的改善。自适应相对距离最近阈值法将局部块划分为4类(平坦、过渡、弱纹理和强纹理),对平坦局部块进行向量量化编码,对其余局部块对码块进行位平面编码提高编码效率。

还原图像质量是评价图像压缩编码方法的最为重要的标准之一,它包括两方面的含义:一方面是图像的逼真度,即还原图像与原始图像的偏离程度;另一方面是图像的可懂度,即图像能向人或机器提供特征信息的能力。对于限失真编码,原图像与还原图像之间存在着差异,差异的大小意味着恢复图像的质量不相同。但是,由于人的视觉冗余度的原因,则对有些差异的灵敏度较低,这就产生了两种判别标准:一种是客观判别标准,它建立在原始图像与还原图像之间的误差上;另一种是主观评价标准,通过用人的肉眼对图像打分而得到。

【参考文献】

[1]冈萨雷斯·数字图像处理[M]·电子工业出版社·2007.09

[2]刘直芳等·数字图像处理和分析[M]·清华大学出版社·2006.08

[3]贾永红·数字图像处理[M]·武汉大学出版社·2003.09

[4]马平·数字图像处理与压缩[M]·电子工业出版社·2007.04

[5]张春田等·数字图像压缩编码[M]·清华大学出版社·2006.01

[6]姚庆栋·图像编码基础[M]·清华大学出版社·2006.08

[7]曾文曲·分形小波与图像压缩[M]·东北大学出版社·2002.10

图像压缩标准知多少

电子科技 2004年第7期(总第178期) 61 图像压缩标准知多少 徐庆征,镇桂勤 (西安通信学院二系,陕西 西安 710106) 摘 要 介绍了一些典型的静止图像压缩标准和活动图像压缩标准,并分析了各自的技术特点及其应用场合。 关键词 图像压缩;JPEG ;H.26x ;MPEG4 中图分类号 TN919.8 图像通信直观生动,包含极其丰富的信息,是人们传递信息的重要媒介。同时,巨大的数据量也给图像的采集、存储、处理和传输带来了极大的困难,严重影响了图像媒体成为主要媒体,因此,压缩数字图像信号的数码率就成为图像通信和图像信号处理领域的首要任务,受到全世界科技工作者的关注。 20世纪80年代以来,国际标准化组织(ISO)和国际电信联盟(ITU)组织了一批专家,开展了大量细致、全面的工作,陆续制定了一系列有关图像通信方面建议和标准,极大地推动了图像编码技术的发展与应用。这些标准可以归为两种类型:静止图像压缩标准和活动图像压缩标准(包括ITU-T 制定的H.263系列和ISO 制定的MPEG-x 系列)。 1 静止图像压缩编码标准 1.1 JBIG 标准 1988年,ISO 和ITU-T 成立了“联合二值图像专家组”(Joint Binary Image Expert Group ,JBIG), 1991年10月提出了ITU-T T.82标准。这一标准确定了具有逐层、逐层兼容顺序和单层顺序3种模式的编码方法,并提出了获得任意低分辨率图像的方法。 1.2 JPEG 标准 收稿日期: 2004-04-21 1986年底,ISO 和ITU-T 成立了联合图像专家小组(Joint Photographic Experts Group ,JPEG),该小组近年来一直致力于静止图像压缩算法的标准化工作。1991年3月正式提出ISO CD10918号建议草案“连续色调静止图像的数字压缩编码”(通常简称为JPEG 标准),这是第一个适用于连续色调、多级灰度、彩色或黑白静止图像的国际标准。 JPEG 标准提供了一种无损编码的模式和3种有损编码模式(基于DCT 的顺序模式、基于DCT 的渐进模式、层次模式)。所有符合JPEG 的 遍解码器都必须支持基准模式,其他模式可作为选择项根据不同的应用目的来取舍。基准模式编解码框图如图1所示。 尽管JPEG 建议主要是应用于静止图像的编码技术,但是在某些场合也可将它应用于视频编辑系统。此时JPEG 把视频序列中的每一帧当作一幅静止图像来处理,这就是所谓的Motion JPEG 的处理方法。 1.3 JPEG-LS 标准 JPEG 组织从1994年开始征集新的无损/近无损(简称JPEG-LS)算法提案,并于1998年2月作 图1 JPEG 基准模式遍解码框图

数字图像压缩技术

数字图像压缩技术 二、JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成 了基于自适合DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG压缩原理及特点 JPEG算法中首先对图像实行分块处理,一般分成互不重叠的大小的块,再对每一块实行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表实行量化,量化的结果 保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后实行哈夫曼编码。JPEG的特点如下: 优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好 图像质量。 缺点:(1)因为对图像实行分块,在高压缩比时产生严重的方块效应;(2)系数实行量化,是有损压缩;(3)压缩比不高,小于502。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如 边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其 结果不是最优的3。 2.JPEG压缩的研究状况及其前景2 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年 来提出了很多改进方法,最有效的是下面的两种方法: (1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案实行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。 (2)层式DCT零树编码 此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数实行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,所以在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合实行压缩。 三、JEPG2000压缩 JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。 1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示4。 编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提升 10%~30%,而且压缩后的图像显得更加细腻平滑。对于当前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在 JPEG2000系统中,通过选择参数,能够对图像实行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式

JPEG2000图像压缩算法标准剖析

JPEG2000图像压缩算法标准 摘要:JPEG2000是为适应不断发展的图像压缩应用而出现的新的静止图像压缩标准。本文介绍了JPEG2000图像编码系统的实现过程, 对其中采用的基本算法和关键技术进行了描述,介绍了这一新标准的特点及应用场合,并对其性能进行了分析。 关键词:JPEG2000;图像压缩;基本原理;感兴趣区域 引言 随着多媒体技术的不断运用,图像压缩要求更高的性能和新的特征。为了满足静止图像在特殊领域编码的需求,JPEG2000作为一个新的标准处于不断的发展中。它不仅希望提供优于现行标准的失真率和个人图像压缩性能,而且还可以提供一些现行标准不能有效地实现甚至在很多情况下完全无法实现的功能和特性。这种新的标准更加注重图像的可伸缩表述。所以就可以在任意给定的分辨率级别上来提供一个低质量的图像恢复,或者在要求的分辨率和信噪比的情况下提取图像的部分区域。 1.JPEG2000的基本介绍及优势 相信大家对JPEG这种图像格式都非常熟悉,在我们日常所接触的图像中,绝大多数都是JPEG格式的。JPEG的全称为Joint Photographic Experts Group,它是一个在国际标准组织(ISO)下从事静态图像压缩标准制定的委员会,它制定出了第一套国际静态图像压缩标准:ISO 10918-1,俗称JPEG。由于相对于BMP等格式而言,品质相差无己的JPEG格式能让图像文件“苗条”很多,无论是传送还是保存都非常方便,因此JPEG格式在推出后大受欢迎。随着网络的发展,JPEG的应用更加广泛,目前网站上80%的图像都采用JPEG格式。 但是,随着多媒体应用领域的快速增长,传统JPEG压缩技术已无法满足人们对数字化多媒体图像资料的要求:网上JPEG图像只能一行一行地下载,直到全部下载完毕,才可以看到整个图像,如果只对图像的局部感兴趣也只能将整个图片载下来再处理;JPEG格式的图像文件体积仍然嫌大;JPEG格式属于有损压缩,当被压缩的图像上有大片近似颜色时,会出现马赛克现象;同样由于有损压缩的原因,许多对图像质量要求较高的应用JPEG无法胜任。 JPEG2000是为21世纪准备的压缩标准,它采用改进的压缩技术来提供更高的解像度,其伸缩能力可以为一个文件提供从无损到有损的多种画质和解像选择。JPEG2000被认为是互联网和无线接入应用的理想影像编码解决方案。 “高压缩、低比特速率”是JPEG2000的目标。在压缩率相同的情况下,JPEG2000的信噪比将比JPEG提高30%左右。JPEG2000拥有5种层次的编码形式:彩色静态画面采用的JPEG 编码、2值图像采用的JBIG、低压缩率图像采用JPEGLS等,成为应对各种图像的通用编码方式。在编码算法上,JPEG2000采用离散小波变换(DWT)和bit plain算术编码(MQ coder)。此外,JPEG2000还能根据用户的线路速度以及利用方式(是在个人电脑上观看还是在PDA上观看),以不同的分辨率及压缩率发送图像。 JPEG2000的制定始于1997年3月,但因为无法很快确定算法,因此耽误了不少时间,直到2000年 3 月,规定基本编码系统的最终协议草案才出台。目前JPEG2000已由ISO和

图像压缩技术介绍.

图像压缩技术介绍 由于图像和视频本身的数据量非常大,给存储和传输带来了很多不便,所以图 像压缩和视频压缩得到了非常广泛的应用。比如数码相机、USB摄像头、可视电话 、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 常用的图像的压缩方法有以下几种: 1、行程长度编码(RLE) 行程长度编码(run-length encoding)是压缩一个文件最简单的方法之一。 它的做法就是把一系列的重复值(例如图象像素的灰度值)用一个单独的值再加上 一个计数值来取代。比如有这样一个字母序列aabbbccccccccdddddd它的行程长度编码就是2a3b8c6d。这种方法实现起来很容易,而且对于具有长重复值的串的压缩编码很有效。例如对于有大面积的连续阴影或者颜色相同的图象,使用这种方法压 缩效果很好。很多位图文件格式都用行程长度编码,例如TIFF,PCX,GEM等。 2、LZW编码 这是三个发明人名字的缩写(Lempel,Ziv,Welch),其原理是将每一个字节的值都要与下一个字节的值配成一个字符对,并为每个字符对设定一个代码。当同 样的一个字符对再度出现时,就用代号代替这一字符对,然后再以这个代号与下个 字符配对。 LZW编码原理的一个重要特征是,代码不仅仅能取代一串同值的数据,也能够代替一串不同值的数据。在图像数据中若有某些不同值的数据经常重复出现,也能找到 一个代号来取代这些数据串。在此方面,LZW压缩原理是优于RLE的。 3、霍夫曼编码 霍夫曼编码(Huffman encoding)是通过用不固定长度的编码代替原始数据来实现的。霍夫曼编码最初是为了对文本文件进行压缩而建立的,迄今已经有很多变体。它的基本思路是出现频率越高的值,其对应的编码长度越短,反之出现频率越 低的值,其对应的编码长度越长。 霍夫曼编码很少能达到8∶1的压缩比,此外它还有以下两个不足:①它必须精确地统计出原始文件中每个值的出现频率,如果没有这个精确统计,压缩的效果就 会大打折扣,甚至根本达不到压缩的效果。霍夫曼编码通常要经过两遍操作,第一 遍进行统计,第二遍产生编码,所以编码的过程是比较慢的。另外由于各种长度的 编码的译码过程也是比较复杂的,因此解压缩的过程也比较慢。②它对于位的增 删比较敏感。由于霍夫曼编码的所有位都是合在一起的而不考虑字节分位,因此增 加一位或者减少一位都会使译码结果面目全非。 4、预测及内插编码

数字图像处理实验5 图像压缩

实验5 图像压缩 一.实验目的: 1.掌握图像压缩的原理——编码冗余,压缩比C R的计算等。 2.了解并掌握霍夫曼编码的原理、实现步骤。 3.掌握JPEG标准——通用的图像压缩/解压缩编码标准。 二.实验内容: 1.利用已给出的MATLAB自编函数库matlab_function文件夹,实现压缩比的计算。 2.对信号源符进行霍夫曼编码,以消除信源的冗余数据。 3.练习JPEG标准的压缩/解压缩技术。 三.实验原理: 1.图像压缩比C R的计算 函数imratio(f1, f2),计算图像压缩比C R,该函数来自MATLAB自编函数库matlab_function文件夹,语法如下: imratio(imread(‘filename’), ‘filename.jpg’) //第二个参数‘filename.jpg’仅是文件名,实际上是一个结构,内含压缩 //后的各种压缩信息,并不代表图像本身 >>f = imread(‘E:\医学图像处理实验讲义\实验五\car_lady.jpg’) >>imfinfo E:\医学图像处理实验讲义\实验五\car_lady.jpg //查看图像文件的详细信息 >>imwrite(f, ‘car_lady25.jpg’, ‘quality’, 25) //将压缩后的图像存到MATLAB默认路径中 >>imfinfo car_lady25.jpg //可依据图像信息计算出压缩率 >>f25 = imread(‘car_lady25.jpg’) >>Cr = imratio (f25, ‘car_lady25.jpg’) 2.霍夫曼编码 符号概率 a1 0.1875 a2 0.5 a3 0.125 a4 0.1875 函数huffman(p)进行霍夫曼编码,语法: huffman(p) //p为向量符号 >>p = [0.1875 0.5 0.125 0.1875] >>c = huffman(p)

多媒体图像压缩技术

多媒体图像压缩技术 2010级电子信息科学与技术刘小辉2010271022 摘要:随着计算机多媒体技术的不断发展,人们期望更高性能的图像压缩技术的出现。图像压缩是用最少的数据量来表示尽可能多的原图像的信息。多媒体数据压缩技术是现代网络发展的关键性技术之一。由于图像和声音信号中存在各种各样的冗余,为数据压缩提供了可能。数据压缩技术有无损压缩缩和有损压缩两大类,这些压缩技术又各有不同的标准。 Abstract:With the ever-growing multimedia technology, people are looking for ward to new image compression technologies with better performances. Image compression with the least amount of data is represented as much information of original image .Multimedia data compression technology is the modern network development of the key technology of. Because of the image and sound signal in the presence of various kinds of redundancy, compression of data is possible. Data compression technology of lossless and lossy compression two categories, these compression techniques and different standards. 关键字(Keyword):多媒体数据压缩技术(Multimedia data compression technology) 无损压缩和有损压缩(Lossless and lossy compression) 图像和声音信号(The image and sound signal) 最少的数据量(The least amount of data) 随着计算机多媒体技术和通信技术的日益发展,以及网络的迅速普及,图像数据信息以

图像压缩技术文档

J P E G 标准是由国际标准化组织ISO和国际电话电报咨询委员会CCITT为静止图像所建立的第一个国际数字图像压缩标准,它是一个适用范围很广的通用标准,既可以用于灰度图像,又可以用于彩色图像,可以支持各种应用。例如在计算机技术中,基于JPEG 有损压缩的数字水印算法,和嵌入式系统中的JPEG 分层压缩等。在JPEG 各类图像压缩算法中,基于离散余弦变换的图像压缩编码过程称为基本顺序过程,它应用于绝大多数图像压缩场合,并且它能在图像的压缩操作中获得较高的压缩比,并且重构图像与源图像的视觉效果基本相同。 基本原理 基于DCT 顺序型工作模式的JPEG 压缩算法系统的编码器与解码器的结构如图1 所示,量化编码是在进行了二元D C T 的系数量化后,且熵编码部分使用Huffman 编码方法。 图1 系统结构图 1 色彩变换与部分数据取样 色彩变换将计算机屏幕显示使用的RGB 色彩数据按照(1 )式给定的关系,转换成JPEG

中使用的YCbCr 数据,其中Y 是颜色的亮度,CbCr 是色调。 Y=0.2999R+0.5870G+0.1140B Cb = -0.1687R-0.3313G+0.5000B+128 (1) Cr = 0.5000R-0.4187G-0.0813B+128 在取样部分,考虑到人眼对图像的亮度变化敏感,而对颜色的变化迟钝。因此,对反映颜色变化的色调信息只取其部分数据进行处理。本文的JPEG 格式采用的部分取样方式为Yuv411,即每取4 个Y 数据,只取一个Cb 数据和一个Cr 数据。因此,原数据在尚未编码时,已获得50% 的压缩。 2 利用DCT 对空间频率的变换 离散余弦变换(DCT)实现将一组光强数据转换成频率数据。在压缩时,将源图像数据分成8*8 像素构成的像块的集合。经过零偏置将每一取样值从0~255 转为-128~+127,再做DCT 处理。DCT 将每个数据单元的值转换为64 个DCT 系数Svu,其中S00 称为直流系数,其余63 个系数称为交流系数。解压缩是正向变换的反过程。D C T 和IDCT 分别由公式(2)和公式(3)实现。 770 01(21)(21)(,)()()(,)cos cos 41616i j i u j v F u v C u C v f i j ππ==++????=????????∑∑ (2) 7700 1(21)(21)(,)()()(,)cos cos 422u v x u y v f i j C u C v F u v N N ππ==++????=????????∑∑ (3) 上式中(),()C u C v = (当u ,v=0时) (),()1C u C v = (其他情况) 3 量化和熵编码 直流分量和各交流分量可用不同量化间隔量化,低频分量量化得细,高频分量量化得粗。Y 、U 、V 也可用不同的量化表,Y 细量化,U 、V 粗量化。JPEG 规范中,Y 数据和Cb 、Cr 数据各有一个8 × 8 的推荐量化表,根据具体要求可以构造专用的量化表,但量化过程和逆量化过程应使用同样的量化表。量化是在图像文件品质与压缩比例之间做一选择的重要过程,而这也就是JPEG 所谓的失真压缩方式。经量化处理后的数据,应用平均压缩比最高的Huffman 码进行熵编码。 经过上述过程后可得到压缩图像。

(完整版)数字图像处理复习整理

《数字图像处理》复习 第一章绪论 数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理 第二章数字图像处理基础 2-1 电磁波谱与可见光 1.电磁波射波的成像方法及其应用领域: 无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要 红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用 可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域 ☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测 X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等 伽马射线(0.001nm-1nm)主要应用于天文观测 2-2 人眼的亮度视觉特征 2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力 2-3 图像的表示 3.黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像 (黑白图像一定是二值图像,二值图像不一定是黑白图像) 灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。 彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、 B、G是由不同的灰度级来描述的。 4.灰度级L、位深度k L=2^k 5.储存一幅M×N的数字图像所需的比特 b=M×N×k 例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit) 2-4 空间分辨率和灰度级分辨率 6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。一种常用的空间分辨率的定义是单位距离内可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。 7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂) 8.在图像空间分辨率不变的情况下,采样数越少,图像越小。同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小; 随着空间分辨率的降低,图像大小尺寸不变,图像中的细节信息在逐渐损失,棋盘格似的粗颗粒像素点变得越来越明显。由此也说明,图像的空间分辨率越低,图像的视觉效果越差;

Matlab的图像压缩技术

Matlab的图像压缩技术 一.目的要求 掌握Matlab图像图像压缩技术原理和方法。理解有损压缩和无损压缩的概念,了解几种常用的图像压缩编码方式,利用matlab进行图像压缩算法验证。二.实验内容 1、观察颜色映像矩阵的元素 >> hot(8) ans = 0.3333 0 0 0.6667 0 0 1.0000 0 0 1.0000 0.3333 0 1.0000 0.6667 0 1.0000 1.0000 0 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 数据显示第一行是1/3红色,最后一行是白色。 2、pcolor显示颜色映像 >> n=16; >> colormap(jet(n)); >> pcolor([1:n+1;1:n+1]); >> title('Using Pcolor to Display a Color )Map'); 图2 显示颜色映像

3、colorbar显示当当前坐标轴的颜色映像>> [x,y,z]=peaks; >> mesh(x,y,z); >> colormap(hsv); >> axis([-3 3 -3 3 -6 8]); >> colorbar; 图3 显示当前坐标轴的颜色映像4、图像格式转换 g=rgb2gray(I); g=rgb2gray(I); >> imshow(g),colorbar; 图4-1 原图像saturn.png

图4-2转换后的图像 5、求解图像的二唯傅里叶频谱 I=imread('cameraman.tif'); >> imshow(I) >> J=fftshift(fft2(I)); >> figure; >> imshow(log(abs(J)),[8,10]) 图5-1 原图像cameraman.png

数字图像处理 图像压缩

实验报告 实验名称实验二图像压缩 课程名称数字图像处理A 姓名成绩 班级学号 日期地点 1.实验目的 (1)掌握离散余弦变换DCT的实现方法,了解DCT的幅度分布特性,从而加深对DCT

变换的认识; (2)掌握图像DCT 变换编码的实现方法,从而加深对变换编码压缩图像原理的理解; (3)使用DCT 变换编码编写程序实现图像压缩; 2.实验环境(软件条件) Windws2000/XP MATLAB 7.0 3.实验方法 根据如图2.1所示的典型变换编码系统,采用DCT 变换对256×256大小、256级灰度的数字图像lena.bmp (如图2.2所示)进行如下处理: (1)对图像进行8×8分块处理并作DCT 变换,观察图像8×8子块的DCT 系数的分布,并分析其特点; (2)对DCT 系数进行量化及反量化处理,求反量化系数的逆DCT 变换,重新显示重建图像、误差图像和误差图像的直方图; (3)将量化步长分别增大为初始值的2倍、4倍、8倍后再进行DCT 变换编码,显示不同量化步长条件下的重建图像、误差图像以及误差图像的直方图。分析重建图像质量和量化步长的关系。 4.实验分析 结果图 图2.1 典型变换编码系统 图2.2 实验图像 lena.bmp

对经DCT 变化后的图像进行量 化反量化的图像 50 100 150 200 250 02000 4000 6000 量化步长增加为2倍

对经DCT 变化后的图像进行量 化反量化的图像 50 100 150 200 250 02000 4000 量化步长增为4倍

原图 像 经dct 变化的图 像 对经DCT 变化后的图像进行量 化反量化的图像 50 100 150 200 250 02000 4000 量化步长增为8倍

数字图像压缩技术的研究现状与展望

图像压缩技术的现状和展望 一.前言介绍 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,具有庞大数据量的数字图像通信对现有的有限带宽以严峻的考验,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 本文通过介绍其发展历程及其基本原理和其现阶段的应用,对图像压缩编码技术进行了系统性概述,最后对其前景作了总体上的展望。 二.图像压缩编码技术的发展历程 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有60多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。 三.JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG 压缩原理 JPEG 算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系

最新数字图像处理(基础)教案

数字图像处理(基础)教案 一、基础知识 第一节、数字图像获取 一、目的 1掌握使用扫描仪等数字化设备以及计算机获取数字图像的方法; 2修改图像的存储格式。 二、原理 用扫描仪获取图像也是图像的数字化过程的方法之一。 扫描仪按种类可以分为手持扫描仪,台式扫描仪和滚筒式扫描仪(鼓形扫描仪)。 扫描仪的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。各类扫描仪都标明了它的光学分辨率和最大分辨率。分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。 扫描仪工作时,首先由光源将光线照在欲输入的图稿上,产生表示图像特征的反射光(反射稿)或透射光(透射稿)。光学系统采集这些光线,将其聚焦在CCD上,由CCD将光信号转换为电信号,然后由电路部分对这些信号进行A/D转换及处理,产生对应的数字信号输送给计算机。当机械传动机构在控制电路的控制下,带动装有光学系统和CCD的扫描头与图稿进行相对运动,将图稿全部扫描一遍,一幅完整的图像就输入到计算机中去了。

图1.1扫描仪的工作原理 扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。 在扫描仪的工作过程中,有两个元件起到了关键的作用。一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。CCD是Charge Couple Device的缩写,称为电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能。CCD 在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。CCD芯片上有许多光敏单元,它们可以将不同的光线转换成不同的电荷,从而形成对应原稿光图像的电荷图像。如果我们想增加图像的分辨率,就必须增加CCD上的光敏单元数量。实际上,CCD的性能决定了扫描仪的x方向的光学分辨率。A/D变换器是将模拟量(Analog)转变为数字量(Digital)的半导体元件。从CCD获取的电信号是对应于图像明暗的模拟信号,就是说图像由暗到亮的变化可以用从低到高的不同电平来表示,它们是连续变化的,即所谓模拟量。A/D变换器的工作是将模拟量数字化,例如将0至1V的线性电压变化表示为0至9的10个等级的方法是:0至小于0.1V 的所有电压都变换为数字0、0.1至小于0.2V的所有电压都变换为数字1……0.9至小于1.0V的所有电压都变换为数字9。实际上,A/D变换器能够表示的范围远远大于10,通常是2^8=256、2^10=1024或者2^12=4096。如果扫描仪说明书上标明的灰度等级是10bit,则说明这个扫描仪能够将图像分成1024个灰度等级,如果标明色彩深度为30bit,则说明红、绿、蓝各个通道都有1024个等级。显然,该等级数越高,表现的彩色越丰富。 步骤

图像压缩技术的发展现状与趋势

图像压缩技术的发展现状与趋势 耿玉静1 赵华2 1燕山大学信息科学与工程学院 河北秦皇岛 (066004) 2河北师范大学电子系 河北保定 (071003) E-mail: gyjlunwen@https://www.doczj.com/doc/8114963066.html, 摘要文章简要论述了图像和视频压缩技术的研究状况,就目前国际上正在研究的压缩标准和方法作了介绍,并对图像和视频压缩技术的发展趋势和前景进行了初步探讨。 关键词图像压缩,视频编码,视频对象,压缩标准 1.图像压缩的可行性 图像编码压缩的目的是对要处理的图像源数据按一定的规则进行变换和组合[1],从而达到以尽量少的比特数来表征图像,同时尽可能好的复原图像的质量,使它符合预定应用场合的要求。图像数据之所以可以进行压缩,是因为有以下几个方面的原因:组成图像的各像素之间,无论在行方向还是列方向都存在一定的相关性,即原始图像数据是高度相关的,应用某种编码方法提取或减少这些相关性,便可达到压缩数据的目的;从信息论看,描述图像信源的数据是由有效信息量和冗余量两部分组成的,去除冗余量能够节省传输和存储中的开销,同时又不损害图像信源的有效信息量;有些场合允许图像编码有一定的失真,也是图像可以压缩的一个重要原因。 2.图像压缩的分类 图像压缩编码的方法目前有很多种,出发点不同其分类亦有差异。以信息保真度为出发点,可以分为两大类:一类是冗余度压缩法。如著名的哈夫曼编码、香农编码、游程编码等,其特征是压缩比较低(一般不超过8:1),但不丢失任何数据,可以严格恢复原图像,实现编/解码的互逆,故又称可逆编码或无损压缩。另一类是熵压缩法。如预测编码、变换编码、统计编码等,由于在压缩过程中要丢失一些人眼所不敏感的图像信息,且所丢失的信息不可恢复,即图像还原后与压缩前不完全一致,故又称有损压缩。以具体编码技术为出发点,可以分为:预测编码、变换编码、统计编码、轮廓编码、模型编码等。 3.图像压缩技术的现状 20世纪80年代后,ISO、IEC和ITU陆续制定了各种数据压缩与通信的标准与建议。 3.1静止图像压缩标准:JPEG标准&JPEG 2000 标准 3.1.1 JPEG 标准 JPEG 全名为Joint Photographic Experts Group,是一个在国际标准组织(ISO)下从事静止图像压缩标准制定的委员会。JPEG标准从1986年正式开始制订,1988年决定采用以图像质量最好的ADCT(Adaptive Discrete Cosine Transform)方式为基础的算法作标准[2],于1991年3月提出10918号标准[3]“连续色调静止图像的数字压缩编码”,即JPEG标准[4,5]。它在较低的计算复杂度下,能提供较高的压缩比与保真度。 - 1 -

数字图像处理图像编码要点

数字图像处理上机实习报告(DIP4----DIP7) 学生姓名:杜坤 班级:071123 学号:20121003699 指导老师:傅华明

DIP-4 图像编码 一.题目要求 对图实施费诺-香农编码和解码,计算图像熵,平均码长和冗余度。 二.算法设计 1.测试脚本的程序框图 开始 读入图像的 数据为a 统计各个灰度值的概率 将码字初始化 编码 根据编码的码字对 图像数据进行输出 解码 将解码后的数据 data变行为8*8 计算图像的熵 计算图像的 平均码长 编码的编码效率 计算冗余度 校对编码前后的数 据 结束 2.编码程序框图 读入图像的直方图,将图像的灰度值按照概率大小排序,按照香农编码的规则编码。 香农编码将概率由大到小,由上到下排成一排,然后分为两组。是将大的一组概率赋值为0,概率小的一组赋值为1,这是赋值的原则。然后依次的重复,直到每组只有一种输入元素为止。

3.解码程序框图 三.实现代码 1.脚本文件 clear all load mat p = impr(a); %统计概率 code = FanoCodeInit(p); %Fano编码初始化

code = FanoEncoder(code);%Fano编码 outstream = FanoCodeStream(a,code); %输出 data = FanoDecoder(outstream,code);%解码 data = reshape(data,8,8); %恢复8*8的形状 data = data'; %转置 I = abs(p.*log2(p)); disp('图像的熵为:'); H = sum(I(:)) %计算熵 disp('图像的平局码长为:') B = FanoCodeLength(code); %求平均长度 disp('编码冗余度为:'); r = B/H - 1 %求冗余 disp('编码效率为:') e = H/B %求编码效率 if isequal(a,data) msgbox('解码后的数据和输入的数据完全吻合'); end 2.统计灰度的概率 function [p]= impr(f) %概率统计 [m,n] = size(f); graymax = max(f(:)); %找出灰度最大值,划定统计范围p = zeros(1,graymax + 1); for i = 1:m for j = 1:n x = f(i,j) + 1; p(x) = p(x) + 1; end end p = p/(m*n); End 3.码字的初始化 function [code] = FanoCodeInit(p) %FanoShano码字初始化 [m,n] = size(p); for i = 1:n code(i).gray = i - 1; code(i).p = p(i); code(i).str = ''; end

图像压缩技术的综述

题目:图像压缩技术的综述 学生姓名:徐欢学号:070110117 系别:计算机与信息学院专业:计算机科学与技术 入学年份:2010年9月 导师姓名:陈蕴谷职称/学位:讲师/硕士研究生 导师所在单位:中国科学院合肥物质研究院 完成时间:2014年4月 1.引言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像数据是用来表示图像信息的,如果不同的方法为表示相同的信息使用了不同的数据量,那么使用较多数据量的方法中,有些数据必然代表了无用的信息,或者是重复的表示了其他数据表示的信息,前者成为数据冗余,后者成为不相干信息。图像压缩编码的主要目的,就是通过删除冗余的或者是不相干的信息,以尽可能地的数码率来存储和传输数字图像数据。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。 图像编码基础 图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。编码技术比较系统的研究始于Shannon信息论,从此理论出发可以得到数据压缩的两种基本途径。一种是联合信源的冗余度也寓于信源间的相关性之

数字图像处理_(整理后的试题)

一、单项选择题 1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为:D A. 0 B.255 C.6 D.8 2.图象与灰度直方图间的对应关系是:B A.一一对应 B.多对一 C.一对多 D.都不对 3. 下列算法中属于图象锐化处理的是:C A.低通滤波 B.加权平均法 C.高通滤 D. 中值滤波 4.下列算法中属于点处理的是:B A.梯度锐化 B.二值化 C.傅立叶变换 D.中值滤波 5、计算机显示器主要采用哪一种彩色模型A A、RGB B、CMY 或CMYK C、HSI D、HSV 6. 下列算法中属于图象平滑处理的是:C A.梯度锐化 B.直方图均衡 C. 中值滤波 https://www.doczj.com/doc/8114963066.html,placian 增强 7.采用模板[-1 1]主要检测__C_方向的边缘。A.水平B.45° C.垂直D.135° 8.对一幅100 100 像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: A A.2:1 B.3:1 C.4:1 D.1:2 9.维纳滤波器通常用于 C A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 10.图像灰度方差说明了图像哪一个属性。B A 平均灰度 B 图像对比度 C 图像整体亮度 D 图像细节 11、下列算法中属于局部处理的是:( D ) A.灰度线性变换 B.二值化 C.傅立叶变换 D.中值滤波 12、数字图像处理研究的内容不包括D。 A、图像数字化 B、图像增强 C、图像分割 D、数字图像存储 13、将灰度图像转换成二值图像的命令为C A.ind2gray B.ind2rgb C.im2bw D.ind2bw 14.像的形态学处理方法包括( D ) A.图像增强 B.图像锐化 C 图像分割 D 腐蚀 15.一曲线的方向链码为12345,则曲线的长度为 D a.5 b.4 c.5.83 d.6.24 16.下列图象边缘检测算子中抗噪性能最好的是:B a.梯度算子 b.Prewitt 算子 c.Roberts 算子 d. Laplacian 算子 17.二值图象中分支点的连接数为:D a.0 b.1 c.2 d.3 二、填空题 1.图像锐化除了在空间域进行外,也可在频率域进行。 2.对于彩色图像,通常用以区别颜色的特性是色调、饱和度、亮度。 3.依据图像的保真度,图像压缩可分为无损压缩和有损压缩 4.存储一幅大小为1024×1024,256 个灰度级的图像,需要8M bit。 5、一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析5个模块组成。 6、低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。 7、一般来说,采样间距越大,图像数据量少,质量差;反之亦然。 8、多年来建立了许多纹理分析法,这些方法大体可分为统计分析法和结构分析法两大类。 9、直方图修正法包括直方图均衡和直方图规定化两种方法。 10、图像压缩系统是有编码器和解码器两个截然不同的结构块组成的。 13、数字图像处理,即用计算机对图像进行处理。

数字图像处理实验报告图像压缩

竭诚为您提供优质文档/双击可除数字图像处理实验报告图像压缩 篇一:数字图像处理实验报告 数字图像处理 实验报告 课程: 班级: 学号: 姓名: 指导老师: 日期: 实验一 内容一mATLAb数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在mATLAb中能够处理哪些格式图像。 2.熟练掌握在mATLAb中如何读取图像。 3.掌握如何利用mATLAb来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在mATLAb中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验内容及步骤 1.利用imread()函数读取一幅图像,假设其名为flower.tif,存入一个数组中;解:读取图像,存入数组I 中:I=imread(flower.tif); 2.利用whos命令提取该读入图像flower.tif的基本信息; 解:查询数组I的信息: 3.利用imshow()函数来显示这幅图像; 解:因为imshow()方法不能直接显示tif图像矩阵,因此要先转换成Rgb模式,再调用imshow()显示。 代码如下: >>I1=I(:,:,1); >>I2=I(:,:,2); >>I3=I(:,:,3); >>Rgb=cat(3,I1,I2,I3); >>imshow(Rgb); 显示的图像为: 4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;

解:代码如下:>>imfinfo(flower.tif) 结果截图: 5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q),q取0-100。 解:代码:>>imwrite(Rgb,flower.jpg,quality,80); 结果截图: 6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。 解: 代码:>>imwrite(Rgb,flower.bmp); 结果截图: 篇二:数字图像处理实验报告(完整版) 数字图像处理 实验一mATLAb数字图像处理初步 一、显示图像 1.利用imread()函数读取一幅图像,假设其名为lily.tif,存入一个数组中; 2.利用whos命令提取该读入图像flower.tif的基本信息; 3.利用imshow()函数来显示这幅图像; 实验结果如下图:

相关主题
文本预览
相关文档 最新文档