当前位置:文档之家› Effect of Organic and Bio- Fertilizer Application on Rice - Soybean- Rice Cropping System

Effect of Organic and Bio- Fertilizer Application on Rice - Soybean- Rice Cropping System

Effect of Organic and Bio- Fertilizer Application on Rice - Soybean- Rice Cropping System
Effect of Organic and Bio- Fertilizer Application on Rice - Soybean- Rice Cropping System

Effect of Organic and Bio- Fertilizer Application on

Rice - Soybean- Rice Cropping System

Tran Thi Ngoc Son1, Vu Van Thu1,Luu Hong Man1 and Hiromi Kobayashi2

1: Cuulong Delta Rice Research Institute, Omon, Cantho, Vietnam

2: Japan International Research Center for Agricultural Sciences, Tsukuba

Ibaraki 305-8686, Japan

Abstract

The obtained results in the final year (fourth year) also indicated fertilizer dose for soybean could be at the rate of 60N- 60 P205- 30 K20 combined with composted paddy straw or inoculant viz., ., SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp.) or both composted paddy straw and inoculants + 30N- 60 P205- 30 K20 which could be obtained the same yield and agronomic characteristics and grain yield of soybean as that of the rate of higher dose of inorganic fertilizer as T1 (100-60-30) as farmer dose application . At the same time , the experimental results showed that the application of organic and bio -fertilizer could be substantiated for the N inorganic fertilizer to an extent of 40 – 70 kg N ha-1 while the agronomic characteristic and grain yield of soybean were comparable to the control (conventional dose applied by farmers). Especially, the organic carbon content, soil available nitrogen , phosphorus and potassium maintained at a higher level under application inorganic fertilizer combined with composted paddy straw or inoculant or both composted paddy straw and inoculants as compared to the treatments those applied only inorganic fertilizers .

Introduction

Soil organic matter play key role in maitainability of soil fertility and productivity. The effect of the organic mater may be either direct or indirect. Organic matter acts directly as a source of plant nutrients and indirectly influences the physical and chemical properties. Farming practices which involve heavy application of chemical fertilizers may cause depletion of certain nutrients in soil and certain others would generally accumulate in excess resulting in nutrient imbalance which effects the soil productivity. Among the means available to achieve sustainability in agricultural production, organic manure and biofertilizer play an important and key role because they possesses many desirable soil properties and exerts beneficial effect on the soil

physical, chemical and biological characteristics of the soil. However the most optimum and long term application of organic and bio-fertilizer doses as well as their effectiveness for upland crops have not been studied in details. In this regard an attempt has been made to study on the influence of organic and bio-fertilizer on soybean under rice based cropping system.

Materials and methods

The experiment was continued on the farmer ‘s field at Thoi Trinh hamlet, Phuoc Thoi village, O mon district, Cantho province during winter-spring 2002 – 2003 and Summer- Autumn season of 2003 and Autumn - Winter 2003. The inital soil pH was 5.64 (1:1 H2O). Soil initial nutrient components were 1.03 % organic carbon, 0.108 % total nitrogen, 0.00158 % total P; total K: 1.85 %, available N: 0.277 meq/100g of soil, available P: 2.282 ppm, available K: 0.22 meq/100g of soil. The experiments were conducted on rice - soybean -rice. They were designed in a randomized complete block design with three replications. The treatments details as presented in table 1:

Table 1. Treatment structure

S. No.

Rice

(Winter - Spring)

Kg/ha N:P2O5:K2O

Upland crops - soybean

( Spring- Summer)

Kg/ha N:P2O5:K2O

Rice (Summer-

Autumn)

Kg/ha N:P2O5:K2O

T1 80-60-30 Soybean

: 100- 60 -30 70-60-30

T2 80-60-30 Soybean : 60 - 60 - 30 70-60-30

T3 80-60-30 Soybean : 30 - 60 -30 70-60-30

T4 80-60-30 Soybean : 00-60-30 70-60-30

T5 80-60-30 Soybean : inoculants+60-60-30 70-60-30 T6 80-60-30 Soybean : inoculants +30- 30-30 70-60-30

T7 80-60-30 Soybean

:

compost+60-60-30 70-60-30 T8 80-60-30 Soybean : compost+30 -60-30 70-60-30

T9 80-60-30 Soybean : inoculant +00 -00-00 70-60-30

T10 80-60-30 Soybean : compost+00 - 00- 00 70-60-30

T11 80-60-30 Soybean : compost+ inoculants +30 -60-30 70-60-30

The residual crop viz., rice was sown as such without disturbing the previous lay out adopting a seed

rate of 100 kg ha-1. Cultural practices and plant protection measures were followed as per the packages of practice to soybean and rice crops as conventional recommendation The NPK were applied in the form of urea,

single super phosphate and muriate of potash, respectively. The composted paddy straw was incorporated in the

soil one day prior to sowing at the rate of 2t ha-1. The inoculants viz., ., SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp.) were inoculated with soybean seeds at the ratio of 1:10 (1g inoculants and 10 g of soybean seeds ). One third of the N and full dose of P2O5, K2O were applied basally. The remaining two third

dose of N was applied at 20 th and 35 days after sowing (DAS). The soybean seeds were sown adopting a plant spacing of 40 x 20 cm, 3 plants/hill (plant population = 375,000 plants/ha.

Plant height, no. of soybean leaves , no. of nodules , weight of nodule and SPAD value were measured at two weeks interval beginning from 40 Days after sowing (DAS) and four weeks after sowing for rice and soybean , respectively.

Collection of soil samples: Composite representative soil samples were collected from the field for evaluating initial analysis. Then the soil samples were collected from each plot at harvest stage for soybean. The soil samples were air dried gently beaten with a wooden mallet and sieved through two mm nylon sieve and stored in polythene bags.

The data obtained from the present investigation were subjected to statistical scrutiny by adopting IRRI-STAT and the results were interpreted

Results and Discussions

1 Rice crop ( DX 02-03 )

1.1 SPAD value and Plant height (Table2):

At 40 days after sowing (DAS), the mean value of SPAD of rice varied from 29.0 to 34.6 . Among treatments the highest SPAD obtained under previous treatmental effect of soybean as T7 (Compost +60-60-30). However, there was no significant differences due to treatmental influence. The similar trend for the recorded SPAD at 55 DAS. At harvest stage, the mean value of plant height of rice varied from 80.6 to 94.2 cm . Among treatments the highest plant height recorded under T7 (Compost +60-60-30). Tthere was a significant differences due to treatmental influence (Table 2). This result indicated a clear cut of residual effect of composted organic wastes application (The results findings is in accordance with the previous report of Son, et al (2001, 2002).

Table 2 Treatmental influence on the SPAD and plant height of rice

S. No. Previous treatments effect

N:P2O5:K2O Kg/ha

SPAD at 40 DAS SPAD at 55 DAS Plant height

( cm )

1. 100 - 60 - 30 33.6 3

2.0 92.0

2. 60 - 60 - 30 31.6 31.0 90.6

3. 30 - 60 - 30 31.9 31.8 86.7

4. 00 - 60 - 30 29.0 27.7 80.6

5. Inoculant + 60 - 60 - 30 33.5 32.8 92.5

6. Inoculant + 30 - 30 - 30 32.2 32.1 90.1

7. Compost + 60 - 60 - 30 34.6 33.2 94.2

8. Compost + 30 - 60 - 30 32.3 32.4 89.5

9. Inoculant + 00 - 00 - 00 29.0 27.6 81.3

10. Compost + 00 - 00 - 00 29.7 28.9 84.7

11. Compost +I +30 - 60 - 30 32.1 30.7 90.9

CV

(%) 6.4 6.1 5.7 LSD

5% 3.42 3.14 8.50 C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

1.2 Yield and yield componenents of rice

The yield components of rice crop viz., number of panicle -m2, number of filled grains/panicle, unfilled grain percentage and 1,000 grain weight showed no significant differences due to treatments while the grain yield of rice was significant differences due to treatmental influence. Although there was no significant different treatments but under previous application of composted paddy straw + 60-60-30 gave the highest grain yield which were on par with the treat ment as that of highest inorganic fertilizer dose T1 (100-60-30) as well as T5 (Inoculants + 60-60-30). This may be due to cumulative effect from the soybean crop. The beneficial effect of organic waste could be attributed to the continued mineralization and release of nutrients from the organic manure compared to the application of NPK alone. This also could be due to the role of leguminous N fixing capacity of soybean crop fixed N from the atmosphere which is made available because of favourable microbial activity under rhizosphere system of leguminous crop under dryland condition. Finally led to the enhancement of the soil nitrogen use efficiency and helping in enhancing yield of rice crop (Sharma and Mittra, 1991) (Table 3)

Table 3 Treatmental influence on the yield , yield components of succeeding rice crop

S. No. Previous treatments

effect N:P2O5:K2O

Kg/ha

No. of

panicle

-m2

No. of filled

grains/

panicle

Unfilled grain

percentage

(%)

1,000 grain

weight

(g)

Grain yield

(T. ha-1)

T1 100 - 60 - 30 430 72.3 9.7 26.7 6.166

T2 60 - 60 - 30 422 70.0 7.8 26.1 5.753

T3 30 - 60 - 30 397 62.3 8.3 26.5 5.866

T4 00 - 60 - 30 328 50.0 8.7 25.5 5.360

T5 I + 60 - 60 - 30 441 75.0 7.4 26.6 6.233

T6 I + 30 - 30 - 30 401 63.3 7.3 26.7 5.900

T7 C + 60 - 60 - 30 467 77.3 5.3 26.8 6.300

T8 C + 30 - 60 - 30 419 65.0 8.6 26.8 5.966

T9 I + 00 - 00 - 00 339 51.7 8.2 26.0 5.400

T10 C + 00 - 00 - 00 376 54.7 8.7 26.2 5.566

T11 C +I +30-60-30 411 68.7 6.4 26.8 5.833

CV

(%) 9.8 10.0 22.2 4.2 6.1 LSD

5% 66.6 11.0 2.89 1.88 604 C: composted paddy straw; I : Inoculants SB 83 (Rhizobium Freddie) and SB 177 (Bradyhrizobium sp)

2 Soybean (XH 2003)

2.1 Plant height (Table4):

At two weeks after sowing , the mean value of plant height of rice varied from 12.00 to 15.7 cm . Among treatments the highest plant height obtained under T1 (100-60 –30) . However , there was no significant differences due to treatmental influence. Later on at 28 DAS and 42 DAS, the highest value obtained under T1 and at upto harvesting time the results obtained as the highest value under treatment T10

Table 4 Treatmental influence on the plant height of soybean at different stages ( cm )

S. No. Treatments

N:P2O5:K2O Kg/ha

14DAS 28 DAS 42 DAS 56 DAS

T1 100- 60 –30 15.7 41.7 66.3 73.7

T2 60 - 60 - 30 14.0 34.3 60.3 73.3

T3 30 - 60 –30 12.7 31.7 51.7 63.3

T4 00-60-30 12.3 29.3 43.0 55.0

T5 I + 60-60-30 15.0 38.0 64.0 75.7

T6 I + 30- 30-30 14.1 33.3 57.0 72.0

T7 C + 60-60-30 14.3 37.7 66.0 75.3

T8 C + 30 -60-30 13.7 32.3 55.0 72.0

T9 I + 00 -00-00 12.2 32.3 47.0 60.0

T10 C + 00 - 00- 00 12.0 31.3 47.0 57.7

T11 C+ I +30 -60-30 14.4 35.0 62.3 74.0

CV(%) 5.9 5.4 4.9 11.7 LSD

(5%) 1.37 3.11 4.69 13.51 C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

2.2 SPAD value

At the 28 DAS, the SPAD value varied from 27.7 to 36.2 The highest value obtained under application of highest nitrogen dose T1 (100-60-30). This reason could be attributed to the higher initial nitrogen application which would enhance the soybean growth and translocation of nitrogen to the leaves sufficiently and favourably for chlorophyll formation. At six weeks after sowing, the mean value of SPAD ranged from 32.0 to 43.8. Except the treatment T4 (00-60-30), the remaining treatments were comparable to each other. At 56 DAS, there were no significant differences between inorganic fertilizer application alone and composted paddy straw and inoculants combined with inorganic fertilizer. This could be attributed to the mineralization has been taken place during the course and led to the enhancement of solubilization of nitrogen in the soil and N nutrient released from composted paddy straw led to an increase in SPAD value under lower inorganic fertilizer dose combined with composted paddy straw. This also may be due to the activity of Rhizobium fredii microorganizm helping in enhancement of N fixation process (Table 5)

2.3 Nodulation formation:

At the 28 DAS , the number of nodules per soybean plant varied from 15.3 to 35.3 The highest value obtained under application of inoculants viz., Rhizobium fredii microorganizm T6 (I+30-30- 30) following by T5(I+60-60-30) .This reason could be attributed to the role nitrogen fixing capacity of microorganizim . At six weeks after sowing , the mean value of nodules ranged from 19.3 to 50.0 . The highest value recorded under T6 (I+30-30-30) and significantly differences among treatments. At 56 DAS , there were significant differences between inorganic fertilizer application alone and composted paddy straw and inoculants combined with inorganic fertilizer. This could be attributed to the development of fixing capacity of microorganizim. This

may be due to the activity of Rhizobium fredii microorganizm helping in enhancement of N fixation process (The results is in the harmony with the previous findings of Son et al (2001) (Table 6)

Table 5 Treatmental influence on the SPAD value of soybean at different stages

S.No. Treatments

N:P2O5:K2O Kg/ha

28 DAS 42 DAS 56 DAS

T1 100- 60 –30 36.2 43.8 45.3

T2 60 - 60 – 30 34.0 39.7 44.2

T3 30 - 60 –30 30.3 35.9 42.9

T4 00-60-30 27.7 32.0 39.6

T5 I+60-60-30 35.7 41.3 44.9

T6 I +30- 30-30 32.3 38.7 42.1

T7 C+60-60-30 35.0 39.7 45.0

T8 C +30 -60-30 31.0 38.5 42.3

T9 I +00 -00-00 29.1 34.0 41.6

T10 C +00 - 00- 00 28.3 34.4 41.0

T11 C+I+30-60-30 34.3 39.7 44.2

CV(%) 4.7 6.9 4.4 LDS ( 5%) 2.579 4.439 3.169 C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

Table 6 Treatmental influence on the no. of nodules of soybean at different stages (no. of

nodules/plant)

S. No. Treatments

N:P2O5:K2O Kg/ha

28 DAS 42 DAS 56 DAS

T1 100- 60 –30 15.3 21.3 22.0

T2 60 - 60 – 30 24.0 32.0 32.3

T3 30 - 60 –30 27.3 36.3 37.3

T4 00-60-30 16.7 19.3 21.3

T5 I+60-60-30 31.3 47.3 51.7

T6 I +30- 30-30 35.3 50.0 54.3

T7 C+60-60-30 24.0 29.3 30.3

T8 C +30 -60-30 28.0 34.0 34.7

T9 I +00 -00-00 24.3 40.0 43.7

T10 C +00 - 00- 00 17.0 25.0 24.3

T11 C+I+30

-60-30 28.0 48.0 53.3

CV(%) 10.4 9.7 11.5

LSD

(5%) 4.332 5.723 7.190

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

2.4 Dry weight of soybean nodules :

At the 28 DAS, the dry weight of nodules varied from 93.3 to 283.3 mg . The highest value obtained under application of inoculants viz., Rhizobium fredii microorganizm T6 (I+30--60-30) .This reason could be attributed to the role nitrogen fixing cacity of microorganizim . At six weeks after sowing , the mean value of

nodules ranged from 121.7 to 400 mg . The highest value recorded under T6 (I+30-60-30) and T5 (I+60-60-30). This results indicated that under application of inoculants , the dry weight of nodules obtained significantly higher value as compared to other and especially the highest dose of inorganic nitrogen fertilizer application led to the lowest dry weight of nodules. Similarly trend recorded for the 56 DAS (Table 7 )

Table 7 Treatmental influence on the dry weight of nodules of soybean at different stages

(mg /nodule)

S. No. Treatments

N:P2O5:K2O Kg/ha

28 DAS 42 DAS 56 DAS

T1 100- 60 -30 93 131 133

T2 60 - 60 - 30 151 203 205

T3 30 - 60 -30 181 241 246

T4 00-60-30 105 121 130

T5 I+60-60-30 245 370 401

T6 I +30- 30-30 283 400 431

T7 C+60-60-30 168 206 211

T8 C +30 -60-30 191 228 233

T9 I +00 -00-00 175 286 311

T1

C +00 - 00- 00 113 165 158

T1

1

C+I+30 -60-30 183 311 345 CV(%) 10.7 9.7 11.3

LSD

(5%) 31.0 39.6 48.9

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

2.5 Biomass production of soybean :

At the 28 DAS , biomass production weight varied from 4782 to 9375 T ha-1 The highest value obtained under

treatment T1 ( 100-60-30) which was on a par with T5 (I +60- 60-30) and T7 (C+60- 60-30).. This results

showed that under lower dose of inorganic fertilizer applied along with whether composted or inoculants

could obtain the same biomass production as that of high dose as T1 (100- 60 –30) however at 42 DAS the

treatment T5 (I +60- 60-30) recorded the highest value and also on a par with treatment T1 ( 100-60-30). The

similar trend as that of 28 DAS recorded for later stages viz., 56 DAS (Table 8)

2.6 Yield and yield components of soybean (table 9 and Fig. 1)

Number of pods/plant: Among the treatments, the highest value obtained under T11 (Inoculant + compost + 30

- 60 - 30) which was on a par with control T1 (100-60-30), the rest ones recorded lower value as compared to

control T1 (100-60-30). There was a close correlation between no. of pods per plant and grain yield (Fig .1)

Number of seeds/pod: Except two treatments viz., T4 (00-60-30) and T10 (compost + 00-00-00)

recorded significantly lower value as compared to control T1 (100-60-30), the remaining treatments were on a

par to control T1 (100-60-30)

The 100 grain weight: among treatments, the highest 100 grain weight registered under T5 (Inoculants + 60 - 60 - 30) and the lowest under T 4 (00-60-30) .However, there were significant differences in 100 grain weight among treatments

Table 8 Treatmental influence on the biomass production of soybean at different stages (kgha-1)

S. No. Treatments

N:P2O5:K2O Kg/ha

28 DAS 42 DAS 56 DAS

T1 100- 60 -30 9,375 17,292 28,750

T2 60 - 60 - 30 7,917 15625 26,666

T3 30 - 60 -30 6,458 12,292 22,083

T4 00-60-30 4,792 7,500 19,167

T5 I+60-60-30 8,750 17,500 29,167

T6 I +30- 30-30 6,875 13,750 25,833

T7 C+60-60-30 8,958 16,875 28,333

T8 C +30 -60-30 6,875 13,750 24,583

T9 I +00 -00-00 6,250 9,792 21,667

T10 C +00 - 00- 00 6,042 10,208 20,000

T11 C+I+30

-60-30 7,708 15,208 27,500

CV(%) 14.2 9.2 9.9

LSD

(5%) 1747 2132 4168

C: composted paddy straw; I: Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp) Grain yield of soybean (Table 9 and Fig1): the mean values of grain yield of soybean varied from 1. 987 to 2.600 T ha-1 . The highest yield was recorded by treatment T5 (I +60-60-30) which was on a par with T11 (compost + Inoculants +30 - 60 - 30) . This result showed that the lower dose of inorganic fertilizer conjunction with composted paddy straw or Inoculant could have achieved the same grain yield of soybean under rice based cropping system. This is in line with the finding of Ramaswami and Son (1996), Son and Ramaswami (1997), Son et al (2000). There was a close relationship between Number of pod per plant and grain yield (Y = 0.0675 + 0.3778, r = 0.900**)

2.7 Soil properties (Table 10)

Organic carbon :It was observed that the maximum value obtained under treatment T7 (C+60-60-30) and significantly different from control T1 (100-60-30). A build up of organic carbon due to organic waste +NPK application from 0.018 to 0.258 % might be due to the decomposition of complex organic matter and converting them to mineralized organic colloids which are added to the soil organic matter (Son and Ramaswami, 1997).

Soil available nitrogen: A clear cut changes were observed on soil available nitrogen due to influence of treatments. Higher soil N value observed under T7 (C+60-60-30) following by T6 (I+30-60-30). This was due to the inherent N content of the waste material incorporated and transformation during composting and

after application in the soil. . The available P was found to be influenced by treatments. The available K varied from 43.44 to 60.51 meq/100g and the lowest value obtained under T10 (C+ 00-00-00)

Table 9 Treatmental influence on the yield and yield components of soybean S. No. Treatments

N:P 2O 5:K 2O Kg/ha No. of pods/ Plant No.of seeds/pods 100 grain weight (g) Grain yield

(T ha -1) T1 100- 60 -30 29.7 2.40 16.53 2.573 T2 60 - 60 - 30 29.6 2.27 16.57 2.427

T3 30 - 60 -30 26.2 2.23 16.23 2.273 T4 00-60-30 23.0 1.90 15.53 1.987 T5 I+60-60-30 29.8 2.50 16.77 2.600 T6 I +30- 30-30 27.9 2.23 16.67 2.493 T7 C+60-60-30 30.2 2.47 16.60 2.553 T8 C +30 -60-30 27.0 2.30 16.23 2.373 T9 I +00 -00-00 24.7 2.10 16.07 2.173 T10 C +00 - 00- 00 23.4 2.00 16.10 2.093 T11 C+I+30 -60-30 30.6 2.37 16.70 2.573 CV(5%) 8.8 6.9 1.5 5.7 LSD (5%)

4.08 0.26 0.42 228

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii ) and SB 177 (Bradyhrizobium sp )

Table 10 Treatmental influence on soil nutrient availability of soybean at harvest stage (2003)

S. No. Treatments

N:P2O5:K2O Kg/ha

Organic

carbon (%)

Nutrient availability

N (meq/100 g) P ( ppm) K (meq/100 g)

T1 100- 60 -30 1.142 0.321 2.255 48.00

T2 60 – 60 - 30 1.091 0.314 2.131 46.57

T3 30 – 60 -30 1.246 0.287 1.926 50.91

T4 00-60-30 1.189 0.302 1.851 46.96 T5 I+60-60-30 1.275 0.386 3.533 60.51 T6 I+30-

30-30 1.368 0.355 3.622 58.93 T7 C+60-60-30 1.400 0.572 4.067 59.36 T8 C+30

-60-30 1.239 0.476 3.556 59.22 T9 I +00 -00-00 1.079 0.370 2.511 43.44

T10 C+00 - 00- 00 1.160 0.397 2.449 45.52

T11 C+I +30 -60-30 1.175 0.456 2.887 58.05

LSD

5%

CV % 0.221

10.7

0.081

12.5

0.669

14.7

5.25

5.9

C: composted paddy straw; I: Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp) Dynamics Changes of Soil Nutrients under Influence of Different Treatments

1 Soil organic carbon: A dynamic changes of soil organic carbon with time from the year of 2000 to 2003 . The soil organic carbon value tended to be decreased under application of inorganic fertilizer alone. It was observed that the maximum value obtained under treatment T7 (C+60-60-30) and significantly different from control T1 (100-60-30). A build up of organic carbon due to organic waste +NPK application from 0.227 to 0.300 % in the case of application of composted paddy straw and from 0.079 to 0.208 % in the case of application of the inoculants viz., ., SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp.) which helped in the process of decomposition of complex organic matter and converting them to mineralized organic colloids which are added to the soil organic matter . (Table 10)

2 Soil available nitrogen: A clear cut changes were observed on soil available nitrogen due to influence of treatments from the year of 2000 to 200

3 . The higher soil N value observed under T7 (C+60-60-30) following by T6 (I+30-60-30). This was due to the inherent N content of the waste material incorporated and transformation during composting and after application in the soil. . (Table11 and Fig. 3)

Table 10 Treatmental influence on soil organic carbon at harvest stage S. No.

Treatments

N:P 2O 5:K 2O Kg/ha

Organic carbon (%)

2000 2003

T1 100- 60 –30

1.033 1.087 T2 60 – 60 – 30 1.067 1.091 T3 30 – 60 –30 1.067 1.146 T4 00-60-30 1.000 1.189 T5 I+60-60-30 1.067 1.275 T6 I+30- 30-30 1.000 1.368 T7 C+60-60-30 1.100 1.400 T8 C+30 -60-30 0.900 1.239 T9 I +00 -00-00 1.000 1.079 T10 C+00 - 00- 00 1.033 1.260 T11 C+I +30 -60-30 1.000 1.275 LSD 5%

CV % 0.158

9.10 0.18 9.7

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii ) and SB 177 (Bradyhrizobium sp)

Table 11 Treatmental influence on nitrogen availability of soybean at harvest stage S. No.

Treatments

N:P 2O 5:K 2O Kg/ha

N availability (meq/100g)

2000 2003

T1 100- 60 -30 0.327 0.321 T2 60 – 60 - 30 0.270 0.314 T3 30 – 60 -30 0.277

0.287

T4 00-60-30 0.247 0.302 T5 I+60-60-30 0.257 0.386 T6 I+30- 30-30 0.347 0.355 T7 C+60-60-30 0.337 0.572 T8 C+30 -60-30 0.280 0.476 T9 I +00 -00-00 0.303 0.370 T10 C+00 - 00- 00 0.277 0.397 T11 C+I +30 -60-30 0.337 0.456 LSD 5%

CV %

0.092 17.7

0.081 12.5

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii ) and SB 177 (Bradyhrizobium sp)

3 Soil avalable phosphorus :

The available P (Table 12 and Fig. 4 ) : A dynamic changes of soil available P from the year 2000 to 2003 was found to be influenced by treatments . The available P recorded in the year 2003 is relatively

lower as compared to the year of 2000 . However the treatments under application of composted paddy straw or inoculants obtained the higher values

4 Soil available K : was found to be influenced by treatments . The soil available K tended to be reduced under application of inorganic fertilizer alone whereas under application of composted paddy straw or inoculants obtained the higher values (Table 12 and Fig.

5 )

Table 12 Treatmental influence on phosphorus and Potassium availability of soil at harvest stage S. No.

Treatments

N:P 2O 5:K 2O Kg/ha

P availability (ppm) Potasium (meq/100g)

2000 2003 2000 2003 T1 100- 60 -30

2.282 2.255 61.2 48.00 T2 60 – 60 - 30 2.720 2.131 57.0 46.57 T3 30 – 60 -30

3.977 1.926 56.0 50.91 T4 00-60-30 2.808 1.851 55.9 46.96 T5 I+60-60-30 2.808 3.533 56.5 60.51 T6 I+30- 30-30 3.393 3.622 56.1 58.93 T7 C+60-60-30

4.854 4.067 56.2 59.36 T8 C+30 -60-30 4.883 3.556 56.6

59.22 T9 I +00 -00-00 2.604 2.511 52.7 43.44 T10 C+00 - 00- 00 2.837 2.449 53.2 45.52 T11 C+I +30 -60-30 2.649 2.887 52.3 58.05 LSD 5%

CV % 0.864 13.2 0.669 14.7 3.86 4.10 5.25 5.9

C: composted paddy straw; I : Inoculants SB 83 (Rhizobium fredii ) and SB 177 (Bradyhrizobium sp)

Succeeding rice crop (Autumn-Winter) ( HT 2003 )

SPAD value and Plant height (Table 10):

At 40 days after sowing (DAS), the mean value of SPAD of rice varied from 27.5 to 32.63 . Among treatments the highest SPAD obtained under previous treatmental effect of soybean asT7 (Compost +60-60-30)followed by T1 (100 – 60 – 30) . The treatments T4 (00-60-30), T9 (Inoculant + 00 - 00 - 00), T10 (Compost + 00 - 00 – 00) was significant differences due to treatmental influence. The similar trend for the recorded SPAD at 55 DAS. At harvest stage, the mean value of plant height of rice varied from 74.0 to 83.00 cm . Among treatments the highest plant height recorded under asT7 (Compost +60-60-30)followed by T1 (100 – 60 – 30) . This result indicated a clear cut of residual effect of composted organic wastes application (Table 13) .

Yield and yield componenents of rice: The yield components of rice crop viz., number of panicle -m2 showed significant differences due to treatments T4 (00-60-30), T9 (I+00-00-00), T10 (C+00-00-00), number of filled grains/panicle was showed significant differences due to treatments T9 (I+00-00+00), unfilled grain percentage and 1,000 grain the grain yield of rice was no significant differences due to treatmental influence while the grain yield of rice was significant differences due to treatment influence. The highest grain yield obtained under T7 (Compost +60-60-30) which was on par with T1 (100 – 60 – 30), T5 ( I+60-60-30) , T8 ( C+30-60-30) and T11 (C+ I+30-60-30) This may be due to cumulative effect from the soybean crop. The beneficial effect of organic waste could be attributed to the continued mineralization and release of nutrients from the organic manure compared to the application of NPK alone. This also could be due to the role of leguminous N

fixing capacity of soybean crop fixed N from the atmosphere which is made available because of favourable microbial activity under rhizosphere system of leguminous crop under dryland condition. Finally led to the enhancement of the soil nitrogen use efficiency and helping in enhancing yield of rice crop (Table 14)

Table 13 Treatmental influence on the SPAD and plant height of rice

S. No. Previous treatments effect

N:P2O5:K2O Kg/ha

SPAD at 40 DAS SPAD at 55 DAS Plant height

( cm )

1 100 - 60 - 30 32.33 31.40 82.33

2 60 - 60 - 30 31.7

3 31.00 81.67

3 30 - 60 - 30 30.70 29.67 77.67

4 00 - 60 - 30 28.03 27.33 72.00

5 Inoculant + 60 - 60 - 30 31.7

6 30.6

7 80.67

6 Inoculant + 30 - 30 - 30 30.03 28.6

7 76.67

7 Compost + 60 - 60 - 30 32.63 31.67 83.00

8 Compost + 30 - 60 - 30 31.20 31.00 80.33

9 Inoculant + 00 - 00 - 00 27.50 27.53 74.00

10 Compost + 00 - 00 - 00 28.67 29.00 76.00

11 Compost +I +30 - 60 - 30 31.83 31.00 81.00

CV

(%) 5.7 5.40 8.60 LSD

5% 2.94 2.76 11.3 C: composted paddy straw; I: Inoculants SB 83 (Rhizobium fredii) and SB 177 (Bradyhrizobium sp)

Table 14 Treatmental influence on the yield, yield components of succeding rice crop

S. No. Previous treatments effect

N:P2O5:K2O Kg/ha

No. of

panicle

-m2

No. of filled

grains/

panicle

Unfilled grain

percentage

(%)

1,000 grain

weight

(g)

Grain yield

(T ha-1)

T1 100 - 60 - 30 428 66.7 15.7 24.3 2.666

T2 60 - 60 - 30 377 65.7 16.1 23.7 2.400

T3 30 - 60 - 30 356 58.2 18.0 23.1 2.333

T4 00 - 60 - 30 320 50.7 17.2 22.5 2.066

T5 I + 60 - 60 - 30 394 65.7 13.5 23.5 2.733

T6 I + 30 - 30 - 30 358 64.6 15.4 23.7 2.433

T7 C + 60 - 60 - 30 424 68.3 12.8 24.3 2.833

T8 C + 30 - 60 - 30 386 64.0 13.5 24.2 2.633

T9 I + 00 - 00 - 00 324 52.7 16.9 22.8 2.166

T10 C + 00 - 00 - 00 348 55.7 17.8 23.0 2.366

T11 C +I +30-60-30 397 67.1 12.9 24.1 2.633

CV

(%) 12.6 12.5 20.6 7.4 8.7 LSD

5% 79.2 13.0 5.33 1.86 360 C: composted paddy straw; I : Inoculants SB 83 (Rhizobium Freddie) and SB 177 (Bradyhrizobium sp)

Conclusions

The obtained results once again indicated fertilizer dose for soybean could be at the rate of 60N- 60 P205- 30

K20 combined with composted paddy straw or inoculant or both composted paddy straw and inoculants + 30N-

60 P205- 30 K20 which could be obtained the same yield and agronomic characteristics and grain yield of soybean as that of the rate of higher dose of inorganic fertilizer as T1 (100-60-30) as farmer dose application . At the same time , the experimental results showed that the application of organic and bio -fertilizer could be substantiated for the N inorganic fertilizer to an extent of 40 – 70 kg N ha-1 while the agronomic characteristic and grain yield of soybean were comparable to the control (conventional dose applied by farmers). Especially , the organic carbon content, soil available nitrogen , phosphorus and potassium maintained at a higher level under application inorganic fertilizer combined with composted paddy straw or inoculant or both composted paddy straw and inoculants as compared to the trearments those applied only inorganic fertilizers .

Literature Cited

Ramaswami,PP and TTN Son. 1996. Quality compost from agricultural wastes. Paper presented at the national workshop on “ Organic farming for sustainable agriculture”. Water and land management

training and Research Institute- Hyderabad, India.

Sharma AR and BN Mittra.1991. Direct and residual effect of organic materials and phosphorus fertilizer in rice based cropping system. Indian J. Agron.,36 : 299-303

Son, TTN and PP Ramaswami. 1997. Effect of organic wastes application on physical and chemical properties of heavy clay soil .Omon Rice 5 :48-55

Son, T.T.N. and S. Kannaiyan.1999. Utilization of agricultural wastes for sustainable crop production. Page 109-127 in S. Kannaiyan (ed) Bioresources technology for sustainable Agriculture. Associated

Publishing Company, New Delhi-110 005, India

Son, T.T.N., Vu Van Thu and H. Hiraoka, 2000. Effect of organic and bio-fertilizer on soybean and rice under rice based cropping system . Proceedings of the 2000 annual workshop of JIRCAS Mekong

Delta Project:100 –110.

Son, T.T.N., Vu Van Thu, Luu Hong Man, Duong Van Chin, Hirojuki Hiraoka and Hiromi Kobayashi, 2001. Effect of organic and bio-fertilizer on soybean and rice under rice based cropping system .

Proceedings of the 2001 annual workshop of JIRCAS Mekong Delta Project: 43-53.

Son, T.T.N., Vu Van Thu, Luu Hong Man and Hiromi Kobayashi, 2002. Effect of organic and

bio-fertilizer on soybean and rice under rice based cropping system .

Proceedings of the 2002 annual workshop of JIRCAS Mekong Delta Project: 58-68

To?m tà?t

Nghi?n c??u aín h h??ín g cuía bo?n phán h??u c? vaìsinh hoüc tr?n nàng suáút cuaíh??th?ún g luán canh lu?a- aá?u naìn h- lu?a

Thê nghi??m daìi ha?n v??aá?u naìn h luán canh v??i lu?a a??üc th??c hi??n ta?i xa?Phu??c Th??i thu?üc huy??n ? M?n tènh Cá?n Th? v??i ca?c nghi??m th??c bo?n phán kha?c nhau a??t?m hi??u v??aín h h??ín g cuía phán h??u c? vaìsinh hoüc tr?n sinh tr??ín g vaìnàng suáút cuía cáy tr??n g do luán canh vaìphán bo?n. K?út quaíthê nghi??m a?ún nàm th??t? cu?n g cho tháúy ?ím??c bo?n 60N- 60 P205- 30 K20 k?út h?üp v??i bo?n phán h??u c? hoà?c do bo?n phán vi sinh SB 83 (Rhizobium fredii) vaìSB 177 (Bradyhrizobium sp) hoà?c caíhai k?út h?üp v??i li??u l??ün g phán v? c? ?ím??c 30N- 60 P205- 30 K20 cu?n g aa?t k?út quaív??nàng suáút vaìca?c aà?c tênh n?ng hoüc cuía cáy tr??n g a??üc náng l?n m?üt ca?c h co?y?nghéa vaìkh?ng kha?c bi??t v??i l??ün g phán a?úi ch??n g (n?ng dán) ?ím??c bo?n 100N- 60 P205- 30 K20. ?à?c bi??t haìm l??ün g carbon h??u c? , aa?m , lán vaìkali h??u du?n g ?íca?c nghi??m th??c bo?n phán h??u c? hoà?c do bo?n phán vi sinh tàng l?n m?üt ca?c h co?y?nghéa so v??i a?úi ch??n g vaìca?c nghi??m th??c kh?ng a??üc a?p du?n g.

GelDoc XR 凝胶成像系统论证报告..

编号: 凝胶成像系统可行性论证报告 设备名称凝胶成像系统 申购单位(公章)申请人 填表日期 论证日期

一、申购仪器设备概况 设备名称 中文凝胶成像系统 英文Gel imaging system 型号规格GelDoc TM XR+ 国别美国厂商Bio Rad 申购数量壹台价格?万人民币安装地点 经费来源 主要功能功能涵盖以下几个方面: -溴化乙锭等荧光物质标记的核酸琼脂糖凝胶检测; -银染或考马斯亮蓝染色聚丙烯酰胺凝胶检测; -其他常见紫外激发荧光染料标记的生物大分子检测; -曝光显影后的X光胶片等成像材料的检测。 -确定生物分子的分子量;可以应用于生物分子的定量分析中。 技术指标可成像样品:不透光样品如照片、纸张、杂交膜等;荧光样品如EB染色的DNA 凝胶、SYBR Safe荧光染色DNA凝胶、Radiant Red荧光染色的RNA凝胶等;各种染色的蛋白质凝胶如考染、银染、SYPRO Ruby或Oriole荧光染色等 1. *CCD分辨率:1360 ×1024(1.4M) 2. 动态范围>3个数量级,12 bit灰度级(非插值) 3. *CCD控制:马达自动控制 4. 镜头缩放:8.5-51mm镜头 5. 暗箱:密封暗箱可用于化学发光检测,并可通过更换CCD和镜头升级至化学 发光成像仪 6. 滤光片:标配2个,3个可选 7. 备有校正镜头曲面度的专用滤光片 8. 平场校正板,美国专利号5,951,838(可选) 9. 三块自动对焦校正板,确保成像过程无需再次调节

10. 灵敏度:0.1ngEB染色的DNA 11. 信噪比:>=56dB 12. 曝光时间:最短0.001s,每0.001s步进 13. 样品大小:28x36cm 14. *成像区域大小:25x26cm 15. 光源:透射白光,反射白光,透射紫外,透射蓝光(可选) 16. 紫外光源:302nm,可选254nm/365nm 17. 紫外光源:制备型紫外模式保护要回收的核酸样品 18. 紫外自动光闭保护 19. UV防护板:方便直接用紫外平台进行样品肉眼观察 20. 切胶尺:切割凝胶 21. 荧光尺:系统检测并用于测量长度 22. 具体应用范围: -核酸凝胶:Ethidium bromide、SYBR? Green、SYBR? Safe、SYBR? Gold、GelGreen?、GelRed?、Fast Blast?; -蛋白凝胶:Coomassie Blue、Copper stain、Zinc stain、Flamingo、Oriole、Silver stain、Coomassie Fluor Orange、SYPRO Ruby、Krypton; -印迹膜:Colorimetric、Qdots 525、Qdots 565、Qdots 625、CY2、Alexa 488、DyLight 488、Fluorescein。 23. 软件功能 -全自动ImageLab专业成像及分析软件对系统进行自动控制,包括采集、优化、定量、分析图像及报告输出。 -软件可编程,所编程序可重复调用或再编辑 -软件可自由安装于多台电脑,同时分析 -软件可控制曝光时间以看到微弱信号 -显示过饱和像素保证精确定量 -所有成像过程均保持自动对焦 -添加各种格式的文字注释 -自动条带检测,自动分子量测算,自动条带浓度测算

特百惠酵素

一、水果酵素 材料: 苹果5个、香蕉14根 橙(拳头大)或水梨5个、凤梨1个 柠檬7个、冰榶 500~750 g(要甜一点就多一点糖) ※此为一瓮水果酵素要用到的材料,水果最好前二三天买来,除香蕉、凤梨、冰榶外都清洗风干。 工具:水果刀、觇板、削刀(削水果皮)、特百惠2L纤巧壶都要澈底洗净及风干。 作法: 1.将全部苹果(去核)、香蕉、橙、凤梨、柠檬全部均去皮(柠檬削到白色即可,皮会有苦味不要留),因为要分成二层铺放请将水果均分成二份,冰榶也是分二份)。 2.将第一份水果依苹果、香蕉、橙、凤梨、柠檬顺序切片(不要太厚),一层一层摆入罐中,需注意要平均摆尽量不要有空隙高低不平,以免发酵不平均。 3.柠檬与冰榶是最重要的发酵剂,柠檬放好了将第一份冰榶平均洒放。 4.重覆将第二份水果依作法2再摆放一次即完成。 5.全部水果放置约特百惠2L纤巧壶7分或8分满即可,发酵会有气体须预留空间,待一个月后即可饮用。 注意事项: 1.目前苏州进口柠檬8.5/斤(欧尚有8/斤) 、国产柠檬3.5/斤,但一般店家不卖国产柠檬所以要先订。建议使用国产当季水果即可。 2.以上材料除柠檬、冰榶可随个人口味增减。 3.不能将酵素放置在直接曝晒阳光,或高温的场所以免变质。

4.体内有发炎、溃烂的人(例如: 胃溃疡、肠炎等),特别需要喝酵素,但需稀释浓度饮用。 5.酵素遇50℃以上高温即被破坏殆尽。 6.想发酵期间想打开可以,忌碰水,会有浓郁的果香味。 7.要对酵素请查心怡公布的认识酵素。 材料:水果 + 冰片糖 + 柠檬 3 至 5 粒 基本做法: 1. 水果和柠檬洗净风干,切成薄片。 2. 冰片糖切成小块。 3. 等材料切片好后,依次序一层层排入大特百惠2L纤巧壶内,步骤是先放水果,再放柠檬片,最后放冰片糖。一层层水果片,柠檬片,冰片糖需按程序排列,最上层必须放冰片糖。 4. 密封后让材料浸泡2个星期,置放在15至25?C阴凉处。 青苹果酵素 功效:美容去脂 材料:青苹果8粒,冰片糖1包,柠檬3至5粒 容器: 2 litre 大特百惠2L纤巧壶 1 个 食材处理:青苹果保留外皮切小片 所需费用:RM 9.50 芦荟酵素 功效:排毒消炎 材料:大芦荟7支,冰片糖1包,柠檬3至5粒 容器:2 litre 大特百惠2L纤巧壶1个

酵素的做法

一、水果复合酵素的做法 1、准备干净的容器 2、准备五种左右的水果:苹果、桔子、梨子、枣子、山楂、葡萄、 香蕉、菠萝、猕猴桃、甜橙、柚子、石榴、芒果、番石榴、荔枝、雪莲等任选五种或更多都行。 3、洗净不晾干就可以做,苹果、梨子、枣子、桔子、山楂去核不去 皮,香蕉、石榴、芒果、柚子、甜橙去皮。 4、切碎成蚕豆大小后,装瓶,每种水果用量不限,装到容器的一半 高(或十分之四高)。 5、加糖量是水果重量的三分之一(白糖、红糖或冰糖任选一种), 或加糖量是水果体积的三分之一或四分之一, 6、加水至距瓶口两寸高(凉开水、自来水或纯净水都行)。 7、盖上瓶盖。每天定时放气1一2次,防止爆瓶。气多的那段时间 (4天至50天)瓶盖可以稍微盖松一点,但不要太松,防止变质起 白沫。叫它气压太高了自己出来一点气,但一天还是要放一次气。 8、刚做的一周内每天摇晃一只二次,若发现上面有白沫,要加点 糖,每天增加摇晃次数。 9、大楷两个月至三个月才不再发酵产气,这时候果肉沉底,上面酵 素透亮,这时候就可以喝了。 10、酵素的喝法:一次30至60毫升,一天一次到四次。早上起床后 先喝杯温水,再喝酵素。午饭前、半下午、晚睡前、半夜都行。 二、菌菇类酵素的做法: 平菇、香菇、杏鲍菇、金针菇、鸡头菇、茶树菇或其它菇五种左右; 洗净、切碎,装瓶,然后照上面水果复合酵素做法的5至10条去 做。 三、蔬菜类酵素的做法: 丝瓜、芦荟、冬瓜、南瓜、茄子、番茄、芹菜、西兰花、花菜、西葫芦、黄豆芽、黄瓜、苦瓜、茭白(水包谷)、秋葵(洋绿豆)、竹 笋、莴苣、芦笋、洋葱、紫薯、白薯、红薯、洋姜、生姜、宝塔(记不清名字,形状像宝塔)、藕、土豆、地瓜、白萝卜、青萝卜、胡萝卜、心里美萝卜、山药、百合、嫩玉米粒等任意用其中十几种或几十种不限,每种都少用一点,洗净、该去皮的去皮、切碎、装瓶,再按

各类水果混合榨汁大全

各类水果混合榨汁大全 醇厚:香蕉,木瓜,火龙果,草莓,芒果,杏子 清新:柠檬,黄瓜,雪梨,西瓜,柚子,芹菜,哈密瓜 难以区别:西红柿,苹果,橙子,桃子,猕猴桃,菠萝,柚子,樱桃 苹果篇 苹果+胡萝卜 有增强人体免疫力、健胃,止泻、通便、消除疲劳、降压、益智,防癌抗癌、保护视觉系统、刺激胆汁分泌、中和胆固醇、增加肠壁弹性、安抚神经、养颜美容之功效。此外,尤其适宜于糖尿病患者作为辅助治疗食物。苹果+胡萝卜+蜂蜜 有增强抵抗力、改善皮肤粗糙;预防眼疾、癌症、慢性病;强壮骨骼、保护牙齿的作用。 苹果+胡萝卜+猕猴桃+柠檬+蜂蜜 供给脑部及神经活力;预防贫血、眼疾、气喘、糖尿病;净化血液,美化肌肤;帮助毛发发育。注意:胡萝卜最后放。 苹果+芒果 芒果、柳丁、苹果,这三种水果都含有丰富的维生素C和纤维质,能促进代谢,净化肠道,多喝可以让肤质白里透红,水水嫩嫩,它也有不错的瘦身效果。 苹果+柳橙 维生素高,超级好喝 苹果+香瓜

补血益气苹果香瓜汁对于胃肠不适、慢性疾病的人具有改善作 苹果+木瓜 木瓜苹果汁可调理肠胃,有止咳润肺,防高血压的疗效 苹果+菠萝 本饮品有健胃、止咳、促进新陈代谢、暖身、杀菌等功效。此果汁中含有大量的滋补剂,如果感觉身体不适的话,饮用非常有益处。 苹果+菠萝+香瓜 促进食欲,有整肠,美容等效果。 苹果+菠萝+奇异果 三种水果都含有丰富的维生素C和纤维质,可以帮助排便,并清除体内废物与毒素,排毒的效果一级棒,还能有效提升人体免疫力,喝了自然能美肤和瘦身。 苹果+菠萝+西柚+蜂蜜+柠檬 适宜晒后皮肤保养。 苹果+菠萝+柠檬+蜂蜜 适合女性、男性、精力不足、熬夜工作者饮用。预防雀斑、日晒、皮肤粗糙具良好美容效果;增强精力、安定神经、对失眠有效。 苹果+树莓 具有营养丰富、抗衰老、缓解女性痛经和感冒、提高人体免疫力的功效。苹果+葡萄 功用超乎想象的水果。本饮品有养血益气、健脑养神、整肠、强肾,预防血压上升、动脉硬化、心脏病之功效。 苹果+枇杷 此果汁红萝卜素,锌铜含量丰富。是贫血,便秘症状者最佳果汁。

凝胶成像仪(使用方法)

凝胶成像系统 操作规程: 1. 打开成像仪器电源,将样品放入工作台。 2. 双击桌面上图标,打开Quantity One 软件,或从开始-程序-The Discovery Series/Quantity One进入。 3. 从File下拉菜单中选择ChemiDox XRS,打开图像采集窗口。 4. Select Application 选择相关应用: a UV Transillumination 透射UV:针对DNA EB胶或其他荧光; b White Transillumination 透射白光:针对透光样品如蛋白凝胶,X-光片; c White Epillumination 侧面白光:针对不透光样品或蛋白凝胶; d Chemiluminescnec e 化学发光,不打开任何光源。 5. 单击Live/Focus按钮,激活实时调节功能,此功能有三个上下键按钮:IRIS(光圈),ZOOM (缩放),FOCUS(聚焦),可在软件上直接调节或在仪器面板上手工调节,调节步骤:a调节IRIS 至适合大小;b点ZOOM将胶适当放大;c调节FOCUS至图像最清晰。 6. 如是DNA EB胶或其他荧光,单击Auto Expose,系统将自动选择曝光时间成像,如不满意,单击Manual Expose,并输入曝光时间(秒),图像满意后保存。 如是蛋白凝胶,接第5步骤直接将清晰的图像保存即可;如是化学发光样品,将滤光片位置换到Chemi位(仪器上方右侧),将光圈开到最大,输入Manual Expose时间,可对化学发光的弱信号进行长时间累积如30min,或单击Live Acquire 进行多帧图像实时采集,在对话框内定义曝光时间长短,采集几帧图像,在采集的多帧图像中选取满意的保存。

柠檬孝素的服用方法

柠檬孝素的服用方法 柠檬酵素是现在很多人都非常喜爱的,甚至是还会在家里面亲自进行制作的,这样的话就会更加的安全一些,喝起来更放心的,而且味道也是非常好的,如果是自己胃肠道不好的话就可以喝一些柠檬酵素的,这样的话就可以有健脾胃的效果,最好是在里面加入一些蜂蜜,这样效果更加的显著。 通常的水果酵(食用)素做法如下: ①把蜂蜜,水果和水按照1:3:10的比例准备好。(跟容器的体积无关,例如,1斤的蜂蜜,就放3斤的水果和10斤的水)水果切成小块。 ②把三者放入容器,水果不用去皮,洗净即可,三者的总体积不宜超过容器体积的80%。 ③把容器密封好,放在阴凉处,一定要密封好。然后,如果看到容器有胀气现象,打开放气,让气体流通。放置最少6个月,时间当然越长越好,最少6个月。 ④倒出时,拿滤网把碎渣过滤,剩下的酵素就可以喝了。 酵素是酶在日本和台湾地区的别称,指具有生物催化功能的高分子物质。几乎所有的细胞活动进程都需要酵素的参与,以提高效率。与其他非生物催化剂相似,酵素透过降低化学反应的活化能(用Ea或ΔG表示)来加快反应速率。大多数的酵素可以将其催化的反应之速率提高上百万倍 事实上,酵素是提供另一条活化能需求较低的途径,使更多

反应粒子能拥有不少于活化能的动能,从而加快反应速率。酵素作为催化剂,本身在反应过程中不被消耗,也不影响反应的化学平衡。酵素有正催化作用,也有负催化作用,不只是加快反应速率,也有减低反应速率。 酵素无法通过口服来补充。因为它在消化道里就会被分解为小分子。 植物的酵素一般无法催化人体的生理活动。 人体不需要补充酵素。因为人体自身就有控制酶产生、分解的完整机制,并用这种方式控制一切生命活动。补充酵素等于人为地去干扰生命活动,未必有好处。

凝胶成像分析系统

凝胶成像分析系统 产品特点 凝胶图像分析:智能自动识别泳道条带:采用先进的自动识别算法,可以帮您自动识别出泳道/条带并且编号,您还可以根据自己的要求添加或删除泳道或条带,移动泳道和调整泳道。 密度比较:对指定泳道进行光密度扫描,绘出扫描曲线,并计算出该泳道中各条带的密度积分和峰值,此外,还可以对每一条带的光密度测定范围进行微调,并可以对多个泳道进行对比查看。 分子量光密度和迁移率的计算:通过简单易用的向导工具。可以对选定的标准泳道中的条带进行分子量或光密度定标,然后根据定标结果自动计算出各条带的分子量和光密度。通过迁移率向导工具由用户指定的基线和前沿线可自动计算出每个条带的迁移率。 分析结果数据导出:通过无缝当然数据连接技术,可以将分子量、光密度分析结果报表和迁移率分析结果报表导出到文本文件或Excel格式文件。 撤消和重做功能:对所有的分析操作可以无限的撤消和重做,您不必再为一时操作错误而后悔。 注释功能:提供了矩形、空心矩形、椭圆、空心椭圆、直线、多样式箭头、文字框、插入图片等多种注释工具、对图像进行比例放缩 图象处理:图像的负像,图像的旋转,图像的对比度、亮度调整,自动图像优化系统管理:支持Windows98/2000/XP系统,能保存多种格式的图像,图像的打印 系统配置 数码型(推荐产品) 模拟型

技术参数 外型尺寸(L×W×H):440×430×770mm; 反射紫外光源波长:254nm、365nm; 透射紫外光源波长:312nm; 紫外光透射面积:200×250mm。 环境条件: 环境温度:5℃~40℃; 相对湿度:≤80%RH; 大气压力:86kpa~106kpa。 电源条件: 电源电压:单相正弦交流220V±22V; 频率:50Hz±1Hz。 其它: 各波长的紫外光源的窗口辐照度不小于10μW/cm2; 白光照度≥100LX(勒克司); 可以连续工作时间4小时。 数字摄像头能够通过与计算机连线实现摄影成像控制,分析软件可实现图像编辑处理,泳道自动识别,分子量计算、上样量分布计算等。

自制水果酵素

自制水果酵素 水果是很常见的,水果含有的维生素种类比较多,而且水果在吃的时候,对人体各方面,都是有着很好的帮助,因此对水果选择的时候,也是可以放心进行,那自制水果酵素如何进行呢,在对它选择的时候,也是要注意不能随意的,要先对它的制作方法进行了解,这样制作的时候,才会知道如何做。 那自制水果酵素该怎么做呢,它的制作方法也是比较简单,而且在食材搭配上,也是很轻松的,下面就详细的介绍下,使得对水果酵素制作都是有着很好的了解。 自制水果酵素: 食材明细:柠檬2个、苹果3个、葡萄8两、番茄3个、奇异果2个、火龙果1个、红糖适量。 制作步骤: 1.葡萄洗净,风干待用 2.苹果洗净去皮切粒,火龙果肉洗净切粒待用 3.柠檬,番茄,洗净切片,奇异果洗净去皮切片风干待用 4.瓶子洗净后消毒风干(这个过程不显示了)其他水果任意放一层,然后放一层红糖,最上面是一层柠檬,然后密封即可(最后贴上生产或者到期的时间,我贴上到期的时间) 5.这个是早4天前做的综合水果酵素(糖用冰糖做的,已经出水了) 自制综合水果酵素做法小贴士

1、网上的标准做综合水果无水酵素的比例是(水果跟糖的比例是1:1),这个是自己改良,不知道效果如何,要3个月后见证。 2、瓶子,水果都要保持风干,无水无油,不然会变质的 3、无水酵素最快要发酵3个月才可以吃哦(时间越长越好,时间是酵素的产物,不会变质的,如果上面提到的问题没有做好,开始很快就变质了) 4、前一个月都每天定期放气,第二个月开始密封保存(一定要放在阴凉地方,不能经常动,不然发生爆破) 5、做的是无水酵素,水果可以放满整个瓶子,因为大概3天后,水果会脱水,然后剩下到半瓶子了,不会担心发酵过程中的气弄到瓶子爆炸的。 通过以上介绍,对自制水果酵素也是有着很好认识,这样的东西在制作上,都是可以按照以上方法进行,不过要注意的是,在对它制作的时候,在食材使用上,都是要合理进行,不宜使用的太多,这样对它的口感也是有着一些影响。

全自动凝胶成像分析系统

全自动凝胶成像分析系统 全自动电脑程序控制,数字摄像头能够通过与计算机连线 实现摄影成像控制,分析软件可实现图像编辑处理,泳道 自动识别,分子量计算、上样量分布计算等。 保证摄录DNA/RNA凝胶、蛋白质凝胶、印迹杂交膜(包 括Western、Southern、Northern、Slot/点杂交膜)、放 射自显影胶片、酶标板、薄层层析板、化学荧光显影等图像 在低照度下的灵敏度、不掉失条带,终可得到凝胶条带的峰 值、分子量或碱基对数、面积、度、位置、体积或样品总量。 较大程度地控制EB污染,有效保障实验操作人员的健康。 有助于研究人员安全、正确、迅速地得到电泳照片和分析结 果,摆脱繁琐操作过程,提工作效率。 可用于DNA/RNA凝胶、蛋白质凝胶、印迹杂交膜(包括Western、Southern、Northern、Solt、点杂交膜)、放射自显影胶片、酶标板、薄层层析板等图像的成像及分析处理,能对条带、斑点及其他任何目标区域进行地总量分析、分子量分析,聚类分析,同源性分析等。 多功能控制面板,触摸按键,功能选择简单方便 可通过软件或机箱面板进行镜头的变焦、聚焦、光圈、透射紫外灯及反射灯的全自动控制;电动镜头:专业变焦镜头,可轻松调整光圈、缩放及聚焦等参数 顶置白光光源:的均匀性对低亮度的图像进行增强 防UV观察窗:无须开启暗箱门就可以观察样品的情况 切胶口:无须开启暗箱门就可以轻松切胶回收 密闭式暗箱:暗箱设计为凝胶成像提供了条件 定时保护功能:10分钟内没有输入任何命令,全部光源自动关闭,延长使用寿命 双侧反射:双波长紫外光源254、365nm 多种配件可选:紫外白光转换屏,紫外/蓝光转换屏,多波长透照台等 类别ZF-258 ZF-288 CCD芯片1280(H)×1024(V) 133万像素2592(H)×1944(V) 500万像素 动态范围 4.5OD.16bit灰阶,低于20Pg经EB染色的双链DN 像数尺寸 5.7μm×4.28μm 镜头通透电动镜头, 8~48mm 曝光时间0.294ms~2000ms 灵敏度低可检测0.01ngEB染色体DNA 检测信噪比≥56dB 激发光源300nm透射UV、254、365nm反射UV 透射台超亮紫外透射台,面积200×250mm ,白光:210×260mm 滤光片:标配590nm,兼容EB、Sybr、GoldView等大部分荧光染料 软件Keebio 1D 图像分析软件

介绍几种红糖酵素的做法

介绍几种红糖酵素的做法 制作酵素比例:红糖,蔬菜或水果,水(1:1:1),下面 的是无水酵素,一般几天就会分解出水份,红糖的比例可以适当减半。 红糖杂质多,矿物质多,适合做肥料.适合细菌生长.白糖也可 以做培养基,做出来的酵素营养不够全面. 不菅做环保酵素还是食用的水果酵素,都是要用紅糖,一 定要按比例做, 才能做出好的酵素。不要试图尝试使用冰糖(白糖)制作。其效果会大打折扣地!制作酵素的方法准备一个可密封的 大瓶子,把果蔬或药材切成薄片,铺在瓶底,上盖一层红糖,注意红糖需掰成小块儿。然后按一层原料一层糖的顺序码放,最后在上面放一层柠檬片(一个柠檬去皮去籽切片),码放 完食品与糖后仍应和瓶口保持4厘米的距离。将瓶口用保鲜膜覆盖住,然后加盖,隔绝外界空气。放置在15-20摄氏度阴凉处约2-3周,把渣滤掉,剩下的液汁即酵素,放在冰箱中冷藏。注意全程要无菌操作,食物及刀具瓶子需洗净并晾干。材料码放不可过满,防止酵素溢出。最上一层必需是柠

檬,以达到杀菌的效果。水果选生涩一些的,酵素生成更多。 工具/原料大瓶子果蔬或药材红糖柠檬片方法/步骤1护心酵素原料:菠萝800克(去皮)红糖400克,柠檬一个。制作时间15天左右。 2抗动脉硬化酵素原料:连皮生姜500克、红糖300克、柠檬4个,按生姜一层柠檬一层糖一层放,制作时间14天。 各种自制酵素的做法 3保肝酵素原料:鲜木瓜500克(带片洗净晾干),红糖300克、柠檬一个,制作时间约十四天. 4整肠醇素原料:白萝卜500克(连皮)、红糖300克、柠檬一个,制作时间约18天。 5防癌酵素原料:蕃茄500克(连皮)、红糖350克、绿茶10克、柠檬2个,制作时间约13天。生一些的蕃茄能产生更多一些的酵素,蕃茄产生酵素能防癌,抗癌的作用比蕃茄红素更强。绿茶中的绿茶酚是一种谷胱甘肽转移酶,可增加蕃茄产生酵素的量。

柠檬酵素喝了有什么好处

柠檬酵素喝了有什么好处 柠檬酵素就很好的养生功效,它最主要的作用就是美容养颜,促进身体废物的代谢,具有很好的预防便秘的作用,能够清除身体的垃圾,对于心血管的健康也是非常有好处的,另外在美容养颜方面的作用也很好,能够清除身体的皮肤色素沉着,有很好的预防色斑和暗沉的作用。 柠檬酵素的功效 1.用柠檬来制作酵素,反应特别明显的首先是排便,很多人用了柠檬酵素之后,排便非常痛快,可以解决便秘等肠道问题,解决肠道问题就是解决身体排毒的问题,意义重大。 2.柠檬酵素能通便排除身体垃圾,具有不错的减肥效果,这对于想要瘦身的朋友益处多多。酵素减肥能分解排除肠道与体内毒物重新调整人体平衡能力促进沉积的脂肪大量分解。酵素减肥促进新陈代谢并调整内分泌,消除因内分泌失调引起的肥胖。酵素减肥法运用的是提升脂肪代谢力的科学减肥方法。 3.柠檬酵素还具有防止和消除皮肤色素沉着的作用,所以还有美白的效果,爱美女士的不错选择。 4.柠檬汁还有很多的柠檬酸、维他命以及不饱和脂肪酸,对美白的功效是大家公认认。而且柠檬汁具有很强的杀菌效果,促进人体健康,杀灭胃肠道的细菌。而且柠檬能够清热解毒,像平

常上火、咽喉炎、扁桃体炎、鼻炎等都可以吃柠檬酵素快速缓解。柠檬酸叫还能促进胃肠道的消化吸收以及代谢毒物的排泄,对便秘者效果非常好,柠檬最好在晚上吃,因为白天吃在太阳可能加重色斑。 柠檬酵素的做法 买来的柠檬和玻璃罐消毒干净晾干,注意一定不要存水。建议用盐搓干净柠檬表皮,然后拿着软毛刷刷一下,冲干净,但是也不用洗得很彻底,完全无菌会影响活性。柠檬切片,尽量薄(很考验刀工哟)。 柠檬和冰糖按照1:1比例,一层柠檬一层冰糖码好,大概码到罐子八成的位置,留下空间发酵,冰糖一定舍得放,冰糖是发酵的关键,糖少容易酒化! 加了醋的酵素别有一番风味,可以尝试一下。图中10斤的罐子码完柠檬冰糖后倒入1斤醋,醋要选择纯粮食酿造的,超市里欣和的原浆米醋或者亨氏白醋都是很不错的选择。

凝胶成像仪

凝胶成像仪 凝胶成像主要用于蛋白、核酸凝胶成像及分析,系统提供白光和紫外光两种光源进行拍摄凝胶,由系统自带的图像捕捉软件捕捉拍摄图像,然后由系统自带的图像分析软件对拍摄的图像进行分析。 应用范围 凝胶分析软件主要应用于生物医学、医药领域,为科研人员提供了分析凝胶图像及其它生物学条带的途径。 主要功能 1.凝胶图像剪辑处理,标记; 2.自动寻找凝胶条带; 3.与公用的标准条带或自选的标准条带比较; 4.条带(泳道)迁移路径的校正; 5.核酸、蛋白的处理,计算相应的分子量等数值; 6.详细的分析结果可输出成EXCEL格式,根据需要编辑。 从整体总的来说凝胶成像(系统)可应用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析(1)分子量定量 对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNAMarker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方法所得到的结果较肉眼观察估计要准确很多。 (2)密度定量

一般常用的测定DNA(脱氧核糖核酸)和RNA(核糖核酸)浓度的方法是紫外吸收法,但它只能测定样品中的总核苷酸浓度,而不能区分各个长度片段的浓度。利用凝胶成像系统和软件,先将DNA胶片上某一已知其DNA含量的标准条带进行密度标定以后,可以方便的单击其他未知条带,根据与已知条带的密度做比较,可以得到未知DNA 的含量。此方法也适用于对PAGE蛋白胶条带的浓度测定。 (3)密度扫描 在分子生物学和生物工程研究中,我们最常用到的是对蛋白表达产物占整个菌体蛋白的百分含量的计算。传统的方法就是利用专用的密度扫描,但利用生物分析软件结合现在实验室常规配备的扫描仪或者直接用白光照射的凝胶成像就能完成此项工作。 (4)PCR定量 PCR定量主要是指,如果PCR实验扩增出来的条带不是一条,那么可以利用软件计算出各个条带占总体条带的相对百分数。就此功能而言,与密度扫描类似,但实际在原理上并不相同。PCR定量是对选定的几条带进行相对密度定量并计算其占总和的百分数,密度扫描时并对选择区域生成纵向扫描曲线图并积分。 以某品牌凝胶成像为例: 高分辨率像素 130万、140万、500万高像素专业数字CCD摄像头,分析图像更清晰,分辨率更高。 多种光源可选

BIO-RAD ChemiDoc XRS 凝胶成像系统操作说明之欧阳家百创编

Bio-rad化学发光成像系统操作规 程: 欧阳家百(2021.03.07) 一.目的 为规范Bio-rad化学发光成像系统的基本操作、维护保养、异常处理程序,防止人为操作失误,确保Bio-rad化学发光成像系统正常运转,特制定本程序。 二.适用范围 本程序适用于Bio-rad化学发光成像系统操作。 三.责任 1. 本程序的实施者为Bio-rad化学发光成像系统操作者,各实验室负责人对本程序的实施情况进行监督。 2. 日常运行及维护、定期维护、定期点检及保养由Bio-rad化学发光成像系统操作者负责。 四.内容 1. 打开成像仪器电源,将样品放入工作台。 2.双击桌面上图标,打开Quantity One 软件,或从开始-程序-The Discovery Series/Quantity One进入。 3.从File下拉菜单中选择ChemiDox XRS,打开图像采集窗口。

4. Select Application 选择相关应用: a UV Transillumination 透射UV:针对DNA EB胶或其他荧光; b White Transillumination 透射白光:针对透光样品如蛋白凝胶,X-光片; c White Epillumination 侧面白光:针对不透光样品或蛋白凝胶; d Chemiluminescnec e 化学发光,不打开任何光源。 5. 单击Live/Focus按钮,激活实时调节功能,此功能有三个上下键按钮:IRIS(光圈),ZOOM(缩放),FOCUS(聚焦),可在软件上直接调节或在仪器面板上手工调节,调节步骤: a调节IRIS至适合大小;b点ZOOM将胶适当放大;c调节FOCUS至图像最清晰。 6. 如是DNA EB胶或其他荧光,单击Auto Expose,系统将自动选择曝光时间成像,如不满意,单击Manual Expose,并输入曝光时间(秒),图像满意后保存。 如是蛋白凝胶,接第5步骤直接将清晰的图像保存即可;如是化学发光样品,将滤光片位置换到Chemi位(仪器上方右侧),将光圈开到最大,输入Manual Expose时间,可对化学发光的弱信号进行长时间累积如30min,或单击Live Acquire 进行多帧图像实时采集,在对话框内定义曝光时间长短,采集几帧图像,在采集的多帧图像中选取满意的保存。 五.注意事项:

几种水果酵素制作方法

几种水果酵素制作方法以及其功效 A、水果酵素材料: 一、水果酵素材料: 苹果5个、香蕉14根、橙(拳头大)或水梨5个、菠萝1个、柠檬7个、冰榶 500~750 g(要甜一点就多一点糖) ※此为一瓮水果酵素要用到的材料,水果最好前二三天买来,除香蕉、菠萝、冰榶外都清洗风干。 工具:水果刀、觇板、削刀(削水果皮)、玻璃罐都要澈底洗净及风干。作法: 1.将全部苹果(去核)、香蕉、橙、菠萝、柠檬全部均去皮(柠檬削到白色即可,皮会有苦味不要留),因为要分成二层铺放请将水果均分成二份,冰榶也是分二份)。2.将第一份水果依苹果、香蕉、橙、菠萝、柠檬顺序切片(不要太厚),一层一层摆入罐中,需注意要平均摆尽量不要有空隙高低不平,以免发酵不平均。 3.柠檬与冰榶是最重要的发酵剂,柠檬放好了将第一份冰榶平均洒放 4.重复将第二份水果依作法2再摆放一次即完成。 5.全部水果放置约玻璃罐7分或8分满即可,发酵会有气体须预留空间,待一个月后即可饮用。 1).不能将酵素放置在直接曝晒阳光,或高温的场所以免变质。2).体内有发炎、溃烂的人(例如: 胃溃疡、肠炎等),特别需要喝酵素,但需稀释浓度饮用。

3).酵素遇50℃以上高温即被破坏殆尽。 4).想发酵期间想打开可以,忌碰水,会有浓郁的果香味。5).要对酵素请查心怡公布的认识酵素。材料:水果 + 冰片糖 + 柠檬 3 至 5 粒基本做法: 1. 水果和柠檬洗净风干,切成薄片。 2. 冰片糖切成小块。 3. 等材料切片好后,依次序一层层排入大玻璃罐内,步骤是先放水果,再放柠檬片,最后放冰片糖。一层层水果片,柠檬片,冰片糖需按程序排列,最上层必须放冰片糖。 4. 密封后让材料浸泡2个星期,置放在15至25℃阴凉处。青苹果酵素:美容去脂 材料:青苹果8粒,冰片糖1包,柠檬3至5粒 容器: 2 litre 大玻璃罐 1 个 食材处理:青苹果保留外皮切小片 排毒消炎 材料:大芦荟7支,冰片糖1包,柠檬3至5粒 容器:2 litre 大玻璃罐1个 食材处理:芦荟去除外皮取肉 消化除劳 材料:黄梨2粒,冰片糖1包,柠檬3至5粒 容器:2 litre 大玻璃罐1个 食材处理:黄梨去皮直接切成小薄片 火龙果酵素:补血抗老 材料:火龙果4 - 5粒(视容器而定),冰片糖1包,柠檬2 粒

凝胶成像分析系统

图像采集与分析技术及凝胶成像分析系统使用方法点击次数:15 发布时间:2011-3-25 8:50:36 一、仪器设备 凝胶成像分析系统ChemiGenius2 二、仪器结构 见下图 三、原理 样品在电泳凝胶或者其他载体上的迁移率不一样,以标准品或者其他的替代标准品相比较就会对未知样品作一个定性分析。这个就是图像分析系统定性的基础。根据未知样品在图谱中的位置可以对其作定性分析,就可以确定它的成份和性质。 样品对投射或者反射光有部分的吸收,从而照相所得到的图像上面的样品条带的光密度就会有差异。光密度于样品的浓度或者质量成线性关系。根据未知样品的光密度,通过于已知浓度的样品条带的光密度指相比较就可以得到未知样品的浓度或者质量。这就是图像分析系统定量的基础。 采用最新技术的紫外透射光源和白光透射光源使光的分布更加均匀,最大限度的消除了光密度不均造成的对结果的影响。 四、适用范围 1.蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析。 2.可以确定生物分子的分子量。 3.可以应用于生物分子的定量分析中。 五、操作步骤 1.打开凝胶成像系统开关。 2.打开电脑,系统自动打开并进入GeneSnap软件。 3.打开凝胶成像系统前面板,选择使用紫外透射光源或者白光透射光源,将相应光源安放到位。 4.将样品放置在透射光源的样品台上。 5.在GeneSnap操作界面里面选择使用Upper white光源,点击绿色(即时成像)按钮。6.根据右侧成像窗口中显示的即时照片,手动调节凝胶在样品台上的位置,直至成像窗口中凝胶在照片的中央位置,关上凝胶成像系统的前面板。 7.选择紫外光源: No Light 不使用灯照射,直接成像 Transilluminator 紫外透射光源 Epi long wave uv 长波紫外反射光源(365nm) Epi long wave uv 短波紫外反射光源(254nm) Upper white 顶部白色反射光源 Lower white 底部白色透射光源 8.E.D.R.及N.F.的选择: E.D.R. 动态范围扩展,可以使照片由 12 位变为16位,更加清晰 N.F. 中间部分区域校正,可以消除背景光 分布不均造成的影响 9.选择照相时所使用的灵敏度: High resolution 高分辨率

BIO-RAD ChemiDoc XRS 凝胶成像系统操作说明

Bio-rad化学发光成像系统操作规程: 一.目的 为规范Bio-rad化学发光成像系统的基本操作、维护保养、异常处理程序,防止人为操作失误,确保Bio-rad化学发光成像系统正常运转,特制定本程序。 二.适用范围 本程序适用于Bio-rad化学发光成像系统操作。 三.责任 1. 本程序的实施者为Bio-rad化学发光成像系统操作者,各实验室负责人对本程序的实施情况进行监督。 2. 日常运行及维护、定期维护、定期点检及保养由Bio-rad化学发光成像系统操作者负责。 四.内容 1.打开成像仪器电源,将样品放入工作台。 2. 双击桌面上图标,打开Quantity One 软件,或从开始-程序-The Discovery Series/Quantity One进入。 3. 从File下拉菜单中选择ChemiDox XRS,打开图像采集窗口。 4.Select Application 选择相关应用: a UV Transillumination 透射UV:针对DNA EB胶或其他荧光; b White Transillumination 透射白光:针对透光样品如蛋白凝胶,X-光片; c White Epillumination 侧面白光:针对不透光样品或蛋白凝胶; d Chemiluminescnec e 化学发光,不打开任何光源。 5.单击Live/Focus按钮,激活实时调节功能,此功能有三个上下键按钮:IRIS (光圈),ZOOM(缩放),FOCUS(聚焦),可在软件上直接调节或在仪器面板上手工调节,调节步骤:a调节IRIS至适合大小;b点ZOOM将胶适当放大;c调节FOCUS至图像最清晰。 6.如是DNA EB胶或其他荧光,单击Auto Expose,系统将自动选择曝光时

苹果柠檬酵素的做法

苹果柠檬酵素的做法 苹果,柠檬酵素你们大家知道是什么吗?其实我也不太明白,酵素到底是一个什么东西啊,不过但我翻阅了许多,知道以后我开始明白,酵素原来是一个好东西,对我们的生活有特别重要的作用。那么我们应该怎么样来制作苹果柠檬酵素呢?制作起来并不是特别难她,而她需要的原材料也特别特别的少。他仅仅只需要苹果,柠檬,还有一些酵母就可以制作了。 苹果柠檬酵素作为一个非常具有营养价值的饮品,深受大家的喜爱。苹果中含有较多的钾,能与人体过剩的钠盐结合,使之排出体外。当人体摄入钠盐过多时,吃些苹果,有利于平衡体内电解质。苹果中含有的磷和铁等元素,易被肠壁吸收,有补脑养血、宁神安眠作用。苹果的香气是治疗抑郁和压抑感的良药。苹果中所含的纤维素能使大肠内的粪便变软;苹果含有丰富的有机酸,可刺激胃肠蠕动。另一方面苹果中含有果胶,又能抑制肠道不正常的蠕动,使消化活动减慢,从而抑制轻度腹泻。柠檬系芸香料柑橘属植物,是重要的天然香料和食品饲料的原料。柠檬营养丰富.,每100克柠檬含有蛋白质1.1克,糖类4.9克,膳柠檬汁中的酸含量高达6%-7%柠檬种子中含维生素E和脂肪油,果皮中还有类黄酮糖苷、果胶等。柠檬所含的大量维生素C,是防止坏血病的妙药。 苹果柠檬酵素需要用到的原料有苹果四个,柠檬一个,冰糖一包。工具:菜刀,菜板,玻璃瓶(一定要用玻璃瓶)。苹果柠檬

酵素的制作步骤为: 1.把苹果、柠檬、大玻璃瓶、菜刀、菜板、用洗洁精清洗干净(所有的原料和工具都要是无油的),沥水,晾干; 2苹果去核,切片,柠檬也切片。然后装入无水的玻璃瓶中,先铺一层柠檬,再铺一层苹果,再撒一层糖;按这个顺序直至装至八分满,最后一铺要撒糖。把瓶口先用保鲜膜密封,再封瓶盖,放背光处; 3过三天晃晃瓶子,让里面的苹果均匀发酵。过两周就可以了启封了。用纱布滤过原液,用玻璃瓶装酵素原液,然后放阴凉处; 4每次喝的时候用凉白开活凉水稀释。原液和水的比例大约:1:5。 这样简单的苹果柠檬酵素就做好。 苹果,柠檬酵素,我已经告诉大家做法嗯,接下来的事就是看大家怎么去操作的问题,制作柠檬酵素,肯定会需要很多很多的时间,就需要大家有耐心的去操作。制作出来的味道肯定特别棒!但是也要看各位的手艺,手艺好的话味道就好,不过手艺欠佳的话可能就还需要再次努力。苹果,柠檬酵素,就这样好。

家庭水果酵素制作方法

家庭水果酵素制作方法 材料:苹果750g柠檬750g木瓜750g辅料红糖750g冰糖750g蜜糖750g Step1:首先把所有准备好的水果洗干净,晾干水,注意,千万不要沾到水,不然酵 素就失败了,此外柠檬必须占水果量的三分之一,柠檬有很好的减肥排毒的功效。 Step2:然后将水果去皮,柠檬可以不去皮。 Step3:接着再将水果全部去核,切小块装好备用。 Step4:最后开始放水果,先在底部放入柠檬,然后放糖,再放入苹果,然后是木瓜,再是糖,注意,坚持是一层水果一层糖的原则,容量只能放到八分满,要留有空间给水果 们发酵,一层红糖一屋冰糖,这样口感比较好。 Step5:尽量将水果铺平,不要留有空隙,到最后放上柠檬和最后一层的糖,用筷子 或者勺子将水果压一下,再盖上盖子,密封好,放入阴凉处发酵三到六个月,就可以喝了。 Step6:第二天,酵素里的糖有些已经转化了,水果里的水份已经随糖浸出来了,可 以看到里面有许多小气泡不停地在发酵。可以在瓶子上贴有制作的日期,那样就可以知道 自己什么时候能喝了。 TIPS:整个作过程,水果不能再次碰水,柠檬的比例要是水量量的三分之一,糖的比 例是一比一,不要认为糖会太甜会长肥,因为糖在发酵过程中已经转化成为酵素份子。 ①把蜂蜜, 水果和水按照1:3:10的比例准备好。跟容器的体积无关,例如,1斤的蜂蜜,就放3斤的水果和10斤的水水果切成小块。 ②把三者放入容器,水果不用去皮,洗净即可,三者的总体积不宜超过容器体积的80%。容器最好用塑料桶,不会因为气体膨胀而破裂 ③把容器密封好,放在阴凉处,一定要密封好。然后,如果看到容器有胀气现象,打 开放气,让气体流通。放置最少3个月,时间当然越长越好,最少三个月。 ④倒出时,拿滤网把碎渣过滤,剩下的酵素就可以喝了。 1.整备体内酵素---这项作用是使体内血液呈弱酸性,清除体内废物,保持肠内细菌 平衡、强化细胞、促进消化、加强抵抗力,保持各方面平衡。 2.抗炎作用---发炎是部分细胞受伤的部位,细菌筑巢生长治疗发炎,是酵素搬运白 血球功能良好,给予受伤的细胞力量。

几种水果酵素制作方法

几种水果酵素制作方法以及其功效 水果酵素材料: 一、水果酵素 材料: 苹果5个、香蕉14根、橙(拳头大)或水梨5个、菠萝1个、柠檬7个、冰榶 500~750 g(要甜一点就多一点糖) ※此为一瓮水果酵素要用到的材料,水果最好前二三天买来,除香蕉、菠萝、冰榶外都清洗风干。 工具:水果刀、觇板、削刀(削水果皮)、玻璃罐都要澈底洗净及风干。 作法: 1.将全部苹果(去核)、香蕉、橙、菠萝、柠檬全部均去皮(柠檬削到白色即可,皮会有苦味不要留),因为要分成二层铺放请将水果均分成二份,冰榶也是分二份)。 2.将第一份水果依苹果、香蕉、橙、菠萝、柠檬顺序切片(不要太厚),一层一层摆入罐中,需注意要平均摆尽量不要有空隙高低不平,以免发酵不平均。 3.柠檬与冰榶是最重要的发酵剂,柠檬放好了将第一份冰榶平均洒放4.重复将第二份水果依作法2再摆放一次即完成。 5.全部水果放置约玻璃罐7分或8分满即可,发酵会有气体须预留空间,待一个月后即可饮用。 1).不能将酵素放置在直接曝晒阳光,或高温的场所以免变质。 2).体内有发炎、溃烂的人(例如: 胃溃疡、肠炎等),特别需要喝酵素,但需稀释浓度饮用。 3).酵素遇50℃以上高温即被破坏殆尽。

4).想发酵期间想打开可以,忌碰水,会有浓郁的果香味。 材料:水果 + 冰片糖 + 柠檬 3 至 5 粒 基本做法: 1. 水果和柠檬洗净风干,切成薄片。 2. 冰片糖切成小块。 3. 等材料切片好后,依次序一层层排入大玻璃罐内,步骤是先放水果,再放柠檬片,最后放冰片糖。一层层水果片,柠檬片,冰片糖需按程序排列,最上层必须放冰片糖。 4. 密封后让材料浸泡2个星期,置放在15至25℃阴凉处。 青苹果酵素:美容去脂 材料:青苹果8粒,冰片糖1包,柠檬3至5粒 容器:大玻璃罐 1 个 食材处理:青苹果保留外皮切小片 排毒消炎 : 材料:大芦荟7支,冰片糖1包,柠檬3至5粒 容器:大玻璃罐1个 食材处理:芦荟去除外皮取肉 消化除劳 : 材料:黄梨2粒,冰片糖1包,柠檬3至5粒 容器:大玻璃罐1个 食材处理:黄梨去皮直接切成小薄片 火龙果酵素:补血抗老 材料:火龙果4 - 5粒(视容器而定),冰片糖1包,柠檬2 粒

凝胶成像系统及PCR仪器共计3台设备项目需求参数

凝胶成像系统及PCR仪器共计3台设备项目需求参数 1、设备名称 必须对以下三台设备同时投标,分项报价,不能只对其中一项或两项投标。 1.1凝胶成像系统参考品牌:Bio-Rad 参考型号:GelDoc XR+。 1.2梯度PCR仪参考品牌:Bio-Rad 参考型号:S1000。 1.3 普通PCR仪参考品牌:Bio-Rad 参考型号:T100。 2、主要用途: 2.1凝胶成像系统:通过分析软件对系统的全自动化控制,可对蛋白电泳凝胶、DNA凝胶、印迹膜等样品进行全自动图像采集并进行定性和定量分析(绝对定量和相对定量)。 2.2梯度PCR仪:用于体外核酸片段扩增,具有动态温度梯度功能。 2.3普通PCR仪:用于体外核酸片段扩增。 3、工作条件: 3.1 凝胶成像系统:工作温度0-40℃;工作和存储湿度0-95%;工作电源100-240V; 3.2 梯度PCR仪:工作温度15-31℃;工作和存储湿度10-80%;工作电源100–240 VAC (±10%), 50–60HZ; 3.3 普通PCR仪:工作温度15-31℃;工作和存储湿度20-80%;工作电源100–240 VAC (±10%), 50–60HZ。 4、系统配置及性能指标 以下标注“★”的为不可偏离的技术指标及要求,若有偏离,将按无效投标处理。 4.1凝胶成像系统 4.1.1 系统配置 4.1.1.1 一台凝胶成像系统主机; 4.1.1.2 一台联想电脑IdeaCentre K330(锋行KING飚速版) (配置Intel 4.2GHz/4G/1T)。 4.1.2性能指标 4.1.2.1 样品来源:不透光样品如照片、纸张、杂交膜等;荧光样品如EB染色的DNA凝胶、SYBR Safe荧光染色DNA凝胶、Radiant Red荧光染色的RNA凝胶等;各种染色的蛋白质凝胶如考染、银染、SYPRO Ruby或Oriole 荧光染色等。 4.1.2.2★ CCD分辨率:1360 ×1024。 4.1.2.3★动力学范围>3个数量级,12 bit灰度级(非插值)。 4.1.2.4★ CCD控制:马达自动控制。 4.1.2.5 镜头缩放:8.5-51mm镜头。 4.1.2.6 暗箱:密封暗箱可用于化学发光检测。 4.1.2.7 滤光片:标配2个,3个可选。 4.1.2.8★备有校正镜头曲面度的专用滤光片。

相关主题
文本预览
相关文档 最新文档