当前位置:文档之家› 络合沉淀法合成纳米氧化铜粉体及其性能表征

络合沉淀法合成纳米氧化铜粉体及其性能表征

络合沉淀法合成纳米氧化铜粉体及其性能表征
络合沉淀法合成纳米氧化铜粉体及其性能表征

纳米二氧化硅表面改性研究

文章编号:1003 1545(2011)02 0018 04 纳米二氧化硅表面改性研究 李金玲,王宝辉,李 莉,张钢强,盖翠萍,杨雪凤,邵丽英,隋 欣 (东北石油大学化学化工学院,黑龙江大庆 163318) 摘 要:采用甲苯二异氰酸酯(TD I)接枝聚乙二醇(PEG )对纳米Si O 2进行表面改性,并利用红外光谱(FT I R )和热重(TG )、扫描电镜(SE M )、粒径分析、重力沉降法等方法对改性前后的纳米Si O 2的表面形貌和在介质中的分散稳定性进行了表征和分析。结果表明,改性后的纳米S i O 2表面接枝上了TD I 、PEG 的有机官能团,降低了颗粒的团聚程度,提高了纳米S i O 2在介质中的分散性。当n (TD I):n (PEG )=1:0 8时,分散性最好,接枝率为54 03%。 关键词:纳米S i O 2;表面改性;分散性中图分类号:TQ127.2 文献标识码:A 收稿日期:2010-10-12 基金项目:黑龙江省教育厅科学技术研究项目资助(11531009) 作者简介:李金玲,1984年生,女,在读硕士研究生,主要从事纳米改性水性聚氨酯的研究。E -m a i:l dqp ilj@l 163.co m 纳米二氧化硅是目前世界上大规模工业化 生产的产量最高的一种纳米粉体材料[1] 。特殊的微粒表面层结构和电子能级结构产生了普通粒子所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,导致了其在热、磁、光、敏感特性和表面稳定性等方面不同于常规粒子[2] 。但这些特殊效应同时赋予了纳米S i O 2表层大量羟基,导致羟基间的范德华力、氢键的产生,使粉体间的排斥力变为吸引力,热力学状态不稳定,极易发生凝并、团聚,在介质中难以分散,难以与基料很好结合,纳米粒子的优异特性 得不到充分发挥[3] 。因此要维持纳米粉体的特异性能,拓展其在生物、医药、化工、材料、电子、机械、能源、国防及交叉学科等领域的应用范围,有必要对纳米粉体进行表面改性。 纳米粉体表面改性方法有酯化反应法、偶联剂法、表面活性剂法、接枝聚合物法、高能法等[4] 。本文采用PEG2000、TDI 对纳米二氧化硅进行接枝改性,通过FT I R 、SE M 、TG 、粒度分析、沉降实验等对改性前后的纳米S i O 2进行表征和分析。 1 实验部分 1 1 实验原料 表1 实验药品 药 品生产厂家预处理纳米Si O 2 自制 真空脱水二月桂酸二丁基锡 (DB TDL 分析纯)天津市光复精细化工研究所直接使用 2,4 二异氰酸甲苯酯(TD I 分析纯)天津市化学试剂厂六分厂分子筛干燥无水乙醇(分析纯)沈阳市华东试剂厂直接使用聚乙二醇2000(PEG 分析纯)沈阳市华东试剂厂真空脱水甲苯(分析纯) 沈阳市华东试剂厂 分子筛干燥 1 2 表面改性及表征 将纳米二氧化硅在真空烘干箱中120 烘4h ,以除去表面吸附的水分。将烘好的纳米粒子分散于甲苯溶液中,剪切分散30m i n 、超声分散30m in 后,加入到装有温度计、冷凝管的三口烧瓶中,同时加入TD I 、DBTDL ,在水浴锅中缓慢升温,80 冷凝回流反应4h 后,加入PEG 恒温反应4h 。产物进行离心分离,并用甲苯、无水乙醇各洗涤3次,然后在120 进行真空干燥8h ,得到改性后的纳米Si O 2,研磨待用。 将上述TDI /PEG 分别按摩尔比为1:0 6,1:0 8,1:1 0,1:1 2重复上述实验步骤。

纳米二氧化硅的表面改性研究

第4期王云芳等:纳米二氧化硅的表面改性研究383SizeofSi02grain(nm) 图1水溶胶中Si05颗粒的大小分布 Fig.1 SizedistributionofSi02graininhydrosol可以看出,所制得的二氧化硅水溶胶中,二氧化硅成纳米状态分布,粒径为50—127rim,其电子显微镜照片如图2所示。另外,从二氧化硅水溶胶的红外光谱(图3(a))可以看出,2900cmd为SiOH的吸收峰;3433emd为吸附的水峰;1216em’1为Si—O—Si的不对称伸缩峰;958cmd为SiOH的伸缩峰;471cmd为O—Si?O的畸变吸收峰,说明纳米二氧化硅表面还有大量羟基,因此它可以和许多有机官能团发生作用。 2.2表面羟基值的测定【l列 采用离心干燥分离、醇洗,反复5次使溶胶中的二氧化硅分离,1000C真空干燥48h,得到纳米二氧化硅粉体,其红外光谱如图3(a)所示。称取该粉体29放入100mL的锥形瓶中,加入0.05mol/L的NaOH溶液80mL,密封搅拌24h。离心分离二氧化硅颗粒后的溶液体积为C毫升(一80mL),从分离的C毫升溶液中量取10mL,用A毫升0.05moL/L的HCl溶液滴定至中性,剩余溶液(C一10mL)用同样的方法滴定至中性所用HCl溶液为B毫升,根据下式可计算出单位重量二氧化硅颗粒表面的羟基含量(x)u引。 茗:盟笔华≈7.8mmol/g 茗2——广2Lg 上式中,A一中和分离溶液10mL所消耗0.05moL/LHCl溶液的体积数;B一滴定剩余溶液(约70mL)至中性所用0.05mol/LHCI溶液的体积数;w一纳米二氧化硅粉体的克重数。 2.3纳米二氧化硅的表面改性及分析 配制2.0wt%纳米二氧化硅水溶胶100mL,并用冰醋酸调节溶液的pH=3.5—4.5,随后加入 图2改性前纳米Si02粒子的TEM图片 Fig.2TEMphotographsofnano—silica particlesbeforemodification 400¥0012001600200024002800320036004000 Wavcntunber“gnrl 图3si02(a),cr,rMS(b)和 GPTMS改性Si02(c)的红外光谱 Fig.3FTIRgpl圮-q:raof(a)silica,(b)CPa'MS and(c)CPTMS—modifiedsilica 2mL偶联剂GPTMS(未水解前的红外光谱如图3(b)所示),磁力搅拌,常温反应2.5h后得到纳米二氧化硅改性溶胶(改性后纳米颗粒溶液的透射电子显微镜显微分析如图4所示)经离心干燥后醇洗(重复五次),常温干燥24h,然后在200℃真空干燥48h得到改性纳米SiO:粉体,其红外图谱如图3(c),从图谱可以看出:纳米二氧化硅接枝GPTMS后,二氧化硅的物理吸附水(3433cm。)和表面的硅醇羟基Si.OH(958em~,3744emd)明显减少,还有明显的亚甲基(2944em4)的吸收峰,但二氧化硅的特征吸收峰(1100cm~,797—805em~,471cm4)无明显变化,只是Si.O.Si键的伸缩振动吸收峰(1100—1216em。1)变宽增强。分析表明,在二氧化硅颗粒表面接枝硅烷偶联剂并未改变二氧化硅的物质组成和结构,只是SiO:表面羟基与硅烷偶联剂水解产生的童SiOH基团缩合,硅烷偶

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

超细粉体表征

超微粉体的表征 超微粉体表征主要包括以下几个方面:超微粉体的粒度分析(粒径、粒度分布),超微粉体的化学成分,形貌/结构分析(形状、表面、晶体结构等)等。 超微粉体的测试技术有以下几种: (1)定性分析。对粉体组成的定性分析,包括材料是由哪些元素组成、每种元素含量。(2)颗粒分析。对粉体颗粒的分析包括颗粒形状、粒度、粒分布、颗粒结晶结构等 (3)结构分析。对粉体结构分析包括晶态结构、物相组成、组分之间的界面、物相形态等。(4)性能分析。物理性能分析包括纳米材料电、磁、声、光和其他新性能的分析,化学性能分析包括化学反应性、反应能力、在气体和其他介质中的化学性质等。 3.1粒度的测试方法及仪器 粉体颗粒大小称粒度。由于颗粒形状通常很复杂难以用一个尺度来表示,所以常用等效度的概念不同原理的粒度仪器依据不同颗粒的特性做等效对比。 目前粒度分析主要有几种典型的方法分别为:电镜统计观测法、高速离心沉降法、激光粒度分析法和电超声粒度分析法。常用于测量纳米颗粒的方法有以下几种。 3.1.1电镜观察 一次颗粒的粒度分析主要采用电镜观测法,可以采用扫描电镜(SEM)和透射电镜(TEM)两种方式进行观测。可以直接观测颗粒的大小和形状,但又可能有统计误差。由于电镜法是对样品局部区域的观测,所以在进行粒度分布分析时需要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到的一次粒度分布结构一般很难代表实际样品颗粒的分布状态,对一些强电子束轰击下不稳定甚至分解的超微粉体样品很难得到准确的结构,因此,电镜法一次颗粒检测结果通常作为其他分析方法的对比。 3.1.2激光粒度分析 目前,在颗粒粒度测量仪器中,激光衍射式粒度测量仪得到广泛应用。其特点是测量精度高、测量速度快、重复性好、可测粒径范围广、可进行非接触测量等,可用于测量超微粉体的粒径等。还可以结合BET法测定超微粉体的比表面积和团聚颗粒的尺寸及团聚度等,并进行对比、分析。 激光粒度分析原理:激光是一种电磁波,它可以绕过障碍物,并形成新的光场分布,称为衍射现象。例如,平行激光束照在直径为D的球形颗粒上,在颗粒后得到一个圆斑,称为Airy斑,Airy斑直径d=2.44λf/D ,λ为激光波长,f为透镜焦距。由此公式计算颗粒大小D 。 3.1.3沉降法 沉降法是通过颗粒在液体中沉降速度来测量粒度分布的方法。主要有重力沉降式和离心沉降式两种光透沉降粒度分析方式,适合纳米颗粒的分析主要是离心沉降式分析方法。 颗粒在分散介质中,会由于重力或离心力的作用发生沉降,其沉降速度与颗粒大小和质量有关,颗粒大的沉降速度快,颗粒小的沉降速度慢,在介质中形成一种分布。颗粒的沉降速度与颗粒粒径之间的关系服从Stokes定律,即在一定条件下颗粒在液体中的沉降速度与粒径的平方成正比,与液体的粘度成反比。沉降式粒度仪所测的粒径也是一种等效粒径,叫做Stokes直径。 3.1.4电超声粒度分析 电超声粒度分析是最新出现的粒度分析方法,,当声波在样品内部传导时,仪器能在一个宽范围超声波频率内分析声波的衰减值,通过测得的声波衰减谱计算出衰减值与粒度的关系。分析中需要粒子和液体的密度、液体的粘度、粒子的质量分数的参数,对乳液

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

SLG 型连续式粉体表面改性机应用研究

SLG型连续式粉体表面改性机应用研究 郑水林1李 杨2骆剑军3 1.中国矿业大学北京校区,北京 100083; 2.北京工业大学; 3.江阴市启泰非金属工程有限公司 摘 要:在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词:粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性:①对粉体及表面改性剂的分散性好;②粉体与表面改性剂的接触或作用机会均等;③改性温度可调;④单位产品能耗低;⑤无粉尘污染;⑥操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

关于超细碳酸钙粉体的干法表面改性分析

关于超细碳酸钙粉体的干法表面改性分析 【摘要】碳酸钙粉体的表面改性是其深加工的重要部分,是塑料工业使用数量最大、应用面最广的粉体填料。工业生产中使用的活性碳酸钙粉体,主要是通过单一的硬脂酸及其盐、表面活性剂或偶联剂的吸附、表面涂覆和表面化学性来实现表面有机化改性。本文主要介绍超细碳酸钙的干法表面改性以及应用效果。解决塑料制品加工中混料的均匀性及下料的离析现象,减少清洗设备的用料量,提高超细碳酸钙粉体的应用性能与质量。 【关键词】超细;碳酸钙粉体;干法表面改性 粉体表面改性是集粉体加工材料、材料性能、化工机械等于一体的新技术,此技术的针对性和目的性比较强,而且此技术工艺方法比较多,影响因素也比较复杂,所以在制作的过程中要细致的分析这些影响因素,从而选择正确的表面改性方法、工艺配方和设备,使碳酸钙粉体的表面改性达到预期目的。碳酸钙粉是一种普通的无机非金属填料,经过超细粉碎和改性,可以将其变成一种性能优越的功能填料。 1 碳酸钙粉体表面改性概述 碳酸钙在人们的日常生活中比较常见,被广泛应用于塑料、造纸、建筑材料、食品添加剂等行业。碳酸钙一般有轻质与重质之分,轻质碳酸钙的活化改性一般采用湿性工艺加工。重质碳酸钙是通过天然粉碎碎石而得,它的活化改性可以采用干性也可以采用湿性。我国的高档碳酸钙仍然需要从国外进口,国内的碳酸钙技术在质量上与西方国家存在一定的差距,所以必须加强对碳酸钙的研究,碳酸钙表面改性剂的研究是研究碳酸钙的重要领域之一,比较常用的表面改性剂与改性方法有:有机/无机改性剂、聚合物改性剂、偶联剂等等。碳酸钙的活性改性实际上是选择特定的表面改性剂,对碳酸钙颗粒进行包覆处理,从而使碳酸钙成为一种填充材料。 2 影响碳酸钙粉体表面改性的主要因素 2.1 粉体原料 碳酸钙粉体原料的比表面积、颗粒形状以及大小,还与它的物理、化学性质等都对其改性效果有一定的影响。在不计粉体空隙的状况下,粉体的颗粒大小与其比表面积成反比的关系,也就是说粉体的颗粒越细,其比表面积越大,此时表面改性剂的用量也越大。粉体表面性质,比如表面电性、湿润性、溶解性等都直接影响着碳酸钙粉体与表面改性剂分子的作用,进而影响其表面改性的效果。 2.2 表面改性剂用量 在进行碳酸钙表面改性剂的研究中,其颗粒表面达到单分子层吸附所用的最

无机纳米粉体表面改性研究进展

摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。 关键词: 纳米粉体; 团聚; 表面改性;表征 Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification. Key words: nanosizes power, accumulation, surface modification, manifetation 1、引言 物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。 目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。 2、纳米粒子的团聚 所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。 从热力学上, 纳米粒子的分散体系具有巨大的比表面积, 表面能很大, 系统会自动朝着表面积减小的方向变化, 导致纳米粒子发生团聚。粉末的团聚分为软团聚和硬团聚。软团聚主要是由于颗粒之间的范德华力和库仑力所致, 该团聚可通过施加机械能能消除粉末的硬团聚体内除了颗粒之间的范德华力和库仑力之外, 还存在化学键作用, 目前人们对粉末的硬团聚机理存在不同的看法, 其中最有代表性的是晶桥理论、毛细管吸附理论、氢键作用理论和化学键作用理论[2]。 图1 纳米粒子的团聚机理示意图 Fig1 agglomeration mechanism schematic diagram of nano2particles 为了解决纳米粉体的团聚问题以及改善粉体粒子表面活性,就需要对粉体粒子进行表面改性。

第2章 粉体制备与表征

第2 章 特种陶瓷粉体的性能 及其制备

第2章特种陶瓷粉体的物理性能及其制备 2.1 概述 2.1.1 粉体的定义 粉:通常<100μm的粒子叫 “粉”, 流动性差. 粒:> 100μm的粒子叫 粒,流动性较好 “粒”流动性较好。 颗粒(>100 μm) 粉体(1~100μm) 超细粉体(0.1~1μm) 纳米粉体(<0.1μm)

第2章特种陶瓷粉体的物理性能 及其制备 2.1 概述 2.1.1 粉体的定义 所谓粉体,指大量固体粒子的集合体(单个粒子+聚结粒子)。它既不同于气体、液体,也不完全同于固体,正如不少国内外学者认为的,粉体是气、液、固三相之外的所谓第四相。 粉体由一个一个固体颗粒组成,所以它仍然具有很多固体的属性。 它与固体之间最直观,也最简单的区别在于:当我们用手轻轻触及它时,会表现出固体所不具备的流动性和变形。

2.1.2 粉体的粒径 组成粉体的固体颗粒其粒径大小对粉体系统的各种性质有很大影响。其中最敏感的有粉体的比表面积、性质有很大影响其中最敏感的有粉体的比表面积可压缩性和流动性。 固体颗粒粒径的大小也决定了粉体的应用范畴。 建材行业所用的粉料:一般在1 cm以上; 建材行业所用的粉料般在1以上 冶金、火药、食品等:粒径为40μ~1 cm 纳米相材料:粒径却小到几纳米至几十纳米。 纳米相材料粒径却小到几纳米至几十纳米 特种陶瓷粉体,一般是指其组成颗粒的粒径在 特种陶瓷粉体般是指其组成颗粒的粒径在 0.05~40μm内的物系。

2.1.3 粉体特性对材料性能的影响 陶瓷材料性能影响因素:材料组分和显微结构。显微结构,尤其是陶瓷材料在烧结过程中形成的 显微结构,在很大程度上由原料粉体的特性,诸显微结构在很大程度上由原料诸 如颗粒度、颗粒形状、粒度分布、比表面积、团聚状态以及相组分等决定。 聚状态以及相组分等决定

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

纳米氧化锌的表面改性

文章编号:1005-7854(2004)02-0050-03 纳米氧化锌的表面改性 马正先 1,2 ,韩跃新2,印万忠2,王泽红2,袁致涛2,于富家2,马云东 3 (11济南大学,济南250022;21东北大学,沈阳110004;31辽宁工程技术大学,阜新123000) 摘 要:在新开发的纳米氧化锌应用中,大多是将氧化锌直接混入有机物中,而把氧化锌直接添加到 有机物中有相当大的困难,因此必须对纳米氧化锌进行表面改性。以自制纳米氧化锌为原料,采用钛酸酯偶联剂为改性剂对其进行了表面改性处理。试验发现,改性剂用量是影响改性效果的最重要影响因素,且其用量远远超出普通粉体用量,最后找出了最佳改性条件。借助于T EM 、IR 等测试手段,对纳米氧化锌粉体改性前后的变化进行了表征与分析。试验结果表明,最佳改性条件为:改性剂用量为40%,改性时间约为30min 。 关键词:纳米氧化锌;表面改性;红外光谱;钛酸酯偶联剂中图分类号:TB383 文献标识码:A SU RFACE M ODIFICA T ION OF N ANOM ET ER -SIZED ZINC OXIDE MA Zheng -x ian 1,2,HAN Yue -x in 2,YIN Wan -z hong 2,WANG Ze -hong 2, Y UAN Zhi -tao 2,Y U Fu -j ia 2,MA Yun -dong 3 (11Jinan University ,Jinan 250022,China;2.Northeaster n Univer sity ,Shengy ang 110004,China; 31L iaoning Technical University ,Fux in 123000,China) ABSTRAC T:In application of new ly prepared nano -sized zinc ox ide,it is directly added into organic compound mostly,w hich is difficult comparatively.So,it is indispensable that surface modification of nano -sized zinc ox ide is done.The tests on surface modification of sel-f made nano -sized zinc oxide w ere carried out w ith titanate as cou -pling agent.Results indicate that the use level of coupling agent is the most important factor to influence the modification and its dosage is w ell over that needed for common pow der.By m eans of IR and TEM ,unmodified and modified nano -sized zinc oxides are investigated and the optimal modifying conditions are the agent dosage of 40%and modifying time of about 30min. KEY WORDS:Nano -sized zinc ox ide;Surface modification;IR -spectrum ;T itanate coupling agent 收稿日期:2003-09-05 基金项目:国家自然科学基金项目(50374021) 作者简介:马正先,机械学院副教授、博士,主要从事粉体制备 与处理及其设备的研究。 1 引 言 氧化锌的用途十分广泛,主要用于橡胶、油漆、涂料、印染、玻璃、医药、化工和陶瓷等工业112。纳米氧化锌因其全新的纳米特性体现出许多新的物理化学性能,使它在众多领域表现出巨大的应用前景。纳米氧化锌除了作为微米级或亚微米级氧化锌的替 代产品外,在抗菌添加剂、防晒剂、催化剂与光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等新的应用场合也正在或 即将投入应用12-62。在这些应用过程中,大多是与有机物相混的,而氧化锌作为无机物直接添加到有机物中有相当大的困难:1颗粒表面能高,处于热力学非稳定状态,极易聚集成团,从而影响了纳米颗粒的实际应用效果;o氧化锌表面亲水疏油,呈强极性,在有机介质中难于均匀分散,与基料之间没有结合力,易造成界面缺陷,导致材料性能下降。所以,必须对纳米氧化锌进行表面改性,以消除表面高能 第13卷 第2期2004年6月 矿 冶M INING &M ET ALLURGY Vol.13,No.2 June 2004

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

化学法制备粉体材料及表征

化学法制备粉体材料及表征 此课程是材料学院设置的综合实验课。通过本实验课的学习与实践,使学生了解和掌握化学法制备(氧化物、碳化物、氮化物、金属和合金)粉体的基本原理、基本方法和相应的工艺流程,并掌握粉体材料常规的表征手段;培养学生的实际动手操作能力,独立思考问题、解决问题的能力;同时为学生提供一个科研实践的平台,为其毕业设计和将来走上工作岗位做好准备。 一、实验目的 1.掌握化学法制备粉体材料的原理并了解各种具体的制备方法。 2.熟练掌握固相热分解法和均匀沉淀法制备粉体材料的原理与工艺流程。 3.掌握粉体材料的各种表征方法。 4.对粉体的粒度分布与物相组成进行熟练的测试与分析 培养学生的实际动手操作能力和自主设计实验的能力,为毕业论文设计作好理论基础和相应的实验准备。 二、实验要求 要求学每个学生能独立查阅文献资料,小组讨论,确定实验方案,并将实验方案提前一天给任课老师审阅;所有的实验必须在我们已有的设备条件和时间条件下完成;实验方案中对每一个工艺必须给出具体的工艺参数,如反应物浓度、温度、反应时间等。该实验更要求学生发挥自己的主观能动性,自主设计,自主完成实验全过程。实验完成后认真分析实验结果,撰写实验报告。 三、实验所需仪器设备 本实验所需的主要仪器设备有:电子天平,坩埚,烧杯,角匙,恒温水浴锅,电动搅拌器,高温炉,激光粒度分布仪,X射线衍射仪等。 四、实验原理 粉体的化学合成: 从物质的原子、离子或分子入手,经过化学反应形成晶核以产生晶粒,并使晶粒在控制之下长大到其尺寸达到要求的大小。按照物质的原始状态分类,可将粉体的化学合成方法分为气相法、液相法和固相法。 化学合成粉体的特点: 优点:能得到极微细的颗粒,且颗粒尺寸比较均匀,颗粒的纯度高;

粉体表面改性设备

粉体表面改性设备 中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •重力混合器 •气动混合器 •转鼓式混合机 •v型混合机 •Z型混合机 •高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •开炼机 •密炼机 •混炼型单螺杆挤出机,布斯混炼机 •双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。 ②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。

从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。 ②工作原理: 粉体原料经给料输送系统被送至主机上方的雾化室,在输送过程中,由给料输送机特设的加热装臵将粉体加热并干燥,与此同时固体状的改性剂在专用加热容器内也被加热熔化至液体状态后经输送管道送至雾化室。 雾化室内设有两组喷嘴,并均通人由给风系统送来之热压力气流,其中一组有四只喷嘴按不同位臵分布于雾化室内壁,其作用是将由给料输送系统送来的粉体物料吹散呈雾状,另一组有一只喷嘴同时与改性剂输送管道相通,将液状改性剂也吹散呈雾状。此时,原料和改性剂形成雾状,由于受到两组喷嘴从不同方向喷射出气流的作用,得以充分的混合,随即进人主机。 主机由高速旋转的主轴、搅拌棒、冲击锤、中间充满循环导热油的夹层简体等部分组成。进入主机内的雾化物料在搅拌棒的高速搅拌下,受到了冲击、摩擦、剪切等诸多力的作用使粉体颗粒与改性剂得到更充分接触、混合。主机夹层内循

相关主题
文本预览
相关文档 最新文档