当前位置:文档之家› 遗传学概念(名词解释)之令狐文艳创作

遗传学概念(名词解释)之令狐文艳创作

遗传学概念(名词解释)之令狐文艳创作
遗传学概念(名词解释)之令狐文艳创作

遗传学名词解释

令狐文艳

遗传学:研究遗传和变异的科学。

遗传学的研究对象:群体——个体——细胞——分子

遗传学物质基础:DNA、RNA

遗传物质必须具备的特点(5点)

体细胞中含量稳定;生殖细胞中含量减半;携带遗传信息;能精确地自我复制;能发生变异。

DNA和RNA的化学组成(胞嘧啶的化学式)

DNA双螺旋结构的发现(沃森克里克发现)

特点:1、一个DNA分子由两条多核苷酸链组成,走向相反;

2、双螺旋结构;

3、链内侧为碱基,AT、CG配对,氢键连接;

4各对碱基之间0.34nm,每转一圈长为3.4nm。

受到4个方面的影响:

1、达尔文

2、孟德尔

3、梅肖尔:从鱼精子细胞中分离出DNA分子

4、弗来明:发现染色体

5、摩尔根:遗传信息在染色体上

6、格里菲斯:转移因子(基因)

7、艾弗里:DNA是遗传物质

8、富兰克林、威尔金斯:晶体X射线衍射照片

Chargaff Rules (DNA的碱基组成特点)

(1)碱基当量定律:嘌呤碱基总量=嘧啶碱基总量,即A+G=T+C

(2)不对称比率(A+T)/(G+C)因物种(亲缘关系远近)而异

(3)A=T C=G

半保留复制(semi-conservative replication):DNA复制时,虽然原来的两条链保持完整,但它们互相分开,作为新链合成的模版,各自进入子DNA分子中,这种复制叫做半保留复制。

中心法则(画图表示):生物体中DNA、RNA和蛋白质之间的关系。P218

朊病毒对中心法则的挑战

朊病毒是不含核酸和脂类的蛋白质颗粒。一个不含DNA或RNA 的蛋白质分子能在受感染的宿主细胞内产生与自身相同的分子,实现相同的生物学功能,引起相同的疾病。朊病毒不是传递遗传信息的载体,也不能自我复制,其本职为基因编码产生的一种正常蛋白质的异构体。朊蛋白的错误折叠形成的致病蛋白在脑中积累而引起的。

朊病毒未证明蛋白质是遗传物质的原因:“蛋白质构象致病假

说”

朊蛋白(PrP)有两种形式:正常型(PrPC)和异常型(PrPSc)

朊蛋白具有独特的复制方式,它是以构象异常的蛋白质分子为引子,诱使正常的PrPC发生构象上的变化,由原来的α-螺旋变为β-折叠,丧失了原有的功能,变成具有致病感染力的分子。

遗传密码的基本特点:

(1)共64个三联体密码子(4^3=64),其中3个终止密码子,61个密码子编码氨基酸。

(2)简并性:同一种氨基酸有2个或更多的同义密码子,只有Trp和Met仅有一个密码子。

(3)连续性:mRNA的读码方向从5’端至3’端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插

入、缺失和重叠,均造成突变。

(4)方向性:阅读方向是与mRNA的合成方向或mRNA的编码方向一致的,即从5’端至3’端。

(5)密码子的专一性主要取决于前2个碱基,第3个碱基可突变;减少基因突变引起的蛋白质翻译终止的概

率。

(6)通用性:蛋白质生物合成的整套密码,从原核生物到人类都通用,但已发现少数例外,如动物细胞的线粒

体、植物细胞的叶绿体。

基因(gene):位于染色体上的遗传功能单位

基因型:某一个体全部基因的总称。

表型:具有特定基因型的个体,在一定环境条件下,所表现出来的形状特征的总和。

等位基因(allele):位于同一对同源染色体相同位置上的基因,也指等位片段、等位序列或等位碱基对。

显隐性的相对性(镰刀型贫血)

不完全显性(incomplete dominance):具有相对性状的纯合亲本杂交后,F1显现中间类型

共显性(co dominance):双亲的性状在F1中都有表现

镶嵌显性:双亲性状在F1中的不同部位表现

超显性(overdominance):杂合子比纯合子的适应程度高。超显性可能是杂种优势的一个原因,但杂种优势却不一定是超显性。

复等位基因(人类ABO系统血型)(新生儿溶血症)

在同源染色体相对应的基因位置上存在两种以上不同形式的等位基因。

操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。

乳糖操纵子P225

1、结构:参与乳糖分解的一个基因群,包括操纵基因、启动

子、cAMP受体蛋白结合位点。

2、功能:

(1)调节基因:位于操纵子外面,其有无活性被操纵子控制,有活性的阻遏蛋白为四聚体

(2)当培养基中无乳糖时,阻遏蛋白与操纵基因结合,阻断RNA聚合酶与操纵基因结合,从而不能使结构基因

转录的过程开始,导致乳糖代谢所必须的酶不能合

成。

阻遏蛋白与操纵基因的结合如何组织操纵子的转录?

RNA聚合酶和阻遏蛋白的结合位点是重叠的。这两种蛋白质中的任何一种与DNA结合就会阻止另一种蛋白质与其结合。所以阻遏蛋白与操纵基因结合后便会阻止RNA聚合酶与启动子的结合,从而抑制操纵基因的表达。

(3)在lacI?菌株中,阻遏蛋白缺失或失活,3种酶均能表达

(4)当乳糖为唯一碳源时,乳糖进入细胞后与阻遏蛋白结合,使阻遏物构型改变,这时mRNA聚合酶与启动子

结合,转录。乳糖被分解后,阻遏物又发挥作用,酶

的合成又停止。

RNA聚合酶在lac启动子起始RNA的合成时需要另外一种叫做cAMP受体蛋白(CRP)的协助,CRP能被单个cAMP分子所激活。只有当CRP-cAMP复合物结合到乳糖操纵子的CRP位点,RNA聚合酶才能起始RNA的合成。CRP-cAMP复合物为正调节因子,阻遏蛋白为负调节因子。

葡萄糖怎样影响β-半乳糖苷酶的合成呢?

答:在缺乏葡萄糖时,在腺苷酸环化酶的作用下有ATP合成cAMP,然后形成CRP-cAMP复合物,从而激活操纵子的转录,而葡萄糖的存在直接使腺苷酸环化酶失活,导致细胞中cAMP数量明显减少,如果没有cAMP,就不能形成CRP-cAMP复合物,也就不能激活乳糖操纵子。

假基因(pseudo gene):具有与功能基因相似的序列,由于突变失去原有的功能,参与非编码RNA的调控。

(论述假基因如何参与非编码RNA调控)

1、在假基因中完全缺少在相应的正常基因中存在的内含子顺序

2、在假基因的3’末端有一段连贯的脱氧腺嘌呤核苷酸

3、有些假基因与相应的正常基因在顺序组成上的相似性只限于

相应的mRNA的3’末端之前的部位

4、假基因若被断裂可能影响正常基因的转录。

外显子:编码序列

内含子:非编码序列(有的编码内切酶、成熟酶;调控;提高进化速率。)

断裂基因(split gene):编码序列被非编码序列分隔开来的基因。

RNA剪接(RNA splicing):从DNA模版链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA 分子的过程。

转酯反应:磷酸二酯键从一个位置转移到另一个位置。

核酶(ribozyme):指本质为RNA或以RNA为主的含有蛋白质辅基的一类具有催化功能的物质。

选择性剪接:在某个组织里是利用某些外显子,而在另一个组织里可能选择另外一些外显子来组成成熟的mRNA;或者某些内含子并不剔除而是被当作外显子,这样可能就产生完全不同的mRNA和蛋白质。选择性剪切实际上是在内含子或外显子水平上对基因表达的调控。

表观遗传:不是因为DNA序列遗传信息改变而产生的基因功能或表型变化可通过有丝分裂或减数分裂而保持的现象。有三层含义:1、可遗传的;2、基因表达的改变;3、没有DNA序列的变化或不能用序列变化来解释。

玉米的激活解离系统(Ac-Ds系统):突变基因c(无色)是由一个称为解离因子(dissociator, Ds)的可移动“控制因子”(controlling element)(转座子)引起的,它能合成转座酶并可以转座插入到基因C中。另一个可移动的控制因子是Ac,称为激活因子(activator),它的存在可以激活Ds 转座进入C基因或别的基因,也可以使Ds从基因中转出,使突变基因回复。P288

染色体结构

缺失(deletion):染色体上某一区段及带有的基因一起丢失,从而引起的变异现象。

拟显性(假显性):杂合子的一条同源染色体上的显性等位基

因缺失,导致另一条同源染色体上的隐性等位基因得以表达的现象。(P105“由于缺失造成玉米株色的假显性遗传”图)

重复(duplication):染色体上增加了与本身相同的某个区段而引起的变异现象。分为顺接重复、反接重复、错位重复。倒位(inversion):染色体上某一区段连同它带有的基因顺序发生180°倒转从而引起的变异的现象。臂内倒位(倒位区不含着丝点)、臂间倒位(含着丝点)。减数分裂联会时形成“倒位圈”。

倒位的应用:

1、CLB技术:C代表X染色体上的交换抑制因子,L为X染色

体上的隐性致死基因,B为X染色体上的显性棒眼基因

2、平衡致死品系:保存带有致死基因的品系。P109

易位(translocation):当非同源染色体发生断裂后的片段重新粘结时,可能会发生粘结错误。这种由两对非同源染色体之间发生某个区段转移的染色体畸变叫做易位。分为单向易位、相互易位。

位置效应(position effect)(2种):在生物学中,由于染色体畸变改变了一个基因与其邻近基因或染色质的位置关系,从而使它的表型效应也发生变化的现象。

分为两大类:1、稳定型S:如果蝇的棒眼是由于X染色体上的区段重复;2、花斑型V:如果蝇的斑白眼是由于染色体结构变异使白眼座位改变了位置,邻近于异染色质。

稳定位置效应:由于基因位置改变从而产生一种新的、稳定的

基因表达方式,类似于一个基因的永久突变。

花斑位置效应:一个断裂发生在异染色质区而另一端发生在常染色质区的倒位通常产生花斑位置效应,当倒位产生花斑位置效应时,倒位区内的基因,在某些体细胞内是失活的,在其他的体细胞里是正常活动的,这样使得这个个体表现出花斑的表型。

果蝇基因中,凡涉及臂间异染色质的染色体重排都能导致位置效应花斑(PEV)。

基因突变(gene mutation):DNA序列的改变而引起的变异。

改变基因遗传信息内容的突变:碱基替换(1、转换:同类碱基之间的替换,嘌呤由嘌呤代替,嘧啶由嘧啶代替;2、颠换:嘌呤由嘧啶代替,嘧啶由嘌呤代替);移码突变(插入突变、缺失突变——1或2个碱基的插入或缺失);缺失突变(缺失大片段DNA))

点突变(分类)

错义突变(missense mutation):DNA发生转换或颠换,密码子的改变引起与原来完全不同的氨基酸改变。

无义突变(nonsense mutation):当碱基替换使mRNA上的密码子成为UAG、UAA或UGA时,翻译到终止密码子,肽链停止伸长。

沉默突变(或同义突变silence mutation):由于遗传密码的简并性,DNA碱基替换突变改变了密码子,但仍编码同一氨

基酸,蛋白质结构并未改变。

中性突变(neutral mutation):碱基替换突变中,虽然产生了不同的氨基酸,但新的氨基酸与原来的氨基酸有类似的结构和性质,因而并未改变蛋白质的性质和功能。P248

正向突变(forward mutation):野生型表型改变为突变型表型(A→a)的突变;

回复突变(reverse mutation 或 back mutation):突变型回复到野生型或假野生型表型(a→A)的突变。

完全连锁:同一条染色体上的基因,以这条染色体为单

位传递,只产生亲型配子,子代只产生亲型个体。

不完全连锁:连锁基因间发生重组,产生亲型配子和重组型配子,自交和测交后代均出现重组型个体。

交换(crossing over)与交叉(chiasma):遗传学上把在细胞减数分裂前期Ⅰ,联会的同源染色体发生非妹妹染色单体片段的互换称为交换。交换导致在双线期—终变期表现染色体的交叉现象。交叉是发生交换的细胞学证据。

4.估算重组值的常用方法:可反应交换基因间距离

染色质(chromatin)又称为染色质线(chromatin fiber),细胞间期;

染色体(chromosome),细胞分裂期。

染色体的四级结构

一级结构:是核小体组成的串珠式染色质线;

二级结构:直径为10nm的染色质线过螺旋化,每一圈6

个核小体,形成螺线体;

三级结构:螺线体再螺旋化,形成圆筒状超螺线体(supersolenoid);

染色体形成:超螺线体再次折叠盘绕和螺旋化,形成染色体。

组蛋白八聚体:核心DNA+组蛋白H1+连接DNA

主缢痕(primary constriction)中期染色较浅而缢缩的部位,有着丝粒,螺旋化程度低,DNA含量少,所以染色很浅或不着色;

次缢痕(secondary constriction)主缢痕外呈浅缢缩的部分,位置相对稳定,数目、位置和大小是鉴定染色体的显著特征;

核仁组织区(nucleolar organizing regions, NORs)核糖体RNA基因(5SrRNA基因除外)区,位于染色体的次缢痕区,但并非所有的次缢痕都是NORs。

随体(satellite)位于末端称端随体,位于两个次缢痕中间的称中间随体。

端粒(telomere)染色体端部,由高度重复的短序列串联而成,进化上高度保守,不同生物的端粒序列都很相似,哺乳类的序列为GGGTTA,500-3000次重复。

作用是:保护染色体不被核酸酶降解;防染色体融合;为端粒酶提供底物,保证染色体的完全复制。与寿命有关。

常染色质区(euchromatin)碱性染料着色浅而均匀、螺旋化

程度低;主要是单一序列DNA和中度重复序列DNA;是基因活性区,具有转录和翻译功能。

结构异染色质(constitutive heterochromatin)是一种永久性异染色质;在染色体上的位置和大小都较恒定,常出现在端粒、次缢痕、着丝粒附近或染色体臂内某些节段处;除复制阶段外,处于螺旋化状态,染色很深,主要由高度重复的DNA 序列构成,G、C碱基含量高;可以是染色体的一部分,也可组成整条染色体,如果蝇的Y染色体和第4染色体(点状染色体),几乎都由结构异染色质组成。

异染色质区(heterochromatin)碱性染料着色深、螺旋化程度高;一般不编码蛋白质的惰性区,维持染色体结构的完整性;异染色质又可分为结构异染色质和兼性异染色质。

兼性异染色质(facultative heterochromatin)又称为X染色体失活;在个体发育的特定阶段,由常染色质转变而具备异染色质的属性,如发生异固缩、原有基因失活等;如,在哺乳动物胚胎发育早期雌性体细胞的一条X染色体就出现异染色质化现象,如女性口腔上皮细胞巴氏小体。

异固缩(heteropycnosis)电镜观察,常染色质和异染色质在结构上是连续的;在同一条染色体上既有常染色质又有异染色质,或者说既有染色浅的区域(解螺旋而呈松散状态)又有染色深的区域(高度螺旋化而呈紧密卷缩状态),这种差异表现称为异固缩现象。

B染色体动、植物细胞核中正常染色体(称为A染色体)外,

还有一类数目不定的染色体,称为B染色体或超数染色体或副染色体;遗传学研究者已在1000多种植物和300多种动物甚至人类中报道了B染色体的存在;大多数动物的B染色体是由结构异染色质所组成; B染色体的来源和功能,目前尚不甚了解。

染色体的数目

1、各种生物的染色体形态结构、数目相对恒定;

2、同一物种,个体染色体数目相同,不同物种染色体的数目差异很大,但其数目的多少与该物种的进化程度无关;

3、染色体的数目和形态特征对于鉴定物种的亲缘关系,特别是对近缘物种的分类,意义重要;

4、通常用2n代表生物的体细胞染色体数目,n代表性细胞染色体数目。

特化染色体一些特殊的染色体,只存在于某些生物的特定组织,或某些群体,这些染色体称为特化染色体。

暂时特化染色体:只是正常染色体的临时性结构和形态的变化,例如多线染色体(polytene chromosome)和灯刷染色体(lampbrush chromosome)。

永久特化染色体:是一种特殊类型的染色体,是生物在进化过程中适应特殊的遗传功能而分化出来的,或是因具备某种特殊的传递机制而保留在群体中的一类染色体,例如性染色体(sex chromosome)和超数染色体等。

1.多线染色体核内染色体连续复制后,不分裂,仍紧密聚集在

一起,多线染色体。

2.灯刷染色体是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。是一个二价体, 含4条染色单体, 由轴和侧丝组成, 形似灯刷。高倍电镜下,灯刷型染色体上存在许多突起的“泡”状或“环”状结构,是基因表达活跃状态。

减数分裂(meiosis)

减数分裂的过程

(1)减数第一次分裂:分为前期Ⅰ、中期Ⅰ、后期Ⅰ和末期Ⅰ四个时期。

前期I:细线期、偶线期、粗线期、双线期和终变期。

(2)减数第二次分裂:与有丝分裂过程十分相似。分为前期Ⅱ、中期Ⅱ、后期Ⅱ和末期Ⅱ四个时期。

性染色体(sex-chromosome):遗传学上把两性生物体细胞成对染色体中,直接与性别决定有关的一对或一条染色体叫性染色体。

常染色体(autosome,A)而把生物体细胞内,除过性染色体以外的其它两套普通染色体。

睾丸女性化(Testicular feminization):患者具有女性的第一性征和第二性征,但腹腔内有未下降的睾丸,能产生精子并分泌正常数量的雄性激素,但没有输精管;阴道短、缺或盲泯,没有子宫和输卵管,先天性闭经。细胞学检查发现,其染色体数目正常,但X染色体上有一突变基因。

性反转现象

珊瑚岛鱼在30-40条左右的群体中,只有一条为雄性,当雄性死后,由一条强壮的雌性转变为雄性.

后螠自由游泳中性;落入海底雌性;附着到雌性吻上,雄性,以后寄生到雌性子宫

伴性遗传(sex-linked inheritance):位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象称为性连锁。其中,基因位于X或Z染色体的

限性遗传(sex-limited inheritance):在性连锁中,位于Y染色体或W染色体上的基因所控制的遗传性状只局限于雄性或雌性上表现的现象称为限性遗传。如耳毛-限男性,发达乳房-限女性。限性性状多与激素有关。

从性遗传(sex-influenced inheritance):从性遗传或称性影响遗传:不为X及Y染色体上基因所控制的性状,因为内分泌及其他关系使某些表现或只存在于雌雄一方;或在一方为显性,另一方为隐性的现象。

多倍体:具有三套或三套以上染色体的个体,通常表现为细胞体积增大。

整倍体

减数分裂一对同源染色体不分离形成n-1或n+1配子——非整倍体

整倍体(enpeoid)变异

单倍体(haploid):具有体细胞染色体数为本物种配子染色体

数的生物个体;没有联会的同源染色体,高度不孕;倍体育种利用如花药离体培养等获单倍体植株,再使染色体组加倍恢复正常染色体数。

二倍体中:

单体(monosomy)2n-1,一般致死,少数存活

缺体(nullisomy) 2n-2,缺少一对同源染色体

三体(trisomy),2n+1,雄配子败育,雌配子遗传

植物雄性不育(male sterility)的类别:主要特征是雄蕊发育不正常,雌蕊发育正常。

在植物界普遍存在,已知涉及18个科的110多种植物。如水稻、玉米、高梁、大小麦、甜菜、油菜等。其中水稻、油菜、玉米雄性不育性已用于大田生产之中。

核质互作 (cytoplasmic male sterility CMS) 不育型CMS:有细胞质基因和核基因互作控制的不育类型,简称质核型。花粉的败育多发生在减数分裂以后的雄配子形成期.

核质互作型的遗传特点:胞质不育基因为S;胞质可育基因为N;核不育基因r,不能恢复不育株育性;核可育基因R,能够恢复不育株育性。

S(rr)×N(rr) S(rr) F1表现不育

其中:N(rr)个体具有保持母本不育性在世代中稳定的能力,称为保持系(B)。

S(rr)个体由于能够被N(rr)个体所保持,其后代全部为稳定不育的个体,称为不育系(A)。

S(rr)×N(RR)或S(RR) S(Rr)中,F1全部正常可育。

N(RR)或S(RR) 个体具有恢复育性的能力,称为恢复系(R)。

生产上的应用:质核型不育性由于细胞质基因与核基因间的互作,故即可以找到保持系;不育性得到保持、也可找到相应恢复系;育性得到恢复,实现三系配套。

不育系A:S(rr)、

保持系B:N(rr)、

恢复系R:S(RR) 或N(RR)

基因的加性效应(additive effect):

用A表示。它是上下代遗传中可以固定的分量,在实践上又称为“育种值”,是在动、植物育种工作中实际能够得到的效应。

显性离差(dominance deviation):

也称显性效应,用D表示。它是指等位基因之间互作产生的效应,属于非加性效应组成部分,能遗传而不能固定的遗传因素,基因间的关系会发生变化,例如自交或近亲交配引起后代中杂合体减少,显性效应也逐代减少。

互作离差或上位性效应(interaction或epistatic deviation)

用I表示,是指由于非等位基因之间相互作用,对基因型值所产生的效应,也是属于非加性的基因作用。

上述三项表示为:G=A+D+I

遗传率(heritability)也称遗传力,是表示遗传因素与环境影响对数量性状表现相对重要性的指标,用遗传方差与表现型方差的比率表示,记为h2 。

广义遗传率(broad sense heritability)

广义遗传率是指基因型方差占表现型总方差的比率,其公式为:

狭义遗传率(narrow sense heritability)

狭义遗传率是指基因加性方差占总表型方差的比率。

基因型方差可进一步分解成三个组成部分,VG=VA+VD+VI

VA:基因加性方差,是指由基因累加效应引起的遗传变异,是能稳定遗传的方差组分。

VD:显性方差,是由等位基因互作效应引起的遗传变异,是产生杂种优势的主要方差组分。

VI:上位性方差,是由非等位基因互作效应引起的遗传变异,被认为是能部分遗传的方差组分。

VP=VA+VD+VI+VE

群体

是指有婚配关系的个体所构成的生物集团。

婚配关系有两层含意,一是个体间的可交配性,二是杂交后代的可育性。

存在婚配关系意味着群体内个体间有着共同的染色体组,个

体间可以通过杂交相互交换基因。

孟德尔群体

指一个物种生活在某一地区内的、能相互杂交的个体群。

孟德尔群体与一般群体的主要区别在于群体内个体间能够随机婚配,而不是选型婚配。

从这个意义看,几乎所有的动物和异花授粉植物群体都属于孟德尔群体,而自体受精动物及自花授粉植物构成的群体则只能是一般的群体或者叫非孟德尔群体。

基因库(gene pool)

基因库是指群体所包含的能够交换和重组的全部基因。在实践上,通常是指某个物种供育种使用的全部材料。

群落

由许多群体所构成的生物集团叫群落。群落中的群体间没有婚配关系,群体间的相对独立性主要通过生殖隔离来实现。基因库与基因频率

个体性状表现的遗传基础是个体的基因与基因组合,即基因和基因型。群体性状表现的遗传基础则是基因频率和基因型频率。

基因频率(alleles frequency)是指在一群体内,某特定基因占该位点基因总数的比率。

由于某种随机因素,某一等位基因的频率在群体(尤其是在小群体)中出现世代传递的波动现象称为遗传漂变(genetic drift),也称为随机遗传漂变(random genetics

drift)。

遗传漂变改变群体基因频率的作用方向是完全随机的。

迁移个体从一个群体迁入另一个群体,并参与后者的繁殖就是迁移。

近婚系数(inbreeding coefficient):是指近亲婚配的一对夫妻可能从共同祖先得到同一基因,有可能把同一基因传给他们的子女,子女得到这样一对来源相同且纯合的概率为近婚系数。

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

遗传学名词解释

一、名词解释:(每小题3分,共18分) 1、外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 2、复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 3、F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 4、F'因子:把带有部分细菌染色体基因的F因子叫F∕因子。 5、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 6、伴性遗传:在性染色体上的基因所控制的性状与性别相连锁,这种遗传方式叫伴性遗传。 7、杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 8、隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 9、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 10、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 11、跳跃基因(转座因子):指细胞中能改变自身位置的一段DNA序列。 12、基因工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 13、性导:利用F∕因子形成部分二倍体叫做性导(sex-duction)。 14、转导:以噬菌体为媒介,将细菌的小片断染色体或基因从一个细菌转移到另一细菌的过程叫转导。 15、假显性:(pseudo-dominant):一个显性基因的缺失致使原来不应显现出来的一个隐性等位基因的效应显现了出来,这种现象叫假显性。 16、核外遗传:由核外的一些遗传物质决定的遗传方式称核外遗传或非染色体遗传。 17、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态. 18、等显性(并显性,共显性):指在F1杂种中,两个亲本的性状都表现出来的现象。 19、限性遗传与从性遗传:限性遗传:是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传:指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 20、连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 21、核型与核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测定染色体数目、长度、着丝粒位置、臂比、随体有无等特征,对染色体进行分类和编号,这种测定和分析称为核型分析。 22、位置效应:基因由于变换了在染色体上的位置而带来的表型效应改变的现象。 23、平衡致死品系:两个连锁的隐性致死基因,以相斥相的形式存在于一对同源染色体上,由于倒位抑制交换作用,永远以杂合状态保存下来,表型不发生分离的品系叫做平衡致死品系,也叫永久杂种。24、基因突变:是染色体上一个座位内的遗传物质的变化,从一个基因变成它的等位基因。也称点突变。从分子水平上看,基因突变则为DNA分子上具有一定遗传功能的特定区段内碱基或碱基顺序的变化所引起的突变,最小突变单位是一个碱基对的变化,是产生新基因的源泉,生物进化的重要基础,诱变育种的理论依据。 25、部分二倍体:含一个亲本的全部基因组和另一亲本部分基因组的合子叫部分二倍体或部分合子。 26、移码突变:在DNA复制中发生增加或减少一个或几个碱基对所造成的突变。 27、镶嵌显性:指在杂种的身体不同部位分别显示出显性来的现象. 28、表型模写(拟表型):有时环境因子引起的表型改变和某基因突变引起的表现型改变很相似,这叫表型模拟或拟表型。 29、等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。

遗传学名词解释 复习

遗传学名词解释 序言 1. 遗传(heridity):指世代间(子代与其父母)及子代兄弟姊妹(同胞)间 相似的现象。 2. 变异(variation):指世代间(子代与其父母)及子代兄弟姊妹(同胞) 间的差异。 3. 遗传学(Genetics):就是研究生物的遗传与变异的科学。从本质上讲, 它是研究基因的结构、组织、传递、表达和变异等问题的生物学分支学科。 遗传学三大定律 孟德尔遗传定律 1.Mendel’s law of segregation孟德尔分离定律——即遗传第一定律,在配子 形成过程中,成对的遗传因子相互分离,结果,如在杂合体中,半数的配子 带有其中的一个遗传因子。 2.character or trait 性状——遗传学中把生物体所表现的形态结构,生理特 征和行为方式等统称为性状。 3.dominant character 显性性状——具有相对性状的双亲杂交所产生的子一 代中得到表现的那个亲本性状。控制显性性状的基因常用大写字母表示*。 4.recessive character 隐性性状——具有相对性状的双亲杂交所产生的子一 代中没有表现的那个亲本性状。控制隐性性状的基因常用小写字母表示。 5.unit character单位性状——遗传分析中,对于生物表现出的不可再划分 的特定性状。单位性状可由少到一个基因座位控制。 6.relative character 相对性状——对于遗传分析中的单位性状,同一性状的 不同表现类型称为相对性状。 7.parent generation 亲代&first filial generation 子一代——亲代杂交所产生 的下一代(用符号F1表示)。 8.reciprocal cross反交,用甲乙两种具有不同遗传特性的亲本杂交时,如以*基因的符号在印刷上一般用斜体表示。

遗传学名词解释94257

遗传学名词解释 amitosis无丝分裂:细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 mitosis有丝分裂:即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 a sexual reproduction无性生殖:通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞 或生物。也即克隆(clone)。 sexual reproduction有性生殖:减数分裂和受精有规则地交替进行,产生子代的生殖方式。 endomitosis内源有丝分裂:即间期细胞的染色体复制后,但不发生核分裂,着丝点也不分裂。结果形成多线染色体。或染色体复制后着丝点分裂,但细胞核未分裂,则核内染色体成倍性增加,成为内源多倍体。 meiosis减数分裂:是一种特殊方式的细胞分裂,是在配子形成过程中发生的,包括两次连续的核分裂,但染色体只复制一次,因而在形成的四个子细胞核中,每个核只含有单倍数的染色体,即染色体数减少一半,所以把它叫做减数分裂。 alternation of generations世代交替:生活周期包括一个有性世代和一个无性世代,这样二者交替发生就称为世代交替。 allele等位基因:载荷在同源染色体对等的位点上的二个基因,这二个成对的基因称为等位基因。additive effect加性效应:是指各个基因位点上纯合基因型对基因型总效应的贡献的大小,这部分效应一般是累加性的。 dominant effect显性效应:是指同一基因位点内相对等位基因间的交互作用对基因型总效应的贡献。autopolyploid同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍得到。allopolyploid 异源多倍体:指增加的染色体组来自不同物种,一般是由不同种、属间的杂交种染色体加倍形成的。 apomixis无融合生殖:不经过雌雄配子融合而能产生种子的一种生殖方式,根据无融合生殖最后形成胚。aneuploid非整倍体:指体细胞核内的染色体不是染色体组的完整倍数,比该物种正常合子(2n)多或少一个以至若干个的现象。 atavism返祖遗传:在杂种后代重现祖先的某些性状,即为返祖遗传。 complementary effect互补作用:两对独立基因分别处纯合显性或杂合状态时,共同决定一种性状的发育。 当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状,这种作用称为互补作用。(9:7)

遗传学名词解释大全

autoregulation 自我调节:基因通过自身的产物来调节转录。 autosome 常染色体:性染色体以外的任何染色体。 auxotroph 营养缺陷型:微生物的一种突变体,它不能合成生长所需的物质,培养时必须在培养基中加入此物质才能生长。 back mutation 回复突变:见reversion bacteriophage (phage) 一种感染细菌的病毒。 balance model 平衡模型:关于遗传变异比例的一种模型,它认为自然选择维持了群体中大量遗传变异的存在。 balanced polymorphism 平衡多态现象:稳定的遗传多态现象是由自然选择来维持的。 Barr body 巴氏小体:在正常雌性哺乳动物的核中有一个高度凝聚的染色质团,它是一个失活的X染色体。 base analog 碱基类似物:一种化学物质,其分子结构和DNA的碱基相似,在DNA的代谢过程中有时会取代正常碱基,结果使DNA的碱基发生突变。 bead theory 串珠学说:已被否定的学说,认为基因附着在染色体上,就象项链上的串珠。它既是突变单位又是重组单位。 binary fission 二分分裂:一个细胞分裂为大小相近的两个子细胞的过程。binomial distribution 二项分布:具有两种可能结果的 biparental zygote 双亲合子:又称双亲遗传(biparental inheriance),衣藻(chlamydomonas) 的合子含有来自双亲的DNA。这种细胞一般很少见。 biochemical mutation 生化突变,见自发突变(autotrophic mutation)。bivalent 二价体:在第一次减数分裂时彼此联合的一对同源染色体。bottleneck effect 瓶颈效应:一种类型的漂变。当群体很小时产生这种效应,结果使基因座中有的基因丢失了。 branch-point sequence 分支点顺序:在哺乳动物细胞中的保守顺序:YNCURAY(Y: 嘧啶,R:嘌呤, N:任何碱基),位于核mRNA内含子和II 类内含子3'端附近,其中的A可通过5'-2'连接的方式和内含子5'端相连接,在剪接时形成套马索状结构。 broad-sense heritability 广义遗传力:表型方差中所含遗传方差的百分比。cotplot 浓度时间乘积图:一个样本单位单链DNA分子复性动力学曲线。以结合为双链的量为纵坐标,以DNA浓度和时间的乘积为横坐标作出的DNA复性动力学曲线 C value C值:生物单倍体基因所含的DNA总量。 CAAT element CAAT元件:真核启动子上游元件之一,常位于上游-80bp附近,其功能是控制转录起始频率,保守顺序是 5'-GGCCAATCT-3'。 cancer 癌:恶性肿瘤,细胞失控,异常分裂且在生物体内可播散。 5'-capping -5'加帽:在 mRNA加工的过程中在前体 mRNA分子的5'端加上甲基核苷酸的“帽子”。 catabolite repression (glucose effect) 分解代谢物阻遏(糖效应):当糖存在时能诱发细菌操纵子的失活,即使操纵子的诱导物存在也是如此。 cDNA 互补DNA:以mRNA为模板,以反转录酶催化合成的DNA的拷贝。 cDNA clone cDNA分子克隆:将cDNA片段装在载体上转化细菌扩增出多克隆的过程,最终可建立cDNA文库。

遗传学概念(名词解释)

遗传学名词解释 遗传学:研究遗传和变异的科学。 遗传学的研究对象:群体——个体——细胞——分子 遗传学物质基础:DNA、RNA 遗传物质必须具备的特点(5点) 体细胞中含量稳定;生殖细胞中含量减半;携带遗传信息;能精确地自我复制;能发生变异。DNA和RNA的化学组成(胞嘧啶的化学式) DNA双螺旋结构的发现(沃森克里克发现) 特点:1、一个DNA分子由两条多核苷酸链组成,走向相反; 2、双螺旋结构; 3、链内侧为碱基,AT、CG配对,氢键连接; 4各对碱基之间0.34nm,每转一圈长为3.4nm。 受到4个方面的影响: 1、达尔文 2、孟德尔 3、梅肖尔:从鱼精子细胞中分离出DNA分子 4、弗来明:发现染色体 5、摩尔根:遗传信息在染色体上 6、格里菲斯:转移因子(基因) 7、艾弗里:DNA是遗传物质 8、富兰克林、威尔金斯:晶体X射线衍射照片 Chargaff Rules (DNA的碱基组成特点) (1)碱基当量定律:嘌呤碱基总量=嘧啶碱基总量,即A+G=T+C (2)不对称比率(A+T)/(G+C)因物种(亲缘关系远近)而异 (3)A=T C=G 半保留复制(semi-conservative replication):DNA复制时,虽然原来的两条链保持完整,但它们互相分开,作为新链合成的模版,各自进入子DNA分子中,这种复制叫做半保留复制。 中心法则(画图表示):生物体中DNA、RNA和蛋白质之间的关系。P218 朊病毒对中心法则的挑战 朊病毒是不含核酸和脂类的蛋白质颗粒。一个不含DNA或RNA的蛋白质分子能在受感染的宿主

细胞内产生与自身相同的分子,实现相同的生物学功能,引起相同的疾病。朊病毒不是传递遗传信息的载体,也不能自我复制,其本职为基因编码产生的一种正常蛋白质的异构体。朊蛋白的错误折叠形成的致病蛋白在脑中积累而引起的。 朊病毒未证明蛋白质是遗传物质的原因:“蛋白质构象致病假说” 朊蛋白(PrP)有两种形式:正常型(PrPC)和异常型(PrPSc) 朊蛋白具有独特的复制方式,它是以构象异常的蛋白质分子为引子,诱使正常的PrPC发生构象上的变化,由原来的α-螺旋变为β-折叠,丧失了原有的功能,变成具有致病感染力的分子。 遗传密码的基本特点: (1)共64个三联体密码子(4^3=64),其中3个终止密码子,61个密码子编码氨基酸。 (2)简并性:同一种氨基酸有2个或更多的同义密码子,只有Trp和Met仅有一个密码子。 (3)连续性:mRNA的读码方向从5’端至3’端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成突变。 (4)方向性:阅读方向是与mRNA的合成方向或mRNA的编码方向一致的,即从5’端至3’端。 (5)密码子的专一性主要取决于前2个碱基,第3个碱基可突变;减少基因突变引起的蛋白质翻译终止的概率。 (6)通用性:蛋白质生物合成的整套密码,从原核生物到人类都通用,但已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。 二 基因(gene):位于染色体上的遗传功能单位 基因型:某一个体全部基因的总称。 表型:具有特定基因型的个体,在一定环境条件下,所表现出来的形状特征的总和。 等位基因(allele):位于同一对同源染色体相同位置上的基因,也指等位片段、等位序列或等位碱基对。 显隐性的相对性(镰刀型贫血) 不完全显性(incomplete dominance):具有相对性状的纯合亲本杂交后,F1显现中间类型 共显性(co dominance):双亲的性状在F1中都有表现 镶嵌显性:双亲性状在F1中的不同部位表现 超显性(over dominance):杂合子比纯合子的适应程度高。超显性可能是杂种优势的一个原因,

遗传学名词解释

Explaining of genetics nouns 一、Explain the following terms and concepts. 1、heredity;(遗传)transmission of traits from one generation to another 2、transmission genetics;(传递遗传学)is the brand dealing with the transmission of genes and genetic traits from generation to generation,and how genes recombine 3、centromeres; (着丝点)each chromosome often has a constriction along its length 4、zygote;(合子)the cell produced by the fusion of male are female gametes 5、autosomes; (常染色体)chromosomes other than sex chromosome 6、sister chromatid; (姐妹染色单体)a chromatud denved from replication of one chromosome during interphase of the cell cycle 7、chromatin; (染色质)the mixture of DNA and protein 8、semiconservative replication;(半保留复制)a model of DNA replication in which a double-stranded molecule replocates in such a way that the daughter moleculars are composed of one parental(dd)and one nemly synthesized serand 9、the replication fork; (复制叉)the region where the helix unwinds and new DNA 10、replicon; (复制子)DNA replicated from a single origin 11、codon; (密码子)the DNA sequence of a gene is divided into a series of units of three bases 12、degeneracy; (简并)the number of codons is greater,all of the amino acids,with the exception of methionine and typtophan,are encodoned by more that one codon 13、hereditary traits; (遗传性状)the characteristics of an individual that one transmitted from one generation to another 14、Genotype; (基因型)the genetic constitution of an organism 15、phenotype; (表现型)is the observable properties(structural and functional)of organism produced by the interaction between its genotype and the environment 16、pure-breeding lines; (纯种品系)this refers to organisms which have been inbred for many generations in which a certain phenotype remains the same 17、dominance;(显性)in hybrids between two individuals with different phenotypes only ine phenotype may be observed 18、testcross; (测交)is a cross of an individual of unknown genetype (usually expressing the dominant phenotype)with a known homozygous recessive individual in order to determine the unknown genetype 19、the dihybrid cross;(双因子杂交)a cross involving two pairs of contrasting traits 20、complete dominance; (完全显性)is the phenoment in which one alleles is dominant to another,so that the neterozygote(F1)is the same as that of the homozygous dominant 21、incomplete dominance; (不完全显性)expression of heterozygous(F1)phenotype which is distinct from and often intermediate to that of either parent 22、multiple alleles; (复等位基因)three or more alleles of the same gene 23、epistasis; (上位作用)is a from of gene interaction in which one gene masks the phenotypic expression of another 24、linkage; (连锁)is the tendency of for alleles of two or more genes to be passed together from one generation to the next

遗传学名词解释

1、原核细胞:没有核膜包围的核细胞,其遗传物质分散于整个细胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2、真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物的细胞及真菌类。单细胞动物多属于这类细胞。 3、染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原核细胞内,是指裸露的环状DNA分子。 4、姊妹染色单体:一条染色体(或DNA)经复制形成的两个分子,仍由一个着丝粒相连的两条染色单体。 5、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 6、染色体组:在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体。或者说是指细胞内一套形态、结构、功能各不相同,但在个体发育时彼此协调一致,缺一不可的染色体。 7、一倍体:具有一个染色体组的细胞或个体,如,雄蜂。 8、单倍体:具有配子(精于或卵子)染色体数目的细胞或个体。如,植物中经花药培养形成的单倍体植物。 9、二倍体:具有两个染色体组的细胞或个体。绝大多数的动物和大多,数植物均属此类 10、二价体:一对同源染色体在减数分裂时联会配对的图象。 11、联会:在减数分裂过程中,同源染色体建立联系的配对过程。 12、染色质或染色体:指细胞间期核内能被碱性染料(洋红、苏木精等)染色的纤细网状物质,现在是指真核细胞间期核中DNA、组蛋白、非组蛋白、以及少量RNA组成的一串念珠状的复合体。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。 13、超数染色体:有些生物的细胞中出现的额外染色体。也称为B染色体。 14、联会复合体:是同源染色体联会过程中形成的非永久性的复合结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 15、姊妹染色单体:二价体中一条染色体的两条染色单体,互称为姊妹染色单体。 16、反应规范:遗传型对环境反应的幅度(某一基因型在不同环境条件下反应的范围。) 17、交叉的端化:交叉向二价体的两端移动,并且逐渐接近于末端的过程叫做交叉端化。 18、受精:雄配子(精子)与雌配子(卵细胞)融合为1个合子过程。 19、双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳的过程。 20、胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。 21、果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则另称为果实直感。 22、无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认为是有性生殖的一种特殊方式或变态。 23、细胞周期:从一次有丝分裂结束到下一次有丝分裂开始的时期。 25、无性生殖:通过亲本营养体的分割而产生许多后代个体,这一方式也称为营养体生殖。例如,植物利用块茎、鳞茎、球茎、芽眼和枝条等营养体产生后代,后代与亲代具有相同的遗传组成。 26、性状:生物体所表现的形态特征和生理特性。 27、单位性状:把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为。 28、显性性状:当两个具有相对性状的纯合亲本杂交时,子一代出现的一个亲本性状。

遗传学名词解释及复习解答(部分)

名词解释 染色体chromosome是指细胞分裂过程中,由染色质聚缩而呈现为一定数目和形态的复合结构 细胞周期cell cycle是细胞分裂增殖的周期,细胞从上一次分裂结束到下一次分裂结束所经历的时期减数分裂miosis是性母细胞成熟时,配子形成过程中发生的一种特殊形式的有丝分裂,所形成的配子染色体数减半。 生活周期life cycle即个体发育过程或称生活史,有性生殖的动植物生活周期是指从合子到个体成熟再到死亡所经历的一系列发育阶段 半保留复制semiconservative replicationDNA复制时,形成的新链DNA分子一链来自原来的亲本DNA分子,一链来自于新合成的DNA分子,这种复制方式称为半保留复制 性状character是指生物体所表现的形态特征和生理特征的总称 测交test cross是指被测验个体与隐性纯合个体间的杂交 等位基因allele控制一对相对性状位于同源染色体上对应位点的两个基因 基因互作interaction of gene不同对基因间相互作用共同决定同一单位性状表现结果的现象 连锁遗传linkage指在统一同源染色体上的非等位基因连在一起而遗传的现象 连锁群linkage group存在于同一染色体上的基因群 基因突变gene mutation指基因内部发生了化学性质的变化,与原来的基因形成对性关系 野生型wild type自然群体中最常见的类型 整倍体euploid 染色体数目是x整数倍的个体或细胞 非整倍体aneuploid正常染色体数(2n)的基础上增加或减少1条或若干染色体的个体或细胞 基因组genome指一个生物单倍体的染色体的数目即生物体全部遗传物质的总和 数量性状quantitative trait表现连续变异的性状 遗传率heritability指遗传方差在总方差(表型方差)中所占的比值,可以作为杂种后代进行选择的一个指标。 近亲繁殖inbreeding指血统或亲缘关系相近的两个个体间的交配,其极端类型为自交 轮回亲本recurrent parent被用来连续回交的亲本 杂种优势heterosis指两个遗传组成不同的亲本杂交产生的杂种一代,在生长势、生活力、繁殖力、产量和品质上比其亲本优越的现象 细胞质遗传cytoplasmic inheritance由细胞内的基因即细胞质基因所决定的遗传现象和遗传规律 干细胞stem cell是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞 孟德尔群体mendelian group在一个的群体内,个体间随机交配,遗传因子以各种不同的方式从一代传递到下一代,这种群体称为孟德尔群体 遗传漂变genetic drift在一个小群体内由于抽样误差造成的群体金银频率随机波动的现象 交换值crossing-over value指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率 简答题: 1、有丝分裂和减数分裂的过程,遗传学意义。 有丝分裂的遗传学意义:P20 减数分裂的遗传学意义:P23-24 细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目

遗传学名词解释

遗传学名词解释 11、性状:生物体或其组成部分所表现的形态、生理或行为特征称为性状(character/trait) 13、相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异 称为相对性状 14、显性(dominate)性状:在子一代中出现来的某一亲本的性状。 15、隐性 (recessive)性状:在子一代中未出现来的某一亲本的性状。 17、基因型(genotype):指生物个体基因组合,表示生物个体的遗传组成,又称遗传型; 18、表现型(phenotype):指生物个体的性状表现,简称表型。 19、纯合基因型:具有一对相同基因的基因型称为纯合基因型(homozygous genotype),如 CC和cc;这类生物个体称为纯合体(homozygote)。 ●显性纯合体(dominant homozygote), 如:CC. ●隐性纯合体(recessive homozygote), 如:cc. 21、基因的分离定律:一对等位基因在杂合体中各自保持其独立性,在配子形成时,彼此分 开,随机地进入不同的配子,在一般情况下:F1杂合体的配子分离比 为1:1,F2表型分离比是3:1,F2基因型分离比为1:2:1 22、测交(test cross)法:即把被测验的个体与隐性纯合亲本杂交,根据侧交子代(Ft)的 表现型和比例测知该个体的基因型。 23、独立分配定律:支配两对(或两对以上)不同性状的等位基因,在杂合状态时保持其独 立性。配子形成时,各等位基因彼此独立分离,不同对的基因自由组合。 24、系谱分析法:用图解表明一个家族中某种性状(或遗传疾病)发生的情况,进而判断该 性状(或遗传疾病)的遗传方式。 27、外显率(penetrance):指在特定环境中,某一基因型(常指杂合子)个体显示出预期表型 的频率(以百分比表示)。就是说同样的基因型在一定的环境中有的 个体表达了,而有的个体可能没有表达,这样外显率就小于100% ——不完全外显。外显率为100%——完全外显 28、表现度(expressivity):是指具有相同基因型的个体之间基因表达的变化程度。 29、共显性/并显性:一对等位基因的两个成员在杂合体中都表达的遗传现象。 30、镶嵌显性:由于等位基因的相互作用,双亲的性状在子代同一个体的不同部位表现的镶 嵌图式。 31、隐性致死基因:在杂合时不影响个体的生活力,但在纯合时有致死效应的基因。 32、显性致死基因(dominant lethal gene):在杂合状态下即表现致死作用的致死基因 33、复等位基因:在群体中占据某同源染色体同一座位的两个以上的决定同一性状的基因 34、基因互作:基因在决定同一生物性状表现时,所表现出来的相互作用。 35、互补基因:两对非等位的显性基因同时存在并影响生物的某同一性状时才使之表现该性 状,其中任一基因发生突变都会导致同一突变性状出现,这类基因称为互补基因。 37、叠加效应:不同基因对性状产生相同影响,只要两对等位基因中存在一个显性基因,表 现为一种性状;双隐性个体表现另一种性状;F2产生15:1的性状分离比例。 这类作用相同的非等位基因叫做叠加基因 38、上位效应:影响同一性状的两对非等位基因中的一对基因(显性或隐性)掩盖另一对显 性基因的作用时,所表现的遗传效应称为上位效应,其中的掩盖者称为上位 基因,被掩盖者称为下位基因。 39、显性上位:在上位效应中,起掩盖作用的是一个显性基因,使另一个显性基因的表型被 抑制,孟德尔F2表型比率被修饰为12:3:1

遗传学名词解释

名词解释: 1、遗传与变异:生物通过繁殖的方式来繁衍种族,保持生命在世代间的连续,保持子代与亲代的相似与类同,这种现象叫遗传,遗传的本质就是遗传物质通过不断地复制和传递,保持亲代与子代间的相似与类同,与此同时,亲代与子代之间,子代个体之间总存在着不同程度的差异,包括环境差异与遗传物质差异,这种差异就是变异。 2、遗传变异:变异不一定都能遗传,只有由遗传物质改变导致的变异可以传递给后代,这种变异叫遗传变异。 3、遗传学: 经典定义:研究生物的遗传和变异现象及其规律的一门学科。 现代定义: (1)在生物的群体、个体、细胞和基因等层次上研究生命信息(基因)的结构、组成、功能、变异、传递(复制)和表达规律与调控机制的一门科学--基因学。 (2)研究基因和基因组的结构与功能的学科。 名词解释: 1、性状:在遗传学上,把生物表现出来的形态特征和生理特征统称为性状。 2、相对性状:同一性状的两种不同表现形式叫相对性状。 3、显性性状:孟德尔把F1表现出来的性状叫显性性状,F1不表现出来的性状叫隐性性状。 4、性状分离现象:孟德尔把F2中显现性状与隐性性状同时表现出来的现象叫做性状分离现象。 5、等位基因与非等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。非等位基因指位于不同位点上,控制非相对性状的基因。 6、自交:F1代个体之间的相互交配叫自交。 7、回交:F1代与亲本之一的交配叫回交。 8、侧交:F1代与双隐性个体之间的交配叫侧交。 9、基因型和表型 基因型是生物体的遗传组成,是性状得以表现的内在物质基础,是肉眼看不到的,要通过杂交试验才能检定。如cc,CC,Cc。 表型是生物体所表现出来的性状,是基因型和内外环境相互作用的结果,是肉眼可以看到的。如花的颜色性状。 10、纯合体、杂合体 由两个同是显性或同是隐性的基因结合的个体,叫纯合体,如CC,cc。由一个显性基因与一个隐性基因结合而成的个体,叫杂合体,如Cc。 11、真实遗传 指纯合体的物种所产生的子代表型与亲本表型相同的现象。纯合体所产生的后代性状不发生分离,能真实遗传,杂合体自交产生的后代性状要发生分离,它不能真实遗传。 名词解释: 1、染色体与染色质:是指核内易于被碱性染料着色的无定形物质,是由DNA、组蛋白、非组蛋白及少量RNA组成的复合体,以纤丝状存在于核膜内面。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。两者是同一物质在细胞分裂过程中表现的不同形态。核内遗传物质就集中在这染色体上。 2、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态, 3、核小体:是染色质的基本结构单位,直径10nm,其核心是由四种组蛋白(H2A、H2B、H3、H4各2分子共8分子)构成的扁球体。 4、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 5、联会:分别来自父母本的同源染色体逐渐成对靠拢配对,这种同源染色体的配对称为联会。

遗传学名词解释.

第一章绪论 名词解释 1. 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 2. 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 3. 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。 第二章遗传的细胞学基础 名词解释 1.细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为①DNA合成前期(G1期);②DNA合成期(S期);③DNA合成后期(G2期);④有丝分裂期(M期)。 2.原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 3.真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 4.染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。 .染色体:是指染色质丝通过多级螺旋化后卷缩而成的一定形态结构。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。(染色体指任何一种基因或遗传信息的特定线性序列的连锁结构。)5.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 6.姐妹染色单体:二价体中的同一各染色体的两个染色单体,互称姐妹染色单体,它们是间期同一染色体复制所得。 7.非姐妹染色单体:单体二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是同源染色体这些间期各自复制所得。 8.联会:减数分裂中,同源染色体的配对过程。 9.同源染色体:生物体中,形态和结构相同的一对染色体,成为同源染色体。 10. 异源染色体:生物体中,形态和结构不同的各对染色体互称为异源染色体。 12. 染色体组:指包含有一套对于生物体的生命活动所不可缺少的,最小限度的基因群的一组染色体。 13. 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 14. 染色粒:在有丝分裂和减数分裂前期的染色体,由DNA丝局部螺旋化而产生颗粒状结构。 15. 染纽:指某些生物中(玉米、紫苜蓿),位于染色体的末端或中间的特别大的染色

遗传学名词解释

外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 伴性遗传:在性染色体上的基因所控制的形状与性别相连锁,这种遗传方式叫伴性遗传。 杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 F′因子:把带有部分细菌染色体基因的F因子叫F′因子。 隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 转座因子:指细胞中能改变自身位置的一段DNA序列。 基因工程(遗传工程):狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态。 等显性(并显性,共显性):指在F1杂种中,两个亲本的形状都表现出来的现象。 限性遗传与从性遗传:限性遗传是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 性导:利用F′因子形成部分二倍体叫做性导。 核型和核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测

相关主题
文本预览
相关文档 最新文档