当前位置:文档之家› 数学归纳法

数学归纳法

数学归纳法
数学归纳法

数学归纳法:

一、问题思考

判断下列结论是否正确(请在括号中打“√”或“×”)

(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( ) (3)用数学归纳法证明问题时,归纳假设可以不用.( )

(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( ) (5)用数学归纳法证明等式“1+2+22+…+2n +

2=2n +

3-1”,验证n =1时,左边式子应为1+2+22+

23.( )

(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( )

二、方法诠释

第一方面:与数学归纳法有关的概念题 例1.1:用数学归纳法证明1+a +a 2

+…+a n +1

=1-a n +

21-a

(a ≠1,n ∈N *),在验证n =1时,等式左边的项是

( )

A .1

B .1+a

C .1+a +a 2

D .1+a +a 2+a 3 答案:C 解析 当n =1时,n +1=2,∴左边=1+a 1+a 2=1+a +a 2.

例1.2:已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+…+1

2n )时,若已假设

n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )

A .n =k +1时等式成立

B .n =k +2时等式成立

C .n =2k +2时等式成立

D .n =2(k +2)时等式成立 答案:B 解析 因为n 为正偶数,n =k 时等式成立, 即n 为第k 个偶数时命题成立,所以需假设n 为下一个偶数,即n =k +2时等式成立.

例1.3:在应用数学归纳法证明凸n 边形的对角线为1

2n (n -3)条时,第一步检验n 等于( )

A .1

B .2

C .3

D .0

答案:C 解析:凸n 边形边数最小时是三角形,故第一步检验n =3.

例1.4:用数学归纳法证明1+2+3+…+n 2

=n 4+n 2

2

,则当n =k +1时左端应在n =k 的基础上加上( )

A .k 2+1

B .(k +1)

2

C.(k +1)4+(k +1)22

D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2

答案:D 解析:等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2, 而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.

例1.5:已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=________,a 3=________,a 4=________,猜想a n =________. 答案:3 4 5 n +1

第二方面:用数学归纳法解决大题

例2.1:设f (n )=1+12+13+…+1

n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).

证明:①当n =2时,左边=f (1)=1,右边=2(1+1

2-1)=1,左边=右边,等式成立.

②假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,

f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)[f (k +1)-1

k +1]-k

=(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],∴当n =k +1时结论成立. 由①②可知当n ∈N *时,f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). 总结归纳:用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.

(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.

例2.2:已知数列{}n a 的前n 项和*1()n n S na n =-∈N . (1)计算1a ,2a ,3a ,4a ;

(2)猜想n a 的表达式,并用数学归纳法证明你的结论. 解:(1)由n n a a -=+211可得a a a -=-=212112a a a a 2322123--=-=a

a

a a 34232134--=-=

(2)猜想()()()a

n n a n n a n 121-----=

下面用数学归纳法证明: ①当1=n 时,左边a a ==1,右边()()()a a

a =-----=

1112111所以等式成立

②假设当()*

N k k n ∈=时,有()()()a

k k a k k a k 121-----=

成立,则当1+=k n 时, ()()()()()ka

k a

k k a

k k a k k a a k k -+--=------=-=+1112121211故当1+=k n 时,结论成立

由①②可知,对*

N n ∈,都有()()()a

n n a n n a n 121-----=

。 归纳—猜想—证明问题的一般步骤:

第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论;. 第二步:验证一般结论对第一个值n 0(n 0∈N *

)成立;

第三步:假设n =k(k ≥n 0,k ∈N *

)时结论成立,证明当n =k +1时结论也成立; 第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N *

成立.

例2.3:已知

(1)令,求证:是其定义域上的增函数;

(2)设(,,用数学归纳法证明:

解:(1)易知函数的定义域为R,

是其定义域R上的增函数。

(2)①时,,由已知条件可得

再由(1)知是增函数,=

即时,不等式成立。

②假设不等式成立,即

则时

=,

即时,不等式成立

综合①②知时,不等式成立。

三、巩固训练

1.在数列{a n }中,a 1=1

3,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )

A.1(n -1)(n +1)

B.12n (2n +1)

C.1(2n -1)(2n +1)

D.1

(2n +1)(2n +2)

2.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )

A .2k +1

B .2(2k +1) C.2k +1k +1 D.2k +3k +1

3.用数学归纳法证明2n >2n +1,n 的第一个取值应是( ) A .1 B .2 C .3

D .4

4.已知f (n )=1n +1n +1+1n +2+…+1

n

2,则( )

A .f (n )中共有n 项,当n =2时,f (2)=12+13

B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1

4

C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13

D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1

4

5.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >13

24的过程中,由n =k 推导n =k +1时,不等式的

左边增加的式子是________.

6.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想 S n = .

7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n (2n +1)

3

时,第二步从“k ”到“k +1”应添加的项为 .

8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= (用n 表示).

9.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1

a n -1,且a n >0,n ∈N *.

(1)求a 1,a 2,a 3,并猜想{a n }的通项公式;(2)证明通项公式的正确性.

10. (1)已知数列{}n a 的各项均为正数,()11n

n n b n a n N n +??

=+?∈ ???

,计算11a b ,2121a a b b ,321321a a a b b b ,

由此推测计算

n

n

a a a

b b b 2121的公式,并给出证明.

(2)求证:()

*,26

5312111N n n n n n ∈≥>+++++ .

数学归纳法答案:

问题思考参考答案:

(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )

(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × ) (5)用数学归纳法证明等式“1+2+22+…+2n +

2=2n +

3-1”,验证n =1时,左边式子应为1+2+22+

23.( √ )

(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ ) 巩固训练参考答案:

1.答案 C 解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=1

3×5

.

当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7. 当n =4时,13+115+135+a 4=(4×7)a 4,a 4=1

7×9.

故猜想a n =1

(2n -1)(2n +1)

.

2.答案:B 解析:当n =k (k ∈N *)时,左式为(k +1)(k +2)·…·(k +k );

当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1

=2(2k +1).

3.解析:选C ∵n =1时,21=2,2×1+1=3,2n >2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立;n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3.

4.解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+1

4.

5.答案

1

(2k +1)(2k +2)

解析 不等式的左边增加的式子是

12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1

(2k +1)(2k +2)

. 6.答案:n n +1 解析:由(S 1-1)2=S 1·S 1,得S 1=12,由(S 2-1)2=(S 2-S 1)S 2,得S 2=2

3,

依次得S 3=34,猜想S n =n

n +1.

7.答案:(k +1)2+k 2

解析:由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N *). 8.答案:5 1

2(n +1)(n -2) 解析:f (3)=2,f (4)=f (3)+3=2+3=5,

f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=1

2(n +1)(n -2).

9.[解]:(1)当n =1时,由已知得a 1=a 12+1

a 1

-1,即a 21+2a 1-2=0.

∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1

a 2-1,

将a 1=3-1代入并整理得a 22+23a 2-2=0.∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *). (2)证明:①由(1)知,当n =1时,通项公式成立.

②假设当n =k (k ∈N *)时,通项公式成立,即a k =2k +1-2k -1.

由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式,整理得

a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1,即n =k +1时通项公式成立. 由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.

10.解:(1) 2111111111=+=??? ??+?=a b ; ()22

2

2211212131221122=+=??? ??+??=?=a b a b a a b b ;

()33

3

233212132132141331133=+=??

? ??+??=?=a b a a b b a a a b b b .由此推测:()n n n n a a a b b b 1212

1+= .(*) 下面用数学归纳法证明(*)式.(i )当1=n 时,左边=右边=2,(*)式成立. (ii )假设当)(+∈=N k k n 时(*)式成立,即 ()k

k

k k a a a b b b 12121+= .

那么当1+=k n 时,()11

1)1

11(1+++++

+=k k k a k k b ,由归纳假设可得 ()()()

1

1

112121121121211111+++++++=?

?

? ??++?++=?=k k k

k k k k k k k k k k k k a b a a a b b b a a a a b b b b .

∴当1+=k n 时,

(*)式也成立. 根据(i )(ii ),可知(*)式对一切正整数+∈N n 都成立. (2)证:①当2=n 时,左边=

6

5

61514131>+++,不等式成立. ②假设当()

*,2N k k k n ∈≥=时不等式成立,即

6

5312111>+++++k k k . 则当1+=k n 时,

()()()

131

23113131211111+++++++++++++k k k k k k

??

?

??+-+++++++++++=

11331231131312111k k k k k k k

??? ??+-++++++>

1133123113165k k k k 6

511331365=??? ??+-+?+>

k k

数学归纳法(1)

数学归纳法(1) 常州市第一中学高二数学备课组 【教学目标】 知识与技能: 理解数学归纳法的概念,掌握数学归纳法的步骤; 过程与方法: 经历观察、思考、分析、抽象、概括出数学归纳法的两个步骤, 初步形成归纳、猜想和发现的能力; 情感态度价值观:通过数学归纳法的学习初步形成严谨务实的科学态度和严谨的 数学思维品质与数学理性精神。 【教学重点】 理解数学归纳法的实质意义,掌握数学归纳法的证题步骤。 【教学难点】 运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推 关系。 【教后反思】 【教学过程】 一.创设情景 1. 摸球实验 已知盒子里面有5个兵乓球,如何证明盒子里面的球全是橙色? 2. 今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是得出:这所学校里的学生都是男同学。 象这种由一系列特殊事例得出一般结论的方法,我们把它叫做归纳法。 (1) 是完全归纳法,结论正确(2)是不完全归纳法,结论不一定正确。 问题:这些问题都与自然数有关,自然数有无限多个,我们无法对其一一验证,那么如何证明一个与自然数有关的命题呢?例如对于数列{}n a ,已知 111,1n n n a a a a +== +, 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为1n a n = 。 这个猜想是否正确,如何证明?数学中常用数学归纳法证明。 二.探索新知 1、了解多米诺骨牌游戏,可得,只要满足以下两条件,所有多米诺骨牌就都能倒下: (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。 思考:条件(1)(2)的作用是什么? 2、用多米诺骨牌原理解决数学问题。 思考:你能类比多米诺骨牌游戏解决这个问题吗?

(完整版)1数学归纳法习题(含答案)

1# 数学归纳法 一、选择题(每小题5分,共25分) 1.(2011·怀化模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在 第二步时,正确的证法是 ( ) A .假设n =k (k ∈N +),证明n =k +1命题成立 B .假设n =k (k 是正奇数),证明n =k +1命题成立 C .假设n =2k +1(k ∈N +),证明n =k +1命题成立 D .假设n =k (k 是正奇数),证明n =k +2命题成立 2.(2011·鹤壁模拟)用数学归纳法证明“1+12+13+…+12n -1 1)”时,由n = k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 ( ) A .2k - 1 B .2k -1 C .2k D .2k +1 3.(2011·巢湖联考)对于不等式n 2+n 12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13 +…+131>52 ,…,由此猜测第n 个不等式为________(n ∈N *). 8.(2011·东莞调研)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4), (2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

数学归纳法

《数学归纳法》说课稿 各位专家、评委:大家好! 我是陇西一中的数学教师王耀文,很高兴能有机会参加这次说课活动. 我要讲的课题是《数学归纳法》(第一课时),用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本)数学第三册(选修Ⅱ),本课是高中数学第三册第二章第一节. 下面我就从教材分析、教学目标的确定、教学方法的选择、学法的指导、教学过程的设计和板书设计六个方面进行说明. 1教材分析 1.1教材的地位和作用 数学中许多与正整数有关的命题,用不完全归纳法证明是不可靠的,用完全归纳法证明又是不可能的,为解决这一“有限”与“无限”的矛盾,数学归纳法应运而生.所以数学归纳法是一种十分严谨而又重要的方法,也是历年高考中比较常考的证明方法. 它可以证明某些与正整数有关且具有递推性的数学命题,也可以通过“有限”来解决某些“无限”问题. 1.2重点、难点 重点是如何在较短的时间内,使学生理解“归纳法”和“数学归纳法”的实质,接受数学归纳法的证题思路. 难点有两个,一是学生初步对数学归纳法原理的理解;二是数学归纳法的两个步骤及其作用. 2教材目标的确定

2.1知识目标使学生了解数学归纳法的发现过程,理解数学归纳法原理;理解数学归纳法的操作步骤;能用数学归纳法证明一些简单的数学命题并能正确书写证明步骤. 2.2能力目标培养学生观察、猜想、归纳、发现问题的能力;培养学生数学思维能力、推理论证能力以及分析问题和解决问题的能力. 2.3情感目标使学生在发现数学归纳法的过程中,体验数学研究的过程和发现的乐趣,激发学生学习数学的兴趣,使学生经历数学思维过程,获得成功的体验. 3教学方法的选择 本节课我主要采用“…发现?的过程教学”和“启发探究式”的教学方法,根据教材特点和学生实际在教学中体现两点: ⑴由学生的特点确定启发探究和感性体验的学习方法. 由于本节课安排在高三阶段,且为数学基础较好的理科学生的选修内容,考虑到学生的接受能力比较强这一重要因素,在教学中我通过创设情境,启发引导学生在观察、分析、归纳的基础上,自主探索,发现数学结论和规律,掌握数学方法,突出学生的主体地位. ⑵由教材特点确定以引导发现为教学主线. 根据本节课的特点,教学重点应该是方法的应用.但是我认为虽然数学归纳法的操作步骤简单、明确,教师却不能把教学过程简单的当作方法的灌输,技能的操练.对方法作简单的灌输,学生必将半信半疑,兴趣不大.为此,我在教学中通过实例给学生创造条件,让学生直观感受到数学归纳法的实质,再在教师的引导下发现理解数学归纳法,揭示数学归纳法的实质. 对于数学归纳法的应用,只要求学生在理解原理的基础上掌握应用原理证题的步骤,学会证明一些简单的问题. 4学法的指导

解析数学归纳法思想

解析数学归纳法思想 嘉兴教育学院吴明华 从数学和思想的含义去理解,所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想是人们对数学知识的本质认识,是对数学规律的理性认识(文①第1页).数学思想广泛存在于数学的概念、方法和过程之中,具有奠基性、总结性和广泛性的特征.与数学方法相比,数学思想具有更高的概括抽象水平,因而更本质、更深刻.可以这么说,数学思想是数学方法的精神实质与理论基础,而数学方法则是实施有关数学思想的技术与操作程式. 数学归纳法是一种特殊的证明方法,它的基本形式是:对于一个与自然数(此处约定最小的自然数为1,即正整数)有关的命题,如果①当时命题成立;②假设当时命题成立,则当时命题也成立,那么命题对一切自然数n都成立. 在“中学数学核心概念、思想方法体系及其教学设计”课题第8次活动中,围绕两位教师的课堂展示,课题组对数学归纳法及其教学进行了广泛和深入的讨论,涉及到一些本质性的问题但尚未达成统一的认识.本文阐述笔者对数学归纳法所蕴涵的数学思想的一些认识,试图从本质上去理解数学归纳法. 1.数学归纳法中的归纳思想 对于一个与自然数有关的命题,数学归纳法将命题理解为一系列命题: ,,,…,即N}.然后由命题,,,…都成立去下结论“命题成立”,这就是笔者重点所指的数学归纳法中的归纳思想.所谓归纳,是指从特殊到一般,从局部到整体的推理.命题是一般的、整体的,而命题,,,…中的每一个都是特殊的、局部的,即使从所有命题,,

,…都成立去概括得出命题成立,其思想也是归纳的思想(完全归纳).让我们想想,对于一个与自然数有关的命题,我们是否有过不用归纳法去处理的经历?譬如说,求证,我们曾经这样做过: 设,则, 所以,故. 我们的证明只是“就一般的自然数n而言”,也就是说,我们并没有逐个地去考察 ,,…命题是否成立,而只是把n当作“某个”(当然是任意一个)自然数直接去考察命题是否成立,这在数学上叫做“不失一般性”.其实,这样的例子在数学中比比皆是. 让我们从更一般的情形来阐述归纳思想.对于一个数学对象P,如果P可以分解为若干个种类,,,…,那么从研究,,,…入手,概括得到对象P的属性的思想,就是归纳的思想.这与分类讨论有点相似,但分类讨论常常是获得对象P在各种情况下的不同结果,而归纳则取向于获得,,,…的共性,以及由这些共性所反映的对象P的本质. 有几个问题是必须讲清楚的.首先,数学归纳法中的“归纳奠基”与“归纳递推” 工作,实际上是两个命题的证明,即证明①命题“”成立,②命题“若,则”成立,而这两个命题自身的证明常常用的是“演绎法”.其次,以“归纳递推”为大前提,以命题成立为小前提,得出命题成立,等等的推理过程也是演绎的.还有,若将自然数公理中的归纳公理(见本文后述)理解为大前提,将数学归纳法中的“归纳奠基”与“归纳递推”理解为小前提,那么得出命题成立的推理过程也是演绎的(文①第110页).但这些都不妨碍数学归纳法在处理与自然数有关的命题时所体现出来的归纳思

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

数学归纳法巧记高中数学公式大全

高中数学公式大全及巧记口诀 离2012年高考只剩63天了,因为高中数学在高考中占有较大的比分,很多同学在数学上失分很多,其主要原因是同学们对数学基础知识记忆和掌握不够到位。因此我们乐恩特教育网整理了高中数学公式大全及巧计口诀,以便同学们轻松掌握数学公式,在高考数学复习上达到事半功倍的效果!以下就是整理的高中数学公式大全及巧记口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

数学归纳法1

§2.3 数学归纳法(1) 【学情分析】: 数学归纳法是一种特殊的直接证明的方法,在证明一些与正整数n(n取无限多个值)有关的数学命题时,数学归纳法往往是非常有用的研究工具,它通过有限个步骤的推理,证明n取无限多个正整数的情形。 【教学目标】: (1)知识与技能:理解“归纳法”和“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明与正整数有关的数学命题。 (2)过程与方法:初步掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质。 (3)情感态度与价值观:培养学生对于数学内在美的感悟能力。 【教学重点】: 借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用),运用它证明一些与正整数有关的数学命题。【教学难点】: 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设。 【教学过程设计】:

【练习与测试】: 1.在用数学归纳法证明多边形内角和定理时,第一步应验证( ) A. n=1时成立 B. n=2时成立 C. n=3时成立 D. n=4时成立 答案:C 解:由于多边形最少是三角形,故选C 。 2. 某个与正整数n 有关的命题,如果当*()n k k N =∈时该命题成立,则一定可推得当n=k+1时该命题也成立。现已知n=5时,该命题不成立,那么应有( ) A. 当n=4时,该命题成立 B. 当n=6时,该命题成立 C. 当n=4时,该命题不成立 D. 当n=6时,该命题不成立 答案:C 解:n=6时命题成立与否不能确定,排除B 、D ;假设n=4时,该命题成立,由已知得n=5时该命题成立,与已知条件矛盾,故选C 。 3.用数学归纳法证明:2 2111(1)1n n a a a a a a ++-++++=≠-L ,在验证n=1时,左端计算所得的项为_______________________________。 答案:1+a+a 2 解:由题意可知等式左端共有n+2项,∴当n=1时,左端有3项为1+a+a 2。 4. 数列{a n }中,已知n n n a a a a +==+1,211(n=1,2,……),计算432,,a a a ,猜想n a 的表达式并用 数学归纳法证明。 解:7252152 ,5232132,3 243 2=+==+==a a a 猜想:1 22 -= n a n 证明:(1)当n=1时,,21 22 1=-= a 猜想式成立

最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理

2.3 数学归纳法 1.了解数学归纳法的原理. 2.能用数学归纳法证明一些简单的数学命题. 1.数学归纳法 证明一个与正整数n 有关的命题,可按下列步骤进行: 第一步,归纳奠基:证明当n 取______________时命题成立. 第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法. 数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2 +…+a n +1 =1-a n + 21-a (a ≠1),在验证n =1时, 等式左边为( ) A .1 B .1+a C .1+a +a 2 D .1+a +a 2+a 3 【做一做2】 设S k =1k +1+1k +2+1k +3+…+1 2k ,则S k +1为( ) A .S k +1 2k +2 B .S k +12k +1+1 2k +2 C .S k +12k +1-1 2k +2 D .S k +12k +2-1 2k +1 【做一做3】 在应用数学归纳法证明凸n 边形的对角线有1 2n (n -3)条时,第一步验证n 等于__________. 2.数学归纳法的框图表示 答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论 提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0

=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3. 【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2. 【做一做2】 C 因式子右边各分数的分母是连续正整数,则由 S k =1k +1+1k +2+…+12k ,① 得S k +1= 1k +2+1k +3 +…+12k +12k +1+1 2(k +1).② 由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-1 2(k +1). 故S k +1=S k + 12k +1-12(k +1) ,故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数 1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点: (1)两个步骤缺一不可. (2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0 +1等),证明应视具体情况而定. (3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效. (4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性. 数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数. 2.运用数学归纳法要注意哪些? 剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础. 数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题. (2)递推是关键. 数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次. (3)正确寻求递推关系. 我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.

数学归纳法、同一法、整体代换法

数学归纳法、同一法、整体代换法 一、函数方程思想 从而解决问题的一种思维方式,函数方程思想就是用函数、方程的观点和方法处置变量或未知数之间的关系。很重要的数学思想。 并研究这些量间的相互制约关系,1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达进去。最后解决问题,这就是函数思想; 确立变量之间的函数关系是一关键步骤,2.应用函数思想解题。大体可分为下面两个步骤:1根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;2根据需要构造函数,利用函数的相关知识解决问题;3方程思想:如何学好高中数学某变化过程中,往往需要根据一些要求,确定某些变量的值,这时经常列出这些变量的方程或(方程组)通过解方程(或方程组)求出它这就是方程思想; 之间相互渗透,3.函数与方程是两个有着密切联系的数学概念。很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 二、数形结合思想 对于所研究的代数问题,数形结合是中学数学中四种重要思想方法之一。有时可研究其对应几何的性质使问题得以解决(以形助数)或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形)这种解决问题的方法称之为数形结合。 发挥数的思路的规范性与严密性,1.数形结合与数形转化的目的为了发挥形的生动性和直观性。两者相辅相成,扬长避短。 宇宙间万事万物无不是数和形的和谐的统一。因此,2.恩格斯是这样来定义数学数学研究现实世界的量的关系与空间形式的科学”这就是说:数形结合是数学实质特征。数学学习中突出数形结合思想正是充分掌握住了数学精髓和灵魂。 数量关系决定了几何图形的性质。 3.数形结合的实质是几何图形的性质反映了数量关系。形少数时难入微;数形结合百般好,隔裂分家万事非。数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,4.华罗庚先生曾指出:数缺性时少直观。或者借助于形的几何直观性来说明数之间的某种关系. 历年高考解答题都有关于这个方面的考查(即用代数方法研究几何问题)而以形为手段的数形结合在高考客观题中体现。 5.把数作为手段的数形结合主要体现在解析几何中。 6.要抓住以下几点数形结合的解题要领: 可直接从几何图形入手进行求解即可; 1对于研究距离、角或面积的问题。 可通过函数的图象求解(函数的零点,2对于研究函数、方程或不等式(最值)问题。顶点是关键点)作好知识的迁移与综合运用; 3对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的 三、分类讨论的数学思想 当问题的对象不能进行统一研究时,分类讨论是一种重要的数学思想方法。就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 引起分类讨论的原因大致可归纳为如下几种: 1.有关分类讨论的数学问题需要运用分类讨论思想来解决。 1涉及的数学概念是分类讨论的 2运用的数学定理、公式、或运算性质、法则是分类给出的 3求解的数学问题的结论有多种情况或多种可能性;

高中数学--数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

线性代数第1讲数学归纳法

线性代数 第2讲 数学归纳法 ( 教材 p.5 --- P.7 ) 关键词:数学归纳法 数学归纳法 数学归纳法又称有限归纳法. 它是证明数学命题的一种常用方法. : 1=n 时,公式(1)的左边 = 1,右边 .1)11(12 1 =+??= 公式(1)成立. 现假设k n =时公式(1)已成立,即

.)1(2 1 321+=++++k k k 当1+=k n 时, .)1()321()1(321++++++=++++++k k k k 由归纳假设)(12 1 3+2+1+= ++k k k ,因此 ]1)1([)1(2 1 ) 2()1(2 1 )1()1(21 )1(321+++=++=+++= ++++++k k k k k k k k k 即当1+=k n 时,公式(1)也成立,因而命题得证. 现在,如果我们把公式(1)的左端记为)(1n S , 此时公式(1)可写为 ?n 321S 2222)n (2=++++= 结论是: )2(6 ) 12)(1(3212222)(2++= ++++=n n n n S n 公式(2)是如何想出来的?正确否?怎么证? 因为它涉及正整数n ,一般是用数学归纳法来回答此问题.

.304321,14321,521,112222222222=+++=++=+= 如果我们多算几项并列成下表: 3 17 3153133113937351:S S 204 1409155301451:S 36 28 21 15106 3 1: S 876 5 4 321:n )n (1)n (2)n (2)n (1 似乎可以看出有下面的规律: ,3 1 2) (1)(2+= n S S n n (这里只是对 8,,3,2,1 =n 成立)从而 )2(6 ) 12()1(312)(1)(2++=+= n n n S n S n n 8,,3,2,1 =n 是成立的. 但对任意正整数n 是否都成立? 2)对任何正整数n 都对. ) (2n S 知道了,能否利用归纳、类比的方法进一步探索出 )(3n S 与)(1n S 的联系呢?这就是由个别(或特殊)去发现 一般的思维方法. 先作如下观察: . )4321(1004321, )321(36321,)21(921,112 3 3 3 3 23332333+++==+++++==+++= =+= 似乎已经看出有如下十分有趣的规律: 虽然公式(3)当 定它对于一切正整数都对. 此时我们就会想到用数学归纳法来3)的正确性. 我们已验证(3)对4,3,2,1=n 成立. 设 k n =时公式(3)

相关主题
文本预览
相关文档 最新文档