当前位置:文档之家› 连续函数平均值与积分中值定理浅析

连续函数平均值与积分中值定理浅析

连续函数平均值与积分中值定理浅析
连续函数平均值与积分中值定理浅析

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

闭区间上连续函数介值定理解题方法小结一

闭区间上连续函数介值定理解题方法小结(一) 来源:文都教育 在高等数学的考试中,离不开考查函数的相关性质,而闭区间上的连续函数的性质显然是重中之重. 同学们都知道闭区间上的连续函数有最值定理、有界性定理、介值定理,其中介值定理常常会与积分中值定理等证明题有着“千丝万缕”的联系,因此在考试中出现的频率较高,下面就以闭区间上连续函数介值定理为线索来总结这类题目的类型和解题方法. 介值定理 如果函数()f x 在[,]a b 上连续,且()f x 在[,]a b 上的最大值与最小值分别为M 和m ,对介于m 和M 之间的任何实数C (m 利用闭区间上连续函数的性质,证明存在一点[,]a b ξ∈,使得()()d ()()d b b a a f x g x x f g x x ξ=? ?. 证明 从题目待证等式 ()()d ()()d b b a a f x g x x f g x x ξ=??,可以整理出()f x 在处所取得的函数值为 ()()()()b a b a f x g x dx f k g x dx ξ==??. 下面证位于()f x 在[,]a b 上的最大值M 与最小值m 之间. 由()m f x M ≤≤及()0g x >,得到 ()()()()mg x f x g x Mg x ≤≤,()d ()()d ()d b b b a a a mg x x f x g x x Mg x x ≤≤???. 因为()d 0b a g x x >?,故()().() b a b a f x g x dx m k M g x dx ≤=≤??

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定积分的性质和基本定理

第二节 定积分的性质 和基本定理 用求积分和式的极限的方法来计算定积分不是很方便,在很情况下难以求出定积分的值。因此,我们在定积分定义的基础上,讨论它的各种性质,揭 示定积分与微分的内在联系,寻找定积分的有效 §2.1 一、定积分的基本性质 性质 1 b a 1dx=∫b a dx=b-a 证 0 lim →λ∑=n 1 i f(ξi )Δx i = lim →λ∑=n 1 i 1·Δx i =0 lim →λ (b-a)=b-a b a 1dx=∫b a dx=b-a 性质2(线性运算法则),设f(x),g(x)在[a,b ]上可积,对任何常数α、β,则αf(x)+βg(x)在[a,b ]

b a [αf(x)+βg(x)]dx=α∫b a f(x)dx+β ∫b a g(x)dx 证:设F(x)=αf(x)+β g(x), lim →λ∑=n 1 i F(ξi )Δx i =0 lim →λ[αf(ξi )+βg(ξi )] Δx i =0 lim →λ[α∑ =n 1 i f(ξi )Δx i +β ∑ =n 1 i g(ξi )Δ x i ] =αb a f(x)dx+β∫b a g(x)dx αf(x)+βg(x)在[a,b b a [αf(x)+βg(x)]dx=α∫ b a f(x)dx+β ∫b a g(x)dx 特别当α=1,β=± 1 b a [f(x)±g(x)]dx=∫ b a f(x)dx ±∫ b a g(x)dx 当β =0 b a αf(x)dx=α∫ b a f(x)dx 性质 2 性质3 对于任意三个实数a,b,c ,若f(x)在任意 两点构成的区间上可

(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限,叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时, 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

介值定理的一些应用

介值定理的一些应用 摘要:介值定理是连续函数的一个很重要的定理。本文主要讨论利用介值定理证明方程根的问题。介值定理不但可以证明方程根的存在性,而且可以判断方程根的个数,还能判断方程根的范围。文章还讨论利用介值定理处理不等式问题。最后举例说明介值定理在生活中的应用。 关键词:介值定理 方程 不等式 应用 介值定理是一个简单的定理,但是我们在学习数学分析的过程中会经常遇到很多依靠这个定理来解决的题目。此外,我们还会见到利用这个定理证明微积分中的一些定理。介值定理是闭区间上连续函数的基本性质之一,了解这个定理并能够灵活运用这个定理来解决一些问题是十分有必要的。 介值性定理:设函数()f x 在闭区间[]b a ,上连续。并且函数()f a 与函数()f b 不相等。如果μ是介于()f a 和()f b 之间的任何实数() f a <μ<() f b 或() f a >μ >()f b ,则至少存在一点0x (),a b ∈使得().0f x =μ. 推论:根的存在定理 如果函数()f x 在闭区间[],a b 上连续,并且()f a 和 ()f b 满足()f a ()f b <0,那么至少存在一点0x ,使得().0f x =0. 即是方程()f x =0在(),a b 内至少有一个根。 1.介值定理在方程根的问题上的应用 利用介值性定理或是根的存在性定理解决方程的根的问题是一类广泛存在的题目。可以利用此定理来解决方程根是否存在,根的个数和根的范围等的问题。 1.1介值定理证明方程根存在性 证明类似方程()f x =()g x 在区间至少存在一个根的问题总是可以转化为连续函数()F x =()f x -()g x 的零点问题,一般可以利用根的存在定理来解决这类的问题。 例1 证明:函数()f x 在区间[]a 2,0上连续并且函数()0f =()2f a 。那么方

(整理)4定积分的性质.

§4定积分的性质 教学目的:熟练掌握定积分性质及积分中值定理。 重点难点:重点为定积分性质及第一中值定理,难点为推广的积分第一中值定理。 教学方法:讲练结合。 一、定积分的基本性质 性质1 若[]b a f ,在上可积,k 为常数,则kf 在[]b a ,上也可积,且 ()()dx x f k dx x kf b a b a ?? = (1) 证 当0=k 时结论显然成立 当0=k 时,由于 ()(),1 1 J x f k kJ x kf i n i i i n i i -??=-?∑∑==ξξ 其中()dx x f J b a ?= ,由[]b a f ,在上可积时,故任给0>ε,存在0>δ,当时δ>B A (否则g f ,中至少有一个恒为零值函数,于是g f ?亦为零值函

函数的连续性

高等数学上册知识点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函 数、反双曲函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当

左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+= )()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~

考研数学高数5定积分

第五讲:定积分 定积分的概念:设()[]b a x f ,在上有界 1) 任意分割:.,2,1n i x i =? 2) 作乘积:任取[]i i i x x ,1-∈ξ,作乘积i i x f ?).(ξ 3) 作和式: ()i n i i x f ?∑=.1 ξ 4) 取极限:()i n i i x f ?∑=→.lim 1 ξλ 若不管[]b a ,如何分割,i ξ如何选取,当{}0max 1→?=≤≤i n v x λ时,上述极限如果存在,则称()x f 在[]b a ,上是可积的,并称此极限值为()[]b a x f ,在上的定积分,记为 ()0 ()lim .n b i i a i f x dx f x λξ→= =?∑? 我们规定: ()()()b b b a a a f x dx f u du f t dt ?=?=? ()0a a f x dx ?= ()()a b b a f x dx f x dx ?=-? 函数可积的条件: 充分条件:若()[]b a x f ,在满足下列条件之一,则()[]b a x f ,在上可积: 1、()[]b a x f ,在上连续; 2、只有有限个间断点的有界函数 3、单调函数 必要条件:若()[]b a x f ,在上可积,则在[]b a ,上一定有界。 定积分的几何意义: 设()[]b a x f ,在上可积 (1) 若()0≥x f ,则();A dx x f b a =?

(2) 若()0≤x f ,则();A dx x f b a -=? (3) 若()x f 有正有负,则();321A A A dx x f b a +-=? 例: 1、用定义计算积分dx x 2 10?; 2、利用定积分表示下列和式的极限: (1)∑=∞→+n i n n i n 1 11lim (2)()021lim 1>++++∞→p n n p p p p n 3、利用几何意义求积分 ,)2(; )1()1(2220dx x a dx x a b a -?-? 4、比较大小:2121 1 ln (ln )e e I xdx I x dx ==? ? 定积分的性质: 设()()x g x f ,在所讨论的区间上都是可积的,则有 性质1 (线性性) ()()[]()()( )为常数αββαβαdx x g dx x f dx x g x f b a b a b a ?+?=+? 推论: ()()()()[]()()dx x g dx x f dx x g x f dx x f A dx x Af b a b a b a b a b a ?±?=±??=? 性质2 (区间可加性) ()()()都成立 或或注:不论b a c c b a b c a dx x f dx x f dx x f b c c a b a <<<<<

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

高等数学教案22定积分的概念与性质

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示) .下面来求该曲边梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间[,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间[,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积(如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . 图5-1 图5-2

(1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x --ΛΛ, 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ,将 其作为曲边梯形面积的近似值,即 1 1 ()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ(max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值,即 0 1lim ()n i i i A f x λξ→==?∑. 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的乘积),,2,1()(n i x f i i Λ=?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i Λ=, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区间[,]a b 上可积,并将此极限值称为函数()y f x =在[,]a b 上的定积分,记为 ?b a dx x f )(. 即 ∑?=→?=n i i i b a x f dx x f 1 )(lim )(ξλ, 其中x 称为积分变量,()f x 称为被积函数,()f x dx 称为被积表达式, a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间,符号?b a dx x f )(读作函数()f x 从

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

微积分中值定理及其应用

微积分中值定理及其应用 前言: 关于微分中值定理的证明问题是数学分析中的难点,本文将从微分中值定理的证明入手,对其进行证明,讨论了微分中值定理的内在联系及推广,并给出其在解题中的应用,如:微分中值定理在一些定理中的证明,利用几何意义思考解题,讨论导函数零点的存在性,研究函数性态,证明不等式和求极限等。 主题: 有关定理: 罗尔中值定理 拉格朗日中值定理 柯西中值定理 Cauchy 中值定理统一了微积分中值定理各种形式,从而建立了微分中值定理和积分中值定理之间的 内在联系. 以Rolle 中值定理为基础,借助不同形式辅助函数可对其它几个中值定理作出多种形式的统一证 明;利用Taylor 公式可以进一步导出微积分中值定理的推广形式. 作为微积分知识体系中十分重要的三个中值定理之一,拉格朗日中值定理中中值的存在性问题, 对理解和应用定理有着十分重要的意义。一般意义上说, 同数学中许多存在性问题一样, 只需关注是否存 在即可。但是, 认真分析拉格朗日中值定理的结构, 就会产生这样的问题其中值〔的存在是否具有函数属性, 在什么条件下能够具有函数的属性。 总结: 在解关于微分中值的题目时,大多数题是有一定技巧的。在习题解题答中可以看到这方面的应用,虽然有些实例,但却凌乱无序,不成系统,本文针对这个问题,通过总结归纳,以建立初具规模的体系框架。 微积分概念和基本定理已成为大众化的知识,但是由于种种原因,例如,对相关数学知识的研究不够透彻,使得微积分中值定理应用存在某些问题,通过对例题的分析和总结,对微积分的应用作了更为清晰和简便的解法,对提高微积分课程,尤其是微分中值定理的教学质量和效果发挥了良好的作用。

高等数学(上)第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底?高. (2) 预备一张细长条的纸, 其面积≈底?高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max{()(lim 1 n i x x f S i n i i i =?=?=∑=→λξλ

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i =?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点ξi , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量? 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法?x i 和取点法ξi 有关; 而?b a dx x f )(与?x i 和ξi 无关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx 解: x x f =)(在[0, 1]连续, 积分存在. ∑?=→?=n i i i x xdx 1 1 lim ξλ 与[0, 1]的分割法和ξi 的

定积分的性质

§ 4定积分的性质 教学目的与要求: 1. 理解并掌握定积分的性质极其证明方法 . 2. 逐步学会应用定积分的性质证明定积分的有关问题 教学重点,难点: 1. 定积分的性质极其证明方法 . 2. 应用定积分的性质证明定积分的有关问题 . 教学内容: -定积分的基本性质 性质1若f 在[a,b ]上可积,k 为常数,则kf 在[a,b ]上也可积,且 b b J kf (X p x = k J f (X )dx . 'a 、- 证当k=0时结纶显然成立. 当k H0时,由于 其中J=J b f (Z d /,因此当f 在[a,b] ? a n z f (G i 壬 从而 即kf 在[a,b ]上可积,且 Pkf (x)dx=kJ a =k jbf (x )dx. a b L -l b n b J L f (x )±g (x )]dx = J f (x )dx ±Pj g (x )dx. a a a 证明与性质1类同。 注1性质1与性质2是定积分的线性性质,合起来即为 l_ l_ l_ J a " h P (弭x =d J Xa (a )f Pj Xa dx , 性质2 若f 、g 都在[a,b ]可积,则 f ± g 在: a,b ]上也可积, 且 (1) 上可积时,由定义,任给名>0,存在6 >0,当||T

其中a 、P 为常数。 在f , g , h=f+g (或f-g )三个函数中,只要有任意两个在 [a,b ]上可积,则另外一个在[a,b ] 在f,g,h=f+g (或f-g )三个函数中,只要有一个在[a,b ]上可积,一个在[a,b ]上不可积,则 [a,b ]上必不可积. 若f 、g 都在[a,b ]上可积,贝U f ?g 在[a,b ]上也可积。 证 由f 、g 都在[a,b ]上可积,从而都有界,设 且A>O,B> 0(否则 f 、g 中至少有一个恒为零值函数,于是 f 、 g 亦为零值函数,结论显然成立)。 < + A 吠. 利用§ 3习题第1题,可知 Z 人兰B E ⑷口石+A W 叫仏人 T m>O,x 忘[a,b ],贝U —在[a,b ]上可积. f 另外一个在 性质3 A= sup f (x ), 任给s >0,由f 、 g 可积,必分别存在分割 「、T",使得 T' <—^ Z 斜 g a X i < — 2B T " 2A 令 T =T'+T" (表示把T'、T”的所有分割点合并而成的一个新的分割 T )。对于[a,b ]上T 所属的每 个A i ,有 f.g

相关主题
文本预览