当前位置:文档之家› 空心薄壁墩钢模板计算书

空心薄壁墩钢模板计算书

附件2

模板设计计算书

一、模板系统结构概述

1、本模板系统适用于邵光高速A7标项目部符家边大桥空心

墩的模筑混凝土施工。

2、本模板系统由模板及背楞组成。

模板结构:面板Q235,t=6mm钢板;

连接法兰、边框-12*100钢板;

竖背肋,[10#槽钢,间距300mm;

背楞采用2×[18a#槽钢,间距≤1250mm。

螺丝M22*60mm,对拉杆M25*1000/1700mm。

模板拼装截面图

正面模板

侧面模板

二、计算参考资料

1、《钢结构设计规范(GB50017—2003)》

2、《模板工程技术规范(GB50113—2005)》

3、《结构设计原理》

4、《铁路桥涵施工规范(TB10230—2002)》

5、《钢结构设计与制作安装规程》

三、计算荷载值确定依据

1、泵送混凝土施工方式以30立方米/小时计,浇注速度为V≤3m/h,浇注高度H=6.75m。

2、混凝土初凝时间为t=3小时。

3、振动设备为50插入式振动棒。

4、混凝土比重值取r=2.5t/m3,坍落度16—20cm。

5、荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。

6、钢材容许应力(单位;N/mm2)

牌号厚度或直径

(mm)抗拉,抗压

和抗弯f

抗剪

fv

端面承压

fce

Q235钢≤16 215125

325 >16~40 205120

>40~60 200115

>60~100190110

四、荷载取值

1、采用内部振捣器时,新浇筑的混凝土作用于模板的最大侧压力,可按下列二式计算,并取二式中的较小值: Pmax1=0.22*r*t*β*V1/2

Pmax2= rH

β—混凝土坍落度影响系数,当坍落度≥11cm时,

取β=1.15;

Pmax1=0.22*r*t*β*V1/2

=0.22*25*3*1.15*31/2=33 kN/m2

Pmax2= rH

=25*6.75=168.8kN/m2

取Pmax= 33 kN/m2

2 、施工荷载按《模板工程技术规范(GB500113—2005)》中取定(不计算风,雪荷载)。

Ps=2KN/m2

总荷载 Pmax =33+2=35kN/m2

效核安全系数取k=1.2*1.4=1.68,得

P =1.68*35kN/m2 =59kN/m2

取P=60kN/m2

五、模板的强度与挠度验算

1、面板验算,取模板的最大侧压力P=60kN/m2

(1)强度验算

面板为6mm厚钢板,取1mm板条作为计算单元,荷载为:q=0.06×1=0.06N/mm

面板的截面系数:

W=1/6·b·h2=1/6×1×62=6mm3

I =1/12·b·h3=1/12×1×63=18mm4

Max= qL2/8=0.06×3002/8=675N.mm

应力为:δmax=Max/W=675/6=113N/ mm2< 215N/ mm2

满足要求。

(2)挠度验算

跨中的挠度(按2跨连续梁计算)

y=5qL4/(384EI)=(5*0.06×6004)/(384×2.1×105×

18)/38=0.70mm<1.5mm

满足要求。

2、竖肋计算

坚肋间距300mm,采用[10#槽钢,支撑在背楞上,荷载

q=0.06×300=18 N.mm

[10#槽钢截面系数W=39.7×103mm3

惯性矩I=198×104mm4

坚肋为两端带悬臂的简支梁。

由于混凝土并非理想流体,坚肋不应按连续梁校核,应按悬臂梁和简支梁分别效核。

(竖肋悬臂长度≤500mm,背楞间距≤1250mm)

q=18N/mm q=18N/mm

500 1250

qL2/2=22.5×105N.mm qL2/8=35.2×105N.mm

Max=2250000 N.mm Max=3520000 N.mm

悬臂强度验算1δmax=Max/W=2250000/(39.7×103)

=56.7N/ mm2<215 N/ mm2满足要求。

跨中强度验算2δmax=Max/W=3520000/(39.7×103)

=88.7N/ mm2<215 N/ mm2满足要求。

挠度验算

悬臂部分的挠度

y=qL4/(8EI)=(18×5004)/(8×2.1×105×198×

104)=0.34mm

y/L=0.34/500=6.8*10-4<1/500。满足要求。

跨中的挠度

y=5qL4/(384EI)=(5*18×12504)/(384×2.1×105×198×104)=1.38mm

W/L=1.38/1250=1.38*10-3<1/500。满足要求。

3、背楞计算

背楞选用2*[18a#槽钢。

惯性矩I和截面系数W计算:

I1=2*1273*104=2546*104 mm4

W=2*141*103 mm3 =282*103mm3

q=1250×0.060=75N/mm

q=75N/mm

1350 1100 1100 1100 1350

6000

由于混凝土非理想流体,按两跨简支梁计算。

Max=qL2/8=75×11002/8=1.13×104N.mm

Max=qL2/8=75×13502/8=1.71×104N.mm

应力为:

δ=Max/W=1.13×104/282*103=0.04N/mm2<215 N/mm2 满足要求δ=Max/W=1.71×104/282*103=0.06N/mm2<215 N/mm2 满足要求最大挠度

W L= 5qL4/384EI

=5×75×13504/(384× 2.06×105×2546*104)

=0.62mm

W/L=0.62/1350=3.7*10-4<1/1000,满足要求。

4、对拉杆校核:

每节采用(24根直拉杆)(8根斜拉杆)Φ30圆钢,丝车M25,净面积S=706.9㎜2横间距为1350mm,竖间距为1250mm,单根拉杆所受力为:

F=P×A=60×103× 1.35×1.25=101.3×103 N.mm

σ=P/S=60×103/706.9×106=8.5N.mm<<215 N/mm2

剪力τ=VS/It w={(模板重量+施工载荷*1.2)*保险系数 1.2/毛截面惯性矩*腹板厚度}/32根(1节锚固)

={ (30+30*0.12)*30*0.12/ It w} 32

=43/1.6*6=43/9.6=7.2≤125KN

经过验算以上指标满足要求,故模板结构满足使用要求。

薄壁空心墩作业指导书

空心薄壁及方墩施工工艺 本标段共有薄壁空心墩14座,方墩30座,最高墩高为56m,属于高墩施工,且均处在深沟峡谷中,施工难度大。根据墩身特点,我部计划采用翻模工艺施工,每次施工高度为4.5m。墩身的模板安装采用塔吊进行,施工人员利用电梯或人行步梯上下。混凝土的浇注采用卧泵输送。 1.前期工作 严格按照塔吊、电梯安装说明进行塔吊及电梯安装工作。塔吊、电梯基础为钢筋混凝土基础,基础的设计要以能够承受塔吊、电梯自重荷载和起吊重物荷载及倾覆力矩为准。 墩身模板采用专业模板厂制作的大块钢模板进行施工,强大的桁架结构作为背肋,每个施工节段高 4.5m,为满足施工要求,我部计划在每座有薄壁墩及方墩的桥梁中同一墩号左右幅同时进行施工。对直径≥25mm的钢筋采用滚轧直螺纹接头接长,其它钢筋采用绑扎或搭接焊接。焊接时,要求单面焊焊缝长度不小于10d,双面焊焊缝长度不小于5d。在凿毛后的承台顶面准确进行放样,检查校正承台预埋钢筋---搭设支架并绑扎墩身钢筋---支立一节模板---一次浇筑底部实心部分及倒角部分砼,之后开始循环翻模施工。 2. 施工放样 在进行某节段墩身混凝土施工前,首先要进行桥墩平面位置放样,目的是检查上一节段墩身施工的平面位置是否有偏差(或承台中预埋墩身钢筋位置的准确性),同时作为支立本节段模板的参考点。另外,需要对翻模的主要受力构件和易疲劳破坏的部位进行检查,如钢丝绳、卷扬机、拉模钢筋螺丝等。 3. 墩身钢筋的安装和绑扎 测量定位和安全检查符合施工要求后,开始墩身钢筋的安装和绑扎。墩身钢筋的提升通过塔吊来完成。主钢筋采用滚轧直螺纹连接或搭接焊接,主筋的垂直度采用定位架来控制。在主筋上画线来对箍筋定位,确保其箍筋间距与设计一致。防裂钢筋网片绑扎在横向水平箍筋上,注意保护层厚度的控制。焊接或绑扎接头错开布置。 1)钢筋工程 墩身钢筋在安装过程中,对直径≥25mm的钢筋采用滚轧直螺纹接头接长,其它钢筋采用绑扎或搭接焊,并在钢筋安装施工中严格按照规范(JTJ041-2000)执行处理。防裂钢筋网的安装严格按照施工图纸要求施工。 ⑴钢筋接头工艺 根据设计要求,我部在施工时,对直径≥25mm的钢筋采用滚轧直螺纹接头接长,主筋接头数在同一断面不超过全断面的50%,墩身集束钢筋束筋的一个接

模板受力计算

墩柱模板设计计算书 (以B2#为例) 设计说明:墩柱高度为8米,截面规格为为9米×4米。设计模板的面板为6mm厚Q235钢板,纵肋采用[10#槽钢,间距为350mm,背楞采用28#槽钢,间距为1000,浇注时采用泵送混凝土,浇注速度为 1.5米 /小时。 I 荷载 砼对模板的侧压力: F=0.22×r c×t0×β1×β2V1/2 =0.22×26×(200/(15+25))×1.2×1.15×21/2 =55.8 KN/m2 V=2m/ h(浇注速度) t=25℃(入模温度) 倾倒混凝土时产生的水平荷载为2 KN/m2 振捣混凝土时产生的水平荷载为2 KN/m2 荷载组合为:(55.8×1.2+4×1.4)×0.85=61.7 KN/m2 II面板验算 已知:板厚h=6mm 取板宽b=10mm q=F〃b=0.617N/mm按等跨考虑

1、强度验算: Mmax =0.1×ql2=0.1×0.617×3502=7558.3 N〃mm 截面抵抗矩W=bh2/6=10×62/6=60 mm3 最大内力:σ=Mmax/W= 7558.3/60=126N/ mm2<215N/ mm2 满足要求。 2、挠度验算: I=bh3/12=10×63/12=180 mm4 ω=0.677×ql4/100EI =0.677×0.617×3504/(100×2.06×105×180) =1.7mm 满足要求。 III 竖肋验算 已知:l=1000mm a=500mm q=0.0617×350=21.6N/mm W[10=39.7×103mm3 I[10=198.6×104mm4

英山河大桥空心薄壁高墩翻模施工技术

英山河大桥空心薄壁高墩翻模施工技术 在山区修建高等级公路,桥、隧相连,长大隧道、高墩高架桥是不可免的。由于山区高架桥墩的特点,下部结构一般都采用空心薄壁墩,结构轻,具有良好的抗弯、抗扭能力,桥墩刚度和稳定性高,适用于不同体系的施工,且对于大中跨径的预应力混凝土箱梁桥而言具有良好的经济技术指标,并可以改善上部结构的受力状况。空心薄壁高墩施工重点是解决模板选型、模板安装及拆除、混凝土运输、墩身垂直度控制等。 1、工程概况 六潜高速公路地处大别山腹地,桥址处地形崎岖,山势高险陡峻。YQ-03合同段英山河大桥设计为桩基础,桩径2m,每墩承台下有4根桩基;承台尺寸8.5m×8.5m×3.0m,左、右分离式承台;全部为空心薄壁墩,共10座,最大墩高40.2米,墩身外截面为6.5m×4.0m的等截面,壁厚0.6m,内截面上下两端为变截面。 本桥桥跨布置为40m+4×70m+40m,为变截面连续梁-连续刚构桥。由左、右分离的两个单箱单室截面组成,箱梁根部高度为 4m,跨中高度为2.0m,每个T型刚构有10对对称悬灌块组成,块段长度从3m~4m逐渐调整,梁段高度从4~2m逐渐变化。 2、模板方案选择 目前,空心薄壁高墩的施工模板方案主要有滑模、爬模、翻模三种方案可供选择。液压滑模和液压爬模施工速度快,但配套设备多,施工机具投入大,一般均需配备塔吊、电梯等设备,模板刚度高,自重大,混凝土外观质量差,施工纠偏困难。一旦开始施工,不得中断,雨季施

工质量难以保证,且昼夜连续作业,管理难度较大。“提升翻模”施工落地支架材料用量较大,但配套设备较少,施工机具投入小,模板刚度要求低、自重小,混凝土外观质量容易控制,施工纠偏容易,可以连续和间断施工。因此,根据本工程现场实际情况,经比较,最终决定采用“钢管爬架翻模”(简称“翻模”)施工空心薄壁高墩,充分利用常用构件,且工艺较简单易行。 3、翻模设计及稳定性分析 3.1 翻模设计 英山河大桥全桥10座空心墩身,合计高度272m,平均27.2m/墩,最大墩高40.2m。模板系统主要由外模、内模、模板加固系统等组成。外模共计配备4套翻模,每一套翻模共6.0m高,每一套翻模分三节,每节2.0m。内模采用竹胶板,配备数量同外模,每节内模8块,即四个拐角各一块,顺桥向每侧各一块,横桥向每侧各一块,以方便内模拆模。 外模由中铁四局四公司模板厂加工,每节外模由4块3.25×2.0m 和2块4.0×2.0m钢模组成。面板为5mm厚钢板,竖向采用[50槽钢加固,间距30cm,横肋采用2根[槽钢,距模板边缘30cm,模板四周采用∟80角钢包边。模板四角设有倒角拉杆,同拉杆共同防止胀模现象发生。模板施工见图一:

钢模板、拉杆l螺栓及模板连接螺栓计算

计算书 本工程施工所用模板主要用在箱涵的侧墙和顶板及桥墩和桥台,采用大模板可大大节省模板材料,加快施工进度。 一、新浇混凝土对模板侧面的压力计算 在进行侧模板及支承结构的力学计算和构造设计时,常需计算新浇混凝土对模板侧面的压力。混凝土作用于模板的压力,一般随混凝土的浇筑高度而增加,当浇筑高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。 采用内部振捣器,当混凝土浇筑速度在6.0m/小时以下时,新浇混凝土作用于模板的最大侧压力,可按以下二式计算,并取二式中的较小值。 P m=4+1500K SKwV1/3 /(T+30)(3-1)P m=25H(3-2)式中:Pm——新浇混凝土的最大侧压力(KN/m2); T——混凝土的入模温度(oC); H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);K S——混凝土坍落度影响修正系数。当坍落度为50~90mm时取1.0,为110~150mm时取1.15; K W——外加剂影响修正系数。不掺外加剂时取1.0,掺有缓凝作用的外加剂时取1.2; V——混凝土的浇筑速度(m/h)。

已知混凝土每环最大为4m,采用坍落度为120mm的普通混凝土,浇筑速度为0.25m/h,浇注入模温度为30oC,则作用于模板的最大侧压力及有效压头高度为: 查表得:K S=1.15,K W=1.2 由公式(3-1),P m=4+1500×1.15×1.2×(1.2)1/3 /(30+30)=40.7 KN/m2由公式(3-2),P m=25×2=50KN/m2 取较小值,故最大侧压力为40.7KN/m2 。有效压头高度为:h=40.7/25=1.628m。 二、模板拉杆、螺栓计算 1、拉杆及栏杆上螺栓 模板拉杆用于连接内、外两组模板,保持内、外两组模板的间距,承受混凝土侧压力和其它荷载,使模板有足够的刚度和强度。本工程模板拉杆采用对拉螺栓,采用Φ16精轧螺纹钢制作。其计算公式为: F=P mA 式中:F——模板拉杆承受的拉力(N); P m——混凝土的侧压力(N/m2

空心薄壁墩 -分解

空心薄壁墩 施工方案 编制: 审核: 审批:

空心薄壁墩施工方案 1、编制依据 1.1、交通部《公路工程技术标准》JTGB01-2003; 1.2、交通部《公路桥涵施工技术规范》JTJ041-2011; 1.3、交通部《钢筋焊接及验收规范》JGJ18-2003; 1.4、建设部《滑动模板工程技术规范》GB50113-2005 1.5、交通部《公路工程水泥混凝土试验规程》JTGE30-2005; 1.6、高速公路工程《招标文件》及《两阶段施工图设计》图纸; 1.7、空心薄壁墩现场施工实际情况; 2、编制范围 本施工技术方案适用于高速高速公路三江至柳州土建工程No5标蕉花塘大桥12#右幅的空心薄壁墩施工 3.工程概况 选取蕉花塘大桥12#右幅为本标段等截面空心薄壁墩首件工程,结构尺寸为650cm×260cm,有1道横隔板,底部有100cm实心段和150cm×50cm变段,上部100cm实心段和150cm×50cm变段,内模有30cm×30cm倒角。墩身采用C40砼浇筑,砼方量为341.6m3,钢筋数量为59580.5Kg,D6网片为3070.4Kg。 4.施工人员及机械配置 4.1.主要管理人员 序号职务姓名职称 1 工地负责人工程师

2 技术负责人赵迎春工程师 3 测量工程师工程师 4 材料负责人工程师 5 质量负责人工程师 6 安全负责人工程师 7 试验负责人工程师 8 机械负责人工程师 4.2.机械设备配置 序号名称规格型号单位数量 1 砼搅拌站HZS-60 台 2 2 砼罐车8m3台 4 3 吊车徐工25T 台 1 4 装载机ZL50C 台 2 5 发电机DF-250-GZ 台 1 6 卷扬机5T 台 1 7 液压设备YKT-36 套 1 8 液压千斤顶HM-100 只10 9 砂轮磨光机台 1 10 钢筋切断机台 1 11 钢筋弯曲机SKWQ-40 台 2 12 电焊机BX-400 台 2

墩柱模板计算书

武汉美高钢模板有限公司
项目名称:中铁六局合福铁路工程
墩柱模板计算书
工程编号:GLTL-DZ-110328
设 计:
王奎
审 核:
批 准:
武汉美高钢模板有限公司
2011 年 3 月 28 日
1

中铁六局合福铁路工程墩柱模板
武汉美高钢模板有限公司
计 算 书
一、编制依据: 编制依据: 依据 1、 《铁路桥涵设计基本规范》(TB10002.1-2005) 2、 《钢结构设计规范》(GB50017—2003) 3、 《建筑钢结构焊接技术规程》 JGJ81-2002
4、 《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、 《铁路组合钢模板技术规则》(TBJ211-86) 6、 《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、 《铁路桥涵施工规范》(TB10203-2002) 8、 《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 9、 《建筑结构静力计算手册》 ( 第二版 ) 10、 《预应力混凝土用螺纹钢筋》 (GB/T20065-2006) 二、计算参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝浇注入模温度:25℃; 3、混凝土塌落度:160~180mm; 4、混凝土外加剂影响系数取 1.2; 5、混凝土浇注速度:2m/h; 6、设计风力:8 级风; 7、模板整体安装完成后,混凝土泵送一次性浇注。
三、设计计算指标采用值 1、钢材物理性能指标 弹性模量 E=2.06×105N/mm ,质量密度ρ=7850kg/m ;
2 3
2

模板受力计算

目录 一模板系统强度、变形计算 ...................... 错误!未定义书签。 侧压力计算.................................. 错误!未定义书签。 面板验算.................................... 错误!未定义书签。 强度验算.................................... 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 木工字梁验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 槽钢背楞验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 对拉杆的强度的验算.......................... 错误!未定义书签。 面板、木工字梁、槽钢背楞的组合挠度为 ........ 错误!未定义书签。二受力螺栓及局部受压混凝土的计算............... 错误!未定义书签。 计算参数.................................... 错误!未定义书签。 计算过程.................................... 错误!未定义书签。 混凝土的强度等级......................... 错误!未定义书签。 单个埋件的抗拔力计算 ..................... 错误!未定义书签。 锚板处砼的局部受压抗压力计算 ............. 错误!未定义书签。 受力螺栓的抗剪力和抗弯的计算 ............. 错误!未定义书签。 爬锥处砼的局部受压承载力计算 ............. 错误!未定义书签。

薄壁空心高墩

6!工程概况 薄壁空心高墩是目前高速公路桥墩设计中广泛采用的一种形式" 因其墩身可达到较高高度" 且结构经济实用" 施工简便而普遍受到欢迎# 郭家沟大桥是丹拉国道主干线青海省境内西宁过境公路西段项目大桥之一"桥梁上部结构为RM cZ- 装配式预应力混凝土连续箱梁"桥长UZQ3Q-"墩柱为空心薄壁墩和柱式墩"基础为钻孔灌注桩$ 桥址所在地地势高低悬殊"地形地貌复杂"左%右Uz 墩位于沟底"设计为空心薄壁墩"高度\738-$ U!主要施工技术难点 & 6’郭家沟大桥所在地处( ‘)型黄土冲沟"两侧斜坡陡峻"坡面植被稀疏"仅为一些荒草"根系浅"固坡能力差"有小型滑坡迹象"且沟内有 大量垃圾"给施工带来相当大的难度# & U’空心薄壁墩高度为\738-"且为矩形变截面设计#由于该桥空心薄壁墩只有两个"采用的定型钢模板几乎不能周转"成本较高# & \’U 个桥墩均属柔性墩"对墩身混凝上的整体性和墩中心线的控 制要求极为严格# \%施工方案的选择 根据现场复杂的地形地质条件"桥墩墩高%壁薄%变截面的特点"并 结合实际遇到的施工技术难点以及该公司机械设备的情况" 提出了以下三种施工方案进行比选*一为滑模施工"二为爬模施工"三为翻模施 工$ & 6’滑升模板施工 滑升模板施工进度快!结构整体性好"能保证工程质量"安全可靠$ 但施工必须是动态连续的"不能间断$ 且滑模结构复杂"设备投入量大" 耗用大量滑升支承杆材料和测量施工定位的劲性骨架材料" 成本较高而且工艺要求严格"混凝土质量难以控制"易使混凝土表面形成裂纹或出现变形$ & U’爬模施工 爬升模板集工作平台!支架!模板于一身"无需提升设备"无需为施 工模板搭设工作平台"也不需为模板搭设支架"依靠自身动力交替垂直或斜向爬升和下降" 克服了滑模在动态下浇注和在混凝土较低的状态下脱模时容易发生中线水平偏高的缺点$ 但爬升结构体系复杂"工序较繁琐"成本也较高$ & \’翻模施工 翻模施工速度快"能够随时纠正墩身施工误差"设备不复杂"经济 合理+拆模后的混凝土表面平整光洁"克服了滑模施工的不足"翻模对 于薄壁空心墩施工来说是理想的施工方法:可节省模板:便于人工操作: 确保砼的密实度$ 综合考虑各方案的优缺点"并结合工程的实际情况"决定采用翻模 施工方法$ c!翻模施工 c36 翻模施工设备构成 翻模施工设备主要由模板系统!提升系统以及附属设备构成$ c3636 模板系统*包括模板!工作平台!吊架等$

墙模板(组合式钢模板)计算书_20150716_101743984

墙模板(组合式钢模板)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《组合钢模板技术规范》GB 50214-2001 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.2]=min[29.87,76.8]=29.87kN/m2 承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]=0.9max [1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=0.9max[38.644,42.285]=0.9×42.285=38.056kN/m2 正常使用极限状态设计值S正=G4k=29.87 kN/m2 三、面板布置

模板设计立面图 四、面板验算 面板长向接缝方式为端缝齐平,根据《组合钢模板技术规范》GB50214,4.3.5和4. 4.4条,面板强度及挠度验算,宜以单块面板作验算对象。面板受力简图如下:

1、强度验算 q=0.95bS承=0.95×0.6×38.056=21.692kN/m 面板弯矩图(kN·m) M max=1.091kN·m σ=M max/W=1.091×106/21.1×103=51.724N/mm2≤[f]=205N/mm2 满足要求! 2、挠度验算 q=bS正=0.6×29.87=17.922kN/m 面板变形图(mm) ν=0.086mm≤[ν]=1.5mm 满足要求! 五、小梁验算

空心薄壁墩

薄壁空心桥墩 外形与重力式桥墩相似的空心结构桥墩。这种桥墩具有截面积小、截面模量大、自重轻、结构刚度和强度较好的特点,多用于高桥。薄壁空心桥墩和重力式实体桥墩比较,一般可减少圬工量40%~60%。中国襄渝铁路(襄樊-重庆)陕西紫阳汉江桥位于地震区,采用高达72.4米圆形空心桥墩;武汉长江桥7号墩地基极差,深水中采用管桩基础、圆角形薄壁空心墩,在外形尺寸和邻近各桥墩相同的情况下,减轻自重880吨。但是薄壁空心桥墩施工较复杂,又费钢材,应用较少。20世纪70年代以来,随着滑动钢模板、预制构件以及预应力拼装等新工艺的发展,克服了过去就地立模、高空作业、施工慢、质量差、费工费料等施工方面的困难,薄壁空心桥墩应用日益广泛。 薄壁墩主要分为钢筋混凝土薄壁墩和双壁墩以及V形墩三类。其共同特点是在横桥向的长度基本和其他形式的墩相同,但是在纵桥向的长度很小。其优点是,可以节省材料,减轻桥墩的自重,同时双壁墩可以增加桥墩的刚度,减小主梁支点负弯矩,增加桥梁美观;V形墩可以间接的减小主梁的跨度,使跨中弯矩减小,同时又具有拱桥的一些特点,更适合大跨度桥的建造。 薄壁墩 类型 常见的薄壁墩是空心薄壁墩,但是造价高、施工难度大且受力性能不好,有国际知名桥梁结构专家建议不要用于工程实践。 空心薄壁墩 简介 南高特大桥属预应力混凝土连续刚构桥,1号、2号、3号主墩均为双柱式薄壁墩,平面尺寸为6.5米(横桥向)x3.0米(顺桥向),1号墩墩

高54米,承台以上5米为实心段,其余49米为空心段;2号墩墩高80米,承台以上45米为实心段,其余34米为空心段,墩高40米位置用一系梁联接;3号墩墩高56米,承台以上5米为实心段,其余51米为空心段,。混凝土灌注方量为:1号墩与3号墩总为6115.4m3,2号墩5337.5m3。从施工方便与安全考虑,墩柱采用无支架翻模施工。 摘要 空心薄壁墩等较高的墩台的施工方法多种多样,有滑模施工法、爬模施工法、翻模施工法等等,这些方法各有优缺点,对其研究和认识是非常必要的。 墩身模板设计与制作 1:外模设计与与制作 为保证墩身混凝土的外观质量,加快施工进度,外模设计为翻模,面板采用厚5mm的钢板,加劲骨架采用[12槽钢与∠70 x50 x6的角钢焊接而成。施工平台采用[10槽钢与∠50 x50 x6的角钢焊接而成,与模板成为一个整体。模板单节高度为5米,由6块整体式大块模板组拼而成。其中顺桥向侧模尺寸为2934(宽)x5000(高)mm,横桥向侧模由两块组成,尺寸均为3255(宽)x5000(高)mm。同套模板这间全部采用企口缝加高强螺栓连接。模板之间通过对拉拉杆进行加固,拉杆密度则根据每次混凝土浇注高度经计算确定。 2:内模设计与制作 因为对内模外观质量要求不高,为保证结构设计尺寸,采用建筑行业通用的2.0m x1.5m组合钢模现场接合而成。内模每个墩柱制作2套,节高5米,不设接口模。 3:安装质量标准 1)在墩身施工前对施工人员进行技术交底,使施工人员熟悉和掌握钢模板的施工与操作技术。 2)钢模板的布置与施工操作程序均应按照模板的施工设计及技术措施的规定进行。 3)在浇注空心段时,组合钢模应尽量避免开孔,如必须开孔时,应用机具钻孔,不得使用电气焊熔烧开孔。 4)拆模后应及时对模板进行检修。 5)模板安装前应涂脱模剂,并涂刷均匀,稠度适中。 6)模板安装好后,对其轴线位置、水平标高,各部分尺寸、垂直度进行检校,直到符合设计及规范要求。

墩柱模板计算书midascivil

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

模板受力计算书

模板受力计算书 一,参数信息: 1,模板支架参数; 方本木的间隔距离:(㎜):300.00 方木的截面宽度:(㎜):40.00 方木的截面高度:(㎜): 2,荷载参数: 模板与木板的自重(KN/㎡): 砼与钢筋自重:(KN/M3): 施工均布荷载标准值(KN/㎡): 3,楼板面参数: 钢筋级别:二级钢HRB335(20MNSI) 楼板砼强度等级:C35 每平米楼板截面的钢筋的面积(㎜2)1440.000 计算厚度(㎜)200.000 4,板底方木参数: 板底方木迁选用木材:杉木: 方木弹性模量:E(N/㎜2):9000.00 方木抗弯强厚设计值:FM(N/㎜2):11.000 方木抗剪强度设计值:FV(N/㎜2);1.400 二,模板底支撑方木的验算: 本工程模板板底采用方工木作为支撑,方木按照简支梁计算:

方木截面惯性矩I和截面抵抗矩W分别为: W=B×H2/6=4.000×8.0002/6=42.700㎝3 I=B×H3/12=×12=㎝4 木楞计算 1,荷载计算 ⑴钢筋砼板自重红线荷载(KN/M): q1=××=M: ⑵模板的自重线荷载(KN/M) q2=×=M: ⑶活荷载为施工荷载标准值(KN) q3=××= 2,抗弯强度验算: 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩之和,计算公式如下; 均布荷载:q =×(q1+q2)=×+=M:集中荷载:q=×q1=×=:最大弯矩:M=q×1/4×12/8=××4+×8= 最大支座力:N=q/2+q×1/2=+×2= 截面应力: α=M/W== m㎡ 方木最大应力计算值为:MM2,小于方木抗弯强度值MM2, 满足要求。3,抗剪强度验算: 其中最大剪力:V=×2+2=:

高墩翻模施工工艺及方法

高墩翻模施工工艺及方法 1.翻模施工工艺 翻模施工工艺如下图。 空心高墩施工工艺流程图 2.翻模施工方法 ⑴翻模模板设计 模板高度的选定:因墩身较高,综合考虑了节段施工时间、机具长度及钢筋配料和减

少混凝土施工缝的数量的目的,共加工3层模板,每层1.5m,每次浇注2节模板的高度,即每次翻2层模板,浇筑3m高的混凝土。 模板构造的设计:空心墩身采用内外两套模板,外模采用整体钢模板,内模采用定型钢模板。由于墩身高,模板倒用次数多,钢外模面板使用6mm厚钢板制作,模板设有[16槽钢竖肋及[12槽钢后架,竖肋和后架皆组焊而成,后架为施工提供较为宽阔的操作平台,同时多层后架通过螺栓连接后组成空间桁架,保证了翻模模板的空间刚度,能有效的减少模板对拉杆的使用,提高墩身混凝土的外观质量。 模板翻升:翻模施工时,落模后将模板向外滑出再起吊,在每块模板后架底横杆上设有简易滚轮滑轨,滑出后再利用吊机向上翻升。 翻模时,保留最顶上一层模板,作为翻升下层模板的持力部分,然后,把最下二层模板拆开并滑出,利用吊机将模板吊起,并放置于顶层模板相应平面位置上,将模板与周围模板联接。重复以上操作至墩身浇筑完成。 墩帽的模板设计:墩帽为实心段。在进行该实心段混凝土施工时,考虑在墩身内部预埋钢板,焊上牛腿,铺上工字钢、方木和竹胶板作为支架,然后绑扎钢筋,浇筑混凝土。支架放在墩身内不再取出。 ⑵上下安全通道的设置 墩身施工时,人员上下的安全通道采用门式爬梯,爬梯设置在两个两墩中间,为了保持爬梯的稳定,每5米高与墩身加固一次,通过墩身的通气孔把爬梯固定在墩身上,以利于施工和检查人员上下行走。 ⑶钢筋的制作和绑扎 为了便于绑扎薄壁墩身的钢筋,在薄壁墩身的中间空心处搭设钢管支架,作为存放钢筋的平台,同时在墩身四个角的位置及墩身的长边中间位置预埋6根7.5×7.5的角铁,角铁与中间的钢管支架连成一个整体,作为绑扎钢筋的依托支架,在浇筑混凝土时,把角铁直接浇在墩身中,不再取出。

圆柱钢模计算书

直径1.4m圆柱计算书 1,基本情况 1.1该圆柱模高7.8米,直径1.4米。采用混凝土泵车下灰,浇注混凝土速度3m/h,混凝土入模温度约 25℃,采用定型钢模板:面板采用6mm钢板;横肋采用厚12mm,宽100 mm的圆弧肋板,间距400mm; 竖肋采用普通10#槽钢,间距353mm, 2.荷载计算 2.1混凝土侧压力 (1)新浇混凝土侧压力计算公式为下式中的较小值: 其中c——混凝土的重力密度,取24.000kN/m3; t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.000h; T ——混凝土的入模温度,取25.000℃; V ——混凝土的浇筑速度,取3.000m/h; H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取 7.800m; 1——外加剂影响修正系数,取1.200; 2——混凝土坍落度影响修正系数,取1.150。 根据公式计算的新浇混凝土侧压力标准值 F1=63.100kN/m2 考虑结构的重要性系数0.9,实际计算中采用新浇混凝土侧压力标准值F1=0.9×63.100=56.790kN/m2 考虑结构的重要性系数0.9,倒混凝土时产生的荷载标准值 F2=0.9×3.000=2.700kN/m2。 (2)进行荷载组合 F′=56.790+2.700= 59.49KN/㎡ 3板面计算:圆弧模板在混凝土浇注时产生的侧压力有横肋承担,在刚度计算中与与平模板相似。 3.1计算简图

3.2挠度计算 按照三边固结一边简支计算,取10mm宽的板条作为计算单元,荷载为q=0.0595*10=0.595N/mm 根据lX/lY=0.9,查表得 ωmax=0.00258ql4/k k=Eh3b/12(1-v2)=206000*63*10/12*(1-0.3*0.3)=40750000 V-钢的泊桑比=0.3 ωmax=0.57 mm≤[ω]=1/400=0.883 mm 故满足要求 4竖肋计算 4.1计算简图: 竖肋采用10#槽钢间距353 mm,因竖肋与横肋焊接,故按两端固定梁计算,面

空心墩计算书

一、计算依据: 1. 设计标准: (1) 设计荷载:公路-Ⅰ级 (2) 桥面宽度: 12m 2. 技术规范: (1) 中华人民共和国交通部部颁标准《公路工程技术标准》JTG B01-2003; (2) 中华人民共和国交通部部颁标准《公路桥涵设计通用规范》JTG D60-2004; (3) 中华人民共和国交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004; 二、本桥基本数据: 上部结构:4x40连续-刚构T 梁 下部结构:空心墩、桩基础 温度荷载:温度(升)=25(C 0) 温度(降)=23(C 0) 设计风载:V 10=24.4(m/s) 本桥空心墩尺寸(初步拟定):6x3m ; 壁厚0.6m 三、施工阶段计算: 注:本桥最高墩为左8号墩:墩高=40m ,进行裸墩施工阶段验算。 施工阶段荷载: (1) 架桥机荷载:前支点90t ,距桥墩中心56.5cm (考虑到施工误差:增加5cm ), 则N=900 (KN);M=900×0.615=553.5 (KN.M) (2) 桥墩自重:21600(KN ) (3) 风荷载: 基准高度Z =40×0.65=26(m ) V d = =28.4 (m/s) 施工阶段的设计风速:V sd =0.84×V d =25.8 (m/s ) 静阵风风速 V g =G v V sd =1.35×25.8=34.8 (m/s) F H = =0.5×1.25×34.82×0.9×6×40=163.7 (KN) N=0 M=163.7×26=4256 (KN.M) 16 .01010 264.24)10()(?=a s Z V n H g A C V 221ρ

圆柱墩模板受力计算书

圆柱墩模板受力计算书

广东云浮(双凤)至罗定(榃滨)高速公路工程圆柱墩模板受力计算书 广西壮族自治区公路桥梁工程总公司 广东云浮至罗定高速公路第四合同段项目部 2011年11月

目录 1、圆柱墩设计概况 ------------------------------------------2 2、受力验算依据 --------------------------------------------3 3、圆柱墩模板方案 ------------------------------------------3 4、模板力学计算 --------------------------------------------3 4.1、模板压力计算 --------------------------------------3 4.2、面板验算 ------------------------------------------3 4.3、横肋验算 ------------------------------------------4 4.4、竖肋验算 ------------------------------------------4 4.5、螺栓强度验算 --------------------------------------5

圆柱墩模板受力计算书 1、圆柱墩设计概况 本标段范围内共设有竹沙大桥、国道G324跨线桥、双莲塘大桥、小垌大桥、及更大桥、培岭1#桥、培岭2#桥、培岭3#桥等8座大桥,共有圆柱墩149条,根据墩柱高度不同,圆柱墩直径有1.1m、1.3m、1.4m、1.6m、

怎样计算桥墩钢模板

一、基本资料: 1. 基本尺寸 全钢模板,面板为h=5mm厚钢板;内模竖肋6.3号槽钢,背楞为10号双槽钢,横边框100×8mm钢板;外模竖肋10号槽钢,背楞为14号双槽钢,横边框100×12mm钢板模板;内外模之间对拉螺栓及外模角部斜螺栓直径30mm。模板平面图如图1所示。 图1 模板平面图 2. 材料的性能 根据《建筑结构荷载规范GB 50009-2001》和《建筑工程大模板技术规程JGJ 74-2003》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:20℃;砼浇筑速度:2m/h;掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 根据《混凝土施工技术指南050729》D.0.1之规定,人员机具荷载取2.5kPa。风荷载取1kN/m2。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1) 振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2) 新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): (1) 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P——新浇混凝土对模板产生的最大侧压力(kPa); H——有效压头高度(m);

V——混凝土浇筑速度(m/h); T——混凝土入模时的温度(℃); ——混凝土的容重(kN/m3); K——外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为 v/T=2.0/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 最大侧压力为: =1.2×26×1.91=59.59kN/m2 检算强度时最大荷载设计值为: 1.2×59.59+1.4×4.0=77.91 kN/m2; 检算刚度时最大荷载标准值为: 59.59 kN/m2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/500; 3) 钢模板面板的变形为1.5mm; 4) 钢面板的钢楞、柱箍的变形为3.0mm; 二、模板整体检算 (一)计算模型 建立整体模型,进行检算,模型示意图如下: 图2 模型平面图

空心薄壁墩施工方案

柳河大桥空心薄壁墩施工方案 一、编制依据 1《公路工程安全施工技术规程》JTJ 076-95; 2《公路桥涵施工技术规范》JTG/T F50-2011; 3《公路工程质量检验评定标准》(第一册土建工程)JTG F80 /1-2004; 4城万快速公路通道CW08合同段《两阶段施工图设计》; 5国家、交通部、建设单位关于高速公路基本建设的有关法令、法规、政策及管理办法; 6国家颁布的现行公路工程施工技术规范及公路工程质量检验评定标准(JTG F80/1-2004)等相关技术规范、规程、强制性标准; 7现场踏勘、沿线交通设施及施工资源了解,以及现场地质、地形、水文等条件调查; 8本单位长期从事公路建设施工所获得的丰富施工经验。 二、工程概况 柳河大桥桥位于城口县双河乡柳河村与万源境交界处,大桥横跨干坝子河。桥位区河谷岸坡地貌,大桥斜跨柳河,河道宽度36米左右,两侧桥台地势高,中部河谷地势低,地形起伏较大,沿轴线地面高程为731.50~786.13m,相对高差达54.63m。城口岸斜坡坡脚25°~60°,万源岸斜坡坡脚约为50°左右。 拟建柳河大桥中心桩号为K43+027.000,全桥共两联:孔径布置为4×40m+4×40m,全长329.0m。上部结构采用40m预应力砼(后张)T梁,先简支后连续刚构;其中5、6、7号墩主梁与桥墩固结;下部结构桥台采用桩柱式桥台,挖(钻)孔灌注桩基础;5、6、7号桥墩采用空心墩,其余桥墩采用双柱式桥墩,桥墩基础采用挖(钻)孔灌注桩基础。 1、水文 由于拟建桥区位于山间狭窄沟谷地带,地下水类型主要为第四系孔隙水、岩溶水。区内地下水主要受大气降水补给,桥位两侧陡坡一坡面片流的形式迅速向溪河流动,自然陡坡有利于地下水的排泄,不利于地下水的汇积,仅少部分沿地表发育的构造裂隙及岩溶裂隙向地下渗透形成岩溶水,大部分呈地表坡流的形式汇入溪河,部分进入第四系孔隙水,部分顺溪沟向下游流动。 2、地质 该桥位区地表分布第四系卵石土层(Q4al+p1)、粘土,下伏基岩为三迭系下统嘉陵江组(T1j)灰岩、大冶组灰岩。 3、结构形式 上部结构均采用4×40m+4×40m预应力砼(后张)T梁。下部结构桥台采用桩柱式桥台,挖(钻)孔灌注桩基础;5、6、7号桥墩采用空心墩,其余桥墩采用双柱式桥墩。 4、线形处理 该桥平面位于R=1588.03的右偏圆曲线后进入R=1500的左偏圆曲线上,纵断面纵坡3.9%,桥面横坡为双向2%墩台径向布置。 5、主要工程量 空心薄壁墩 页脚内容

MIDAS 墩柱模板设计计算书

MIDAS 墩柱模板设计计算书

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

承台模板受力验算

主桥承台木模板计算 一、计算依据 1、《施工图纸》 2、《公路桥涵施工技术规范》(JTG/T F50-2011) 3、《路桥施工计算手册》 二、承台模板设计 主桥承台平面尺寸为11.5×11.5m,高4m,由于主桥承台基坑开挖深度达10m,基坑钢支撑较多,不利于大块钢模板的吊装,故承台模板考虑采用木模板拼装。 面板采用15mm厚竹胶板(平面尺寸2440×1220mm),水平内楞为80×80mm方木,水平内楞外设竖向外楞,外楞为双拼φ48×3mm钢管,对拉螺杆采用直径20mm的螺纹钢。 承台模板立面局部示意图 承台模板平面局部示意图 三、模板系统受力验算 3.1 设计荷载计算 1、新浇混凝土对模板的侧压力 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为4m,新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值:

1 F=0.22γc t0β1β2V2 F=γc H 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γc—混凝土的重力密度,取24KN/m3; t0—新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.6m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取4m; β1—外加剂影响修正系数,取1.0; β2—混凝土坍落度影响修正系数,取1.15; 1 所以 F=0.22γc t0β1β2V2 1 =0.22×24×10×1.0×1.15×0.62 =47.03 KN/m2 F=γc H =24×4=96 KN/m2 综上混凝土的最大侧压力F=47.03 KN/m2 2、倾倒混凝土时冲击产生的水平荷载

考虑两台泵车同时浇筑,倾倒混凝土产生的水平荷载标准值取4KN/m2。 3、水平总荷载 分别取荷载分项系数1.2和1.4,则作用于模板的水平荷载设计值为:q1=47.03×1.2+4×1.4=62 KN/m2 有效压头高度为 h=F/γc =62/24=2.585 m 3.2面板验算 木模板支护方式为典型的单向板受力方式,可按多跨连续梁计算。 内楞采用竖向80×80mm方木,方木中心间距250mm,模板宽度取b=2440mm,作用于模板的线荷载:q1=62×2.44=151.28kN/m,模板截面特性 1bh2=2440×152/6=91500mm3。 为:W= 6 1bh3=2440×153/12=686250mm4; I= 12 模板强度验算: 根据《路桥施工计算手册》表8-13查得最大弯距系数为0.1。 M max=0.1q1l2=0.1×151.28×2502=9.455×105N·mm σ=M max/W=9.455×105/91500=10.3Mpa<[f m]=13Mpa,模板强度符合要求。 模板刚度验算:

相关主题
文本预览
相关文档 最新文档