当前位置:文档之家› 发动机综合分析仪

发动机综合分析仪

发动机综合分析仪
发动机综合分析仪

发动机综合分析仪

发动机综合性能检测与发动机台架试验不同,后者是发动机拆离汽车,以测功机吸收发动机的输出功率对功率、扭矩、油耗和排放等最终性能指标进行定量测定;而发动机综合性能检测装置主要在检测线上或汽车调试站内就车对发动机各系统的工作状态的静态和动态参数进行分析,为发动机技术状态判断和故障诊断提供科学依据。有专家系统的发动机综合分析仪具有故障自动判断功能,有排气分析选件的综合分析仪能测定汽车排放指标。

基本功能

* 无外载测功功能即加速测功法;

* 检测点火系统:初级与次级点火波形的集与处理,平列波、并列波与重叠和重叠角的处理与显示,断电器闭合角和开启角,点火提前角的测定等;

* 机械和电控喷油过程各参数(压力、波形、喷油、脉宽、喷油提前角等)的测定;

* 进气歧管真空度波形测定与分析;

* 各缸工作均匀性测定;

* 起动过程参数(电压、电流、转速)测定;

* 各缸压缩压力判断;

* 电控供油系统各传感器的参数测定;

* 万用表功能;

* 排气分析功能。

发动机综合分析仪是所有汽车检测设备中功能最多,检测项目和涉及系统最广的装置,因

此它的结构较杂,技术含量也较高。随电子技术在汽车领域的飞速发展,原始的EFI (Electronic Fuel Injection)控制功能延伸到汽车底盘和传动系的电子系统,成为控制面更广的电子管理系统EMS(Electronic Management System),现代发动机综合分析仪的功能已超越了发动机的畴,增加了ABS (Anti-lock Braking System)和ASR(Acceleration Skid Response)等底盘系统的测试功能。因此,应倍加关注发动机综合分析仪的管理和操作人员在使用及保养方面的培训。

区别于解码器和一般发动机单项性能的检测仪,发动机综合性能检测仪具有三项特点:* 动态的测试功能:它的传感系统和信号集与记忆功能迅速准确地捕获发动机各瞬变参数的时间函数曲线,这些动态参数是对发动机进行有效判断的科学依据;

* 通用性测试过程不依据被检车辆的数据卡(即测试软件),只针对基本结构和各系统的形式和工作原理进行测试,因此检测结果具有良好的普遍性,检测方法也具有最广泛的通用性;* 主动性发动机综合检测仪不仅能适时集发动机的动态参数,还能主动地发出指令预发动机工作,以完成某些特定的试验程序,如断缸试验等。

基本组成

虽然各厂家开发的发动机综合性能检测装置形式各,一台配置齐全、性能良好的检测仪,概括起来不外乎由信号提取系统、信息处理系统及控显示系统三大部分组成。

信号提取系统

信号提取系统的任务在于拾取汽车被测点的参数值,鉴于被测点的机械结构和参数性质不同,信号提取装置必须具有多种形式以适应不同的测试部位。

对于电控燃油喷射(EFI)发动机,因计算机计算喷油脉宽和自动控制过程的需要,各非电量已被植入各系统的传感器直接转换成电量,它们的提取可用件9通过不同的转接头来完成,但为了不中断计算机的控制功能,必须通过T形接头来提取信号。

信号预处理系统

信号预处理系统也称前端处理器,俗称“黑盒子”,是电控燃油喷射系统检测的关键部件,其作用相当于多路测试系统中的多功能二次仪的集合,可将发动机的所有传感信号经衰减、滤波、放大、整形,并将所有脉和数字信号直接输入CPU的高速输入端(HSI),也可经F-V转换后变为0~5V或0~10V的直流模拟信号送入高速瞬变信号集卡。

控与显示系统

柜式发动机综合性能分析仪大多用14英寸彩色CRT显示器,手提便携式则用小型液晶显示器,现代发动机综合性能分析仪都能显示操作菜单,实时显示当前动态参数和波形,十

字光标可显示曲线任何一点的数值,同时也可显示极限参数的数值,并配以色棒显示以示醒目,用户可任意设定显示围和图形比例。

发动机动力性检测

发动机综合分析仪的功能很多,以下仅对发动机动力性检测作一简要描述。

汽车动力性的好坏,首先取决于发动机的动力性。在汽车使用和维修部门检测发动机的动力性时,通常不会将发动机从汽车上拆下,而是用就车检测法。一是检测单缸动力性,二是进行发动机无负载测功。

单缸动力性检测

在判断发动机各缸的工作情况时,长期以来使用人工方法即单缸断火试验法。这种方法是在发动机处于怠速时,分别将每个气缸断火,在发动机旁或排气管口处察听单缸断火后,发动机由于功率下降引起转速下降而产生的声音变化。这种诊断方法简单直观,但需要有一定实践经验,而且不够准确。特别是发动机气缸数多,单缸断火后转速下降小,声音变化也小,并不容易听。

所谓单缸动力性检测,就是用仪器判断发动机各缸的工作情况。单缸断火后,发动机转速下降值能准确地被仪器检测出来。这样就将传统的人工凭耳朵听察的断火试验方法加以量化。另外,检测仪还可以实现自动地逐缸断火,来完成整个检测项目,不必将每个缸的高压线分别拔下。

操作实例:用WFJ-1型发动机综合分析仪检测时,需要安装转速传感器、白金信号黑红鱼夹。调整化油器上的节气门调整螺钉,将发动机的转速稳定在1200r/min,键入操作码“14”,仪器会自动控制逐缸断火。同时,屏幕上可以通过点火平列波形显示逐缸断火的过程。当某一缸断火时,人耳听到的发动机声音变化与打印出来的检测结果一致。单缸断火时,四程发动机转速下降值一般应在表所示的围内,且各缸转速下降值相差不应超过25%。

除了可以使用WFJ-1型发动机综合分析仪检测单缸动力,凡是能够测量发动机转速的仪器,都可以用来进行这个项目的检测。有些仪器不能自动逐缸断火,仍需要人工将各缸的高压线拔下断火。只是用转速下降值代替了人耳察听声音的变化进行诊断。

发动机无外载测功

汽车使用说明书一般都标明发动机的额定功率、额定转矩和最低燃料消耗率,若在电力测功器或水力测功器上,在节气门全开的情况下,对发动机的曲轴施加一定载荷,在转速稳定时测出这三项指标的数值。这种测功方法属于稳态测功。在汽车使用和维修部门通常使用动态测功的方法,即发动机在节气门开度和转速均为变动的情况下测定其功率,并且不给发

动机施加外部荷载,发动机只以它自身运动部件的惯性力矩为负载,因此又称为无外载测功。

稳态测功的精度高,但使用设备的价格高,操作杂,需要将发动机从汽车上拆下来,不适于不解体检测。无外载测功正好相反,它无需专门的试验台架,就车测试,设备简单,操作方便。但后者精度较差,对于大多数车型无法直接测出功率。

无外载测功的仪器按测功原理可分为两类,一类是用测定加速时间的方法测定平均功率,另一类是用测定瞬时角加速度的方法测定瞬时功率。

测试方法:为了提高无外载测功机的测试精度,必须从操作方法和被测车辆的准备工作手,首先加速踏板踏下的速度和力度要均匀,且要求重复性良好,为此该项测试必须由经过专门训练的专职人员操作。为避免操作上的主观误差,须取三次测试结果的平均值,若有飞点必须剔除。

被测车辆与加速能力有关的机构必须处于正确技术状态,尤其是供油系统的踏板拉线和油门摇臂等机构的间隙,对发动机的加速过程影响极大,在测试前必须设法消除上述各连接处的不当间隙与松紧度,但不允许调整原车化油器的加速泵位置和柴油机的调整机构。惯性数K值的确定,对无外载测功至关重要,K值的内涵已完全超出发动机的转动惯量已如前述。仪器生产厂家提供的某些车型的K值多为发动机台架试验的总功率试验状态,即不带空气滤清器、冷却风扇和排气消音器,显然这一K值,不能为检测站对汽车进行就车检测之用。因此,检测站测试必须使用有关使用部门提供的就车试验K值,即同一机型也要注意有否特殊的附件,如空调、转向助力泵、风扇的驱动方式等,也就是说,对同一底盘的各类改装车,K值的选取必须慎重。

新型或初次试验的车型必须经过大量试验,与出厂指标和台架试验对比后,形成一个具有代表性的统计值作为该车型的K值。

为避免迅猛加速过程操作上的误差引致数据离散,可将节气门先开至最大,然后打开点火开关,发动机即启动并自由加速。为使测试数据量准确并不伤害发动机,试验前必须充分暖车使冷却系统预热到正常温度。

燃烧分析仪手册

燃烧分析仪手册 1模拟输入,CA-Plugin设置 1.1模拟输入配置 模拟输入部分的设置屏幕指示所有DAQP放大器。 缸压高压力传感器用于燃烧室内压力测试通常是基于电荷类型传感器,请讲其连接到燃烧分析仪DAQP-Charge-B放大器BNC接头上。 还需使用点火线圈传感器时,测量点火时间,这个传感器是基于电流信号,需要外部使用分流电阻接头(该接头,将BNC接头正接入2针,BNC接头负接入7针,且需在2针和7针之间接入一个电阻,如下图),且电压较大。DAQP-V模块是适当的为这种类型的传感器。 典型的被安装DAQP通道设置界面,如下图: 连接通道在使用栏被使用激活,并且在命名栏中进行重命名输入。活跃的实时信号可以在PHYSICAL VALUES栏中观察到实时值显示,此刻可以立即进入通道设置界面,可以对输入范围选择进行合理选择。

在通道设置中对各放大器设置,用户可以定义和扩展。通道设置分为4步,如下图由第一步到第四步说明进行通道设置。 第一步,放大器量程设置;第二步,通道名称和单位设置;第三步,传感器灵敏度设置(两点法、公式法);第四步,显示输入值(物理量)和对应实际值(工程量)。 ●输入范围可以从预定义列表选择,或手工输入。 ●抗混叠过滤器应该设置为100 khz和贝塞尔模型。 高压力传感器暴露在热冲击环境下,这可能会导致信号漂移,但AC耦合方式将减少这种漂移,避免信号超过他们的输入范围。 高通滤波器的频率与输入范围相关联。在从100pC到2000pC时为0.07Hz,超过2000pC 约0.005 Hz高通滤波器参数。

●连接传感器后后可以将耦合设置到DC模式,并点击Reset。Reset将消除连接及长时间运 行放大器内把引起和产生的内部静电,将信号只调回到0。 ●点火线圈传感器设置,仍遵循上述的四步方法,量程只需满足要求即可,可以无需设置 灵敏度参数,因为,此传感器主要关注的是,点火时间,而非电流大小。 1.2CA-Plugin设置 模拟输入设置后,我们必须选择燃烧分析插件设置,并添加计算模板。 计算模板分为5部分。发动机参数设置部分,所有发动机参数和测量应用通道;角度传感器部分,定义转角传感器类型,以及上止点(TDC)定义;热力学计算参数设置部分;爆震检测设置部分和输出计算结果设置部分。

柴油发动机的燃烧解读

柴油发动机的燃烧解读

项目四柴油机混合气形成与燃烧 学习目标: 掌握柴油机两种混合气的形成方式及特点,掌握直接喷射式和分隔式两大类柴油机燃烧室的结构及性能特点;了解柴油机供油系统的组成和喷射过程,掌握柴油机的燃烧过程及影响因素,掌握电控柴油喷身系统的组成、分类、电子控制功能,并在学习过程中随时注意对柴油机和汽油机进行比较。 任务一柴油机混合气形成 与汽油机工作原理相比,只有一个行程即作功行程中,柴油机由于用的柴油粘度比汽油大、不易蒸发,且自然温度又较汽油低,所以采用的是压缩自燃式点火。 任务二柴油机的燃烧过程

柴油机燃烧过程非常复杂,为了便于分析和揭示燃烧过程的规律,通常将这一连续的燃烧过程分为四个阶段,即着火延迟期(又称为滞燃期)、速燃期、缓燃期和补燃期,如图所示。 (一)着火延迟期 从柴油开始喷入气缸起到着火开始为止的这一段时期称为着火延迟期。 着火延迟期内,燃烧室内的混合气进行着物理和化学准备过程。 物理准备过程:燃油的粉碎分散、蒸发汽化和混合。 化学准备过程:混合气的先期化学反应直至开始自燃。 特点:压力没有偏离压缩线。

影响着火延迟期长短的主要因素是: 喷油时缸内的温度和压力越高,则着火延迟期越短。 柴油的自燃性较好(十六值较高),着火延迟期较短。 燃烧室的形状和壁温等。 喷油提前角:开始喷油到活塞到达上止点所对应的曲轴转角为喷油提前角。 (二)速燃期 速燃期:从开始着火(即压力偏离压缩线)到出现最高压力. 特点:压力急剧上升,压力达到最高(有可能达到13MPa以上)

一般用压力升高率λp〔kPa/(o)曲轴〕表示压力急剧上升的程度。 式中:△p——速燃期始点和终点的气体压力差(kPa); △θ——速燃期始点和终点相对于上止点的曲轴转角差(CAo)。 特点: (1)压力升高率很高,接近等容燃烧,工作粗暴。 (2)达到最高压力(6~9MPa)。 (3)继续喷油。 压力升高率过大,则柴油机工作粗暴,燃烧噪音大;同时运动零件承受较大的冲击负荷,影响其工作可靠性和使用寿 命; 压力升高率大,燃烧迅速,柴油机的经济性和动力性会较好。 压力升高率应限制在一定的范围之内,柴油机的压力升高率一般应不大于0.4~0.5 MPa/(o)曲轴。与汽油机相比,柴油机的压力升高率较大。 控制压力升高率的措施: 减小在着火延迟期内准备好的可燃混合气的量

实验一 发动机综合性能检测实验

实验一: 发动机的检测与诊断实验 ——发动机综合性能检测实验 适用专业:汽车服务工程专业车辆工程专业实验时数:2学时设计性实验——汽车发动机性能综合测定 一、实验目标:1) 掌握实验设计、实验数据处理和分析的基本方法; 2) 掌握发动机性能综合分析仪和汽车性能检测仪的接线方法和基本操作; 3) 了解发动机性能综合分析仪和汽车性能检测仪的主要功能; 二、实验仪器:发动机综合性能分析仪 被测车辆: 三、实验内容:1)测试设备的安装、调试; 2)数据采集、分析; 3)故障排除和检验。 四、实验要求:1) 在理论指导下,根据实验目的,在指导教师的指导下完成实验设计,对 实验路线和方法的可行性进行分析论证; 2) 根据实验设计和实验内容的要求,熟悉掌握所需仪器的结构、原理、操 作规范等; 3) 根据实验室安排,独立完成实验数据的采集等实操环节; 4) 对实验结果进行科学的分析和论证,得出科学的结论; 5) 撰写实验报告、答辩。 五、发动机综合性能检测的基本内容及特点 发动机是汽车的动力源,是汽车的心脏,汽车的一些基本技术性能都直接或间接地与发动机的相关性能相联系。因此发动机综合性能的检测对整车性能的了解至关重要。 发动机综合性能检测与发动机台架试验不同,后者是发动机拆离汽车以测功机吸收发动机的输出功率对诸如功率和扭矩以及油耗和排放等最终性能指标进行定量测定,而发动机综合性能检测装置主要是在检测线上或汽车调试站内就车对发动机各系统的工作状态,如点火、喷油、电控系统和传感元件以及进排气系统和机械工作状态等的静态和动态参数进行分析,为发动机技术状态判断和故障诊断提供科学依据,有专家系统的发动机综合分析仪还具有故障自动判断功能,有排气分析选件的综合分析仪还能测定汽车排放指标。

奇石乐KiBox燃烧分析仪功能简介

奇石乐燃烧分析仪——KiBox简介 一、仪器设备名称: KiBox Combustion Analysis KiBox燃烧分析系统 二、厂商:瑞士奇石乐仪器股份公司 Kistler Instrumente AG 国别:瑞士Switzerland 三、型号: 2893AK1 四、技术特点及优势 ?KiBox燃烧分析仪可以用于发动机台架标准稳态燃烧分析———燃烧热力学计算、示功图、爆震分析、燃烧噪声分析、压力升高率分析、瞬时放热率和累计放热率分析,并得到峰值压力、压力升高率、燃烧重心、燃烧持续期、平均有效压力、爆震强度、爆震峰值、爆震频率、燃烧循环波动、燃烧温度、发动机循环功及功率、点火正时、喷油始点终点、喷射持续期等发动机燃烧特征参数。 ?KiBox燃烧分析仪可用于发动机高瞬态工况燃烧分析,更可以用于车载燃烧分析,获得真实驾驶条件的燃烧分析和优化结果, 如海拔、沙 漠、低温等条件。 ?无需光电编码器,可以将各种车载转角传感器和触发码盘信号转换为精确可靠的曲轴转角信号,并且在高瞬态的发动机工况下利用车载转角信号(e.g. 60-2、60-2-2、60-2-2-2、60-1、36-2、24-1等)获得所需要的 0.1 CA 转角分辨率 ?对于磁电传感器系统基于转速进行角度误差的修正,允许对触发信号进行修正(触发信号标定的需要),实现零相位延迟。 ?智能信号调理模块,自动识别传感器标定数据并导入。 ?提供车辆行驶条件下发动机上止点的确定。 ?同时获得角域和时域数据,并灵活切换。

?强大的参数配置界面,独立的数据显示。具有校验输入信号的诊断功能,自动校验参数设置的有效性。 ?基于每循环燃烧分析的操控性试验,比如扭矩响应。 ?实时的每循环燃烧效率和功率信息,例如,MFB50表示了循环间变化对燃油效率的影响;IMEP 涉及到各缸工作的稳定性及缸间平衡程度。 ?缸内压力的上升率表征了NVH质量的变化。 ?发动机起动质量试验:排放、失火、怠速平稳性。可测试记录发动机启动前30s和发动机停机后30s的数据。特别适合发动机冷启动实验测试。 ?所有缸爆震控制函数的可靠参考——基于每个循环的爆震评价系数、爆震峰值、爆震频率。 ?COV(平均指示有效压力的协方差)表征了发动机燃烧循环变动的程度。 ?燃烧过程优化的目标扭矩和燃烧噪声参考,如滤波重构,传统燃烧方式与HCCI之间的转换。 ?正时分析:多次喷射脉冲的燃油喷射正时分析;点火正时分析。 ?与发动机标定系统高度集成,比如ETAS INCA,只需一台操控电脑并可以集成其它数采子系统,燃烧分析结果与ECU控制变量以及其它测试数据同步显示并储存为同一数据文件。 ?充分降低故障诊断所需时间和成本的额外信息。 ?分析软件模块导航式操作,简单易学。 ?结构紧凑便携、安装快速、操作简便。 五、技术规格 重量:8kg

发动机爆震燃烧的现象分析

发动机特别是在高温状态下和总行程较高时,经 常会突发一种清脆的爆炸声,这就是发动机的爆震燃烧现象。现就使用因素对该现象的成因和防止措施作一分析。 一、发动机的正常燃烧 汽油发动机一般是在气缸外部使燃油与空气混合,进入气缸到压缩终了时已形成大体均匀的混合气,之后依靠电火花强制点火形成火焰中心并向未燃混合气体传播,最后完成燃烧。如果燃烧由定时的电火花点火,首先使火花塞电极间隙内的混合气体形成微小火焰核,同时火焰具有向相邻的混合气以30m~50m/s 的速度连续传播的能力,进而把火焰传遍整个燃烧室,这称为发动机的正常燃烧。 汽油发动机的燃烧过程分为着火延迟期、急燃期、后燃期3个过程。 第一阶段为着火延迟期,指从电火花跳火到点燃混合气形成火焰中心为止的一段时间。 第二阶段为急燃期,指火焰由火焰中心传遍整个燃烧室的阶段。亦称火焰传播阶段。它是汽油机燃烧 的主要时期。 第三阶段为后燃期,指急燃期终点到燃油基本完全燃烧为止期间的燃烧。在后燃期中,主要是火 焰前锋后未及时燃烧的燃油再燃烧,及粘附在气缸壁上的未燃混合气层的继续燃烧。 二、发动机不正常燃烧 汽油发动机在某种条件下,如温度过高、压缩比过高等,发动机的燃烧会出现不正常现象,压力曲线出现了高频大振幅波动,上止点附近的dp/dt 值急剧变动,此时火焰传播速度和火焰形状均发生急剧变化,该现象称为爆燃燃烧。 爆燃产生的机理为电火花点火后,火焰以30m~80m/s 的正常速度向前传播,终燃混合气(指最后燃烧位置上的那部分混合气)因受燃烧气体的压缩和热辐射影响,其压力、温度升高,从而加速了燃烧先期的化学反应并放出热量,使其本身的温度不断升高。如果在正常火焰前锋面尚未到达之前,部分终燃混合气的先期化学反应已经完成,产生了一个或多个新火焰中心,并从这些中心以100m~300m/s(轻微爆燃)直到800m~1000m/s 或更高(强烈爆燃)的速度传播,终燃混合气将被迅速燃烧完毕。因此,发动机爆燃现象就是终燃混合气的自燃现象。 三、爆震燃烧的外部特征及危害 发动机爆震燃烧有较明显的外部特征,具体表现为: 1、发出清脆的金属敲缸声,也即前面所述的爆炸声。

330迈瑞全自动生化分析仪

BS-330迈瑞全自动生化分析仪 型号:BS-330 品牌:深圳迈瑞 原理: 自动生化分析仪将原始手工操作过程中的取样、混匀、 温育(37℃)检测、结果计算、判断、显示和打印 结果及清洗等步骤全部或者部分自动运行。其 原理是运用了光谱技术中吸收光谱法,光电比 色原理来测量体液中某种特定化学成分的仪 器 运用领域: 主要做肝功能,肾功能,心肌酶普,糖类,血 脂,电解质等的临床检测。适合中小型医院, 防疫站、计划生育服务站使用。 公司简介: 迈瑞公司是中国领先的高科技医疗设备研发制造厂 商,同时也是全球医用诊断设备的创新领导者之一。自1991年成立以来,迈瑞公司始终致力于面向临床医疗设备的研发和制造,产品涵盖生命信息与支持、临床检验、数字超声、放射影像四大领域,将性能与价格完美平衡的医疗电子产品带到世界每一角落。迈瑞公司是国内最早研发生产生化分析仪的厂家。 仪器简介: 新一代快速处理能力 . 每小时可完成300个测试,每个样本可同时检测50个项目 . 24小时开机,全天候运行;随时急诊检测 . 待机后再启动过程快,清洗工作极少,适合门、急诊工作特点 全中文即时帮助式操作软件 . 全中文操作软件及中文检验报告 . 涵盖大型生化高端软件分析功能,从此化繁为简,快人一步 . 实时反应全过程监测,并动态显示测试项目的反应曲线 精度高,交叉污染低,消耗低 . 智能化三针自动完成样本和试剂的分注、混匀,自动清洗 . 参数全开放,临床应用更广泛 . 最新后分光设计,实现超微量分析,反应总体积低至180μl,更节省试剂 . 环保型免维护分立式比色杯,避免交叉污染,既保证结果准确又节省运行成本 卖点: 精确速度智能微量

内燃机燃烧放热分析计算及其与燃烧分析仪的嵌入集成知识讲解

1绪论 1.1课题背景及意义 1.2国内外研究现状 1.3本文研究内容 2燃烧分析的数据采集、信号分析的原理与方法2.1燃烧分析数据采集方法 2.1.1示功图的概念及用途 2.1.2气缸压力测量方法 2.1.3压力测量精度的主要影响因素及修正方法2.2气缸压力数据预处理 2.3燃烧放热计算原理 2.3.1燃烧放热计算的假设条件 2.3.2基本微分方程 2.3.3燃烧放热率计算步骤 3燃烧放热计算程序 3.1内燃机燃烧放热计算的需求分析 3.2程序设计平台的选择 3.3程序结构和流程 3.4程序的数据结构及变量说明 3.5输出量 3.6图形化界面 4燃烧放热计算结果分析 4.1实验条件 4.2计算结果 4.3误差分析 4.4敏感参数分析 4.5 MA TLAB与FORTRAN计算结果的对比 5与燃烧分析仪的嵌入集成的研究 5.1硬件系统 5.2 LabView简介 5.3算法与燃烧分析仪的嵌入集成 6结论与展望 6.1全文总结 6.2展望

1.1课题背景及意义 近年来,汽车工业已成为全球最大的制造业,年生产能力已达到6500万辆,全球汽车保有量已达9亿辆。由于内燃机是目前燃烧效率最高的热力发动机,故广泛的应用于国民经济的各个领域和国防部门,它所发出的总功率占全世界所有动力装置总功率的90%,它所排出的有害物质又是环境污染的最大源泉,全世界的汽车交通占温室气体排放的20%,全球机动车数量的高速增长给气候带来了严重的问题。因此为了节约能源和降低污染,各工业发达国家十分重视内燃机气缸内燃烧的研究工作。 为了降低内燃机的排放,必须从缸内工作过程着手,分析污染物产生的原因,内燃机数据采集和分析已成为内燃机生产和性能研究工作中必不可少的一个环节。随着内燃机应用的范围在不断扩大,品种和数量在不断增长,对内燃机中各系统零件的性能、使用寿命等技术指标的要求也愈来愈高。因此,对内燃机的工作过程、燃料及扩大燃料的品种、新型结构的研究以及设计和研制合乎要求的产品并对原有产品的分析改造,以满足各种用途的需要,自然就成为内燃机动力工程技术人员的重要任务。在内燃机试验中,除了要定性地观察一些物理和化学现象以外,更重要地是对运行过程中许多有关地物理量和化学量进行精确地定量的测定,如果没有先进的测量方法和测试设备,包括先进的数据处理方法和相应的设备,也就没有先进的内燃机检测技术。所以,若要设计性能更加优良的内燃机,优化燃烧,提高排放的要求,就需要对内燃机各方面的性能进行深入的研究。影响内燃机各方面性能的因素虽然是多种多样的,但燃烧过程具有举足轻重的地位。内燃机的动力性、经济性及排放特性与燃烧过程有着密切的关系。内燃机燃烧过程与其主要工作特性、功率、效率和排放以及部分的机械和热负荷、噪音、振动等都直接紧密地相耦合,所以要改进和完善内燃机的总体性能和某些局部特性,都必须首先在燃烧过程的改善和优化方面下功夫,对燃烧放热过程的深入分析是对发动机性能研究和改善的有效手段。由于内燃机的燃烧过程所占的时间极短,所处的空间很小,更重要的是内燃机的燃烧反应物是很不均匀的,并且经常是流动和扰动的反应物和燃烧产物处于同一容积。这一切就构成内燃机的燃烧过程是一个十分复杂多变的物理-化学过程。但是现在借助微机系统高性能数据采集卡各种传感器(压力传感器、针阀升程传感器、滤波器和电荷放大器等)就能够将大量的燃烧过程物理信息测量记录处理与显示。从这些信息和图形可以比较可靠地分析研究内燃机燃烧过程的完善程度,为进一步改善燃烧过程提供了科学的依据。 气缸压力分析是分析发动机燃烧状况的重要方法。气缸压力携带了内燃机工作过程的大量有用信息,并且与内燃机工作过程的评价参数和性能指标有着密切的关系。各缸的工作参数、排放指标、性能指标等的差异都全部或部分地反映在气缸压力上。在内燃机的状态监测和故障诊断中,气缸压力是表征内燃机运行状态的最好指标之一,内燃机的工作状态及故障大都可以通过气缸压力随时间(或曲轴转角)的变化曲线反映出来。因此采集气缸内压力并对其进行统计或热力学分析是内燃机产品设计、改进或研究的重要方法。内燃机气缸气体压力曲线(示功图)是深入研究内燃机工作过程及动力性能指标的重要内容。通过对示功图分析可得出工作过程的最高燃烧压力和其所在的曲轴转角位置等重要参数。示功图既是内燃机性能参数计算和放热规律分析的依据,又是内燃机燃烧过程数学模拟精确程度的评价标准。利用实测示功图,可以计算内燃机的燃烧放热规律,对实际内燃机的燃烧过程进行分析,可以研究内燃机的循环变动。并且,可以借助示功图进行内燃机最佳状态调整及故障诊断,故国内外对其研究较多。因此,内燃机数据采集与燃烧分析技术得到了迅速的发展。 1.2国内外研究现状 现在,国内外己研究出许多发动机数据采集和分析用的仪器设备,并随着微电子技术和

全自动生化分析仪 产品技术要求mairui(1)

1 1. 产品型号/规格及其划分说明 2. 性能指标 2.1 主要性能指标 2.1.1 杂散光 吸光度应不小于 4.9A ; 2.1.2 吸光度线性范围 相对偏倚在± 5%范围内的最大吸光度应不小于 3.5A ; 2.1.3 吸光度准确度 吸光度准确度应满足表 1 的要求。 表 1 吸光度准确度 2.1.4 吸光度的稳定性 吸光度变化应不大于 0.01A 。 2.1.5 吸光度的重复性 用变异系数(CV 值)表示,应不大于 1.0%。 2.1.6 反应杯温度准确度和波动度 温度值在 37℃的±0.3℃内,波动度不大于±0.1℃。 2.1.7 样品携带污染率 样品携带污染率应不大于 0.05%。 2.1.8 加样准确度与重复性 加样准确度和重复性应满足表 2 的要求,其中加样重复性用变异系数表示。

表 2 加样准确度和重复性 2

2.1.9电解质分析模块携带污染率 电解质分析模块的携带污染率应满足表 3 的要求。 2.1.10电解质分析模块稳定性 电解质分析模块的稳定性应满足表 3 的要求。 2.1.11电解质分析模块准确度 电解质分析模块准确度应满足表 3 的要求。 2.1.12电解质分析模块精密度 电解质分析模块的精密度应满足表 3 的要求。 2.1.13电解质分析模块线性 电解质分析模块的线性应满足表 3 的要求。 表 3 电解质分析模块性能要求 2.1.14临床项目的批内精密度 变异系数(CV)应满足表 4 的要求。 表 4 临床项目批内精密度要求 3

2.2功能 2.2.1样本管理 具有常规/急诊样本申请,批量样本申请、测试结果查询、编辑、打印、传输,手工结果编辑与查看功能,具有快捷急诊、样本预稀释和自动稀释功能,具有测试结果追溯功能,具有批量结果审核、异常结果提醒功能。 2.2.2校准管理 具有校准申请,空白校准、校准参数查询和打印,校准曲线观察和打印,校准参数重新计算功能,具有校准效期管理,校准稀释、自动校准和分批校准功能,具有查看校准趋势和校准追溯功能。 2.2.3质控管理 具有质控申请,实时质控、日内质控、日间质控的质控数据与质控图观察和打印、失控说明功能,支持计算项目质控和自动质控功能。 2.2.4试剂管理 具有试剂设置,支持同一项目放置多瓶试剂,支持试剂余量检测和刷新,试剂空 白观察和打印功能,试剂空白报警,试剂效期管理功能。 2.2.5测试管理 具有开始测试、加样暂停、紧急停止功能;具有反应杯自动清洗功能、液面检测功能、清洗剂和去离子水预加热功能、杯空白自检报警功能;具有样本针/试剂针立体防撞、空吸检测功能、随量跟踪功能;具有样本针堵针检测功能;按样本排序的优化测试流程功能、测试过程中自动按避免交叉污染安排测试流程功能;如果选配了条形码模块应具有扫描样本、扫描试剂功能;具有自动重测功能、智能关联检测;具有反应过程曲线异常提醒功能和高值异常预警功能。具有在线试剂装载功能。具有变频搅拌功能。 2.2.6状态管理 4

发动机自动熄火的诊断分析毕业论文

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 摘要 汽车是当代必不可少的一种交能工具,汽车的发动机是汽车的核心元件。随着社会的发展趋势汽车在全球的数量将越来越多,但现实的世界储存燃料已经越来越少,有科学家推算世界燃料只能用20年。那么20年后我们用什么来维持呢?没有了汽车这个交通工具世界经济将会是怎么样的一个现像,可想而知。那么我们就要研究出更能节省能源,也能适用新能源的汽车。只有这样才能让我们的经济保持并发展。 另一方面随着社会的发展经济的强大,汽车将要普及每家每户,中国的汽车产量已排名世界第三位就是最好的一个证明。那么我们需要人们懂得这些道理,假若发动机出现了问题也能自行解决。为我们提供为便,也能节省那么的时间和能源。在汽车技术日新月异的今天,电脑控制技术已经应用到车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更大的挑战。汽车维修已从以前的那种修理工最好当,怎么拆装怎么装的状况转变成一个技术含量高、难度大的工种。现代的修理技术的特征表现为“七分诊断,三分维修”。发动机的故障的具体方法是多种多样的,关键是如何找出规律,积累经验,把感性认识上升到理性认识,再用理性认识指导维修实践。 【关键词】发动机的原理和构造发动机故障现象诊断与分析自动熄火

目录 第一章绪论.............................................................................. 错误!未定义书签。 1.1 研究课题的目的与意义.............................................. 错误!未定义书签。第二章发动机的原理和构造............................................................... 错误!未定义书签。 2.1 发动机的原理和构造...................... 错误!未定义书签。 2.1.1 曲柄连杆机构....................... 错误!未定义书签。 2.1.2 配气机构........................... 错误!未定义书签。 2.1.3 燃料供给系统....................... 错误!未定义书签。 2.1.4 润滑系统........................... 错误!未定义书签。 2.1.5 冷却系统 (4) 2.1.6 点火系统........................... 错误!未定义书签。 2.1.7 起动系统........................... 错误!未定义书签。第三章常见的故障原因.................................................................... 错误!未定义书签。 3.1 真空进气管.............................. 错误!未定义书签。 3.2 废气再循环装置的检查.................... 错误!未定义书签。 3.3 空气流量计的检测........................ 错误!未定义书签。 3.4 氧传感器的检测.......................... 错误!未定义书签。 3.5 冷却水温度传感器的检测 (10) 3.6 故障诊断的一般步骤...................... 错误!未定义书签。 3.7 故障诊断相关要点........................ 错误!未定义书签。 3.8 检验方法................................ 错误!未定义书签。第四章故障实例............................................................................ 错误!未定义书签。

点燃式发动机汽车排气污染物排放限值及测量方法

点燃式发动机汽车排气污染物排放限值及测量方法 GB18285-2005 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,控制汽车污染物排放,改善环境空气质量,制定本标准。 本标准是对GBl4761.5-93《汽油车怠速污染物排放标准》和GB/T3845-93《汽油车排气污染物的测量怠速法》的修订与合并。本标准规定了点燃式发动机汽车怠速和高怠速工况排气污染物排放限值及测量方法,同时规定了稳态工况法、瞬态工况法和简易瞬态工况法等三种简易工况测量方法。本次修订增加了高怠速工况排放限值和对过量空气系数(λ)的要求。 按照有关法律规定,本标准具有强制执行的效力。 本标准由国家环境保护总局科技标准司提出。 本标准起草单位:中国环境科学研究院、交通部公路科学研究所 本标准国家环境保护总局2005年5月30日批准。 本标准自2005年7月1日起实施,《汽油车怠速污染物排放标准》(GBl4761.5-93)、《汽油车排气污染物的测量怠速法》(GB/T3845-93)和《在用汽车排气污染物排放限值及测量方法》(GB18285-2000)同时废止。 本标准由国家环境保护总局解释。 1 范围 本标准规定了点燃式发动机汽车怠速和高怠速工况下排气污染物排放限值及测量方法。本标准也规定了点燃式发动机轻型汽车稳态工况法、瞬态工况法和简易瞬态工况法三种简易工况测量方法。 本标准适用于装用点燃式发动机的新生产和在用汽车。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB l4762-2002 车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测 量方法 GB 18352.1-2001 轻型汽车污染物排放限值及测量方法(Ⅰ) GB l8352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ) GB 17930-1999 车用无铅汽油 GB/T15089-2001 机动车辆及挂车分类 GB 5181-2001 汽车排放术语和定义 GB l8047 车用压缩天然气 GB l9159 车用液化石油气 HJ/T3-1993 汽油机动车怠速排气监测仪技术条件 3 术语和定义

发动机排放测试系统【关于发动机测试系统排放物成分分析延迟的讨论】

发动机排放测试系统【关于发动机测试系统排放物成分分析 延迟的讨论】 随着发动机排放测试技术的发展,高动态测试系统已经成为发动机排放检测过程中必不可少的设备。如何才能充分利用现有设备的高动态性能,达到排放结果实时监控,是目前排放测试技术中亟需解决的问题。 目前标准法规规定的定容稀释取样系统(CVS)及废气分析仪器,可以连续对发动机排气进行分析。但由于取样系统非常复杂,排放气体流经的管路较长,所以动态测试过程会有较大的响应延迟。 为了进一步完善检测认证能力,本文通过一定的试验研究,具体分析了建立排放物测试系统延迟的原因及组成,便于制定正确的试验方案,从而满足动态排放测试需求。 发动机排放污染物测试系统

发动机排放污染物测试系统一般包含三部分:发动机运行台架、发动机排气取样系统及排放成分分析系统。而排放物测试系统延迟主要是由取样系统决定的。为了使发动机的排放测试工况更接近实际使用工况,除了直接取样系统之外,稀释取样系统也越来越多的被使用。稀释系统可分为全流稀释系统和部分流稀释系统两种。气体污染物的取样必须采用全流稀释系统,而颗粒物的取样既可以采用全流稀释系统也可以采用部分流稀释系统。 测试方案及测试系统 为了能直观的得出取样系统对于延迟的影响,这里采用稀释取样和直接取样两套试验方案。 因为在试验中对直接取样系统结构进行了改造,因此这里着重描述直接取样系统(见图1)。该试验系统布置了两个直接取样点,即在原来直接取样点2的基础上,在靠近发动机处又增加了一个取样点1。本文通过对比试验,研究取样位置对测试系统动态响应特性的影响。

图1 直接取样系统结构图 试验设计 根据具体情况,可将发动机动态工况简化为两种情况:一是转速或负荷线性变化工况,即保持发动机负荷不变,发动机转速发生线性增减;或保持发动机转速不变,负荷发生线性增减。二是阶跃工况,即保持发动机转速不变,发动机负荷产生一个明显的阶跃;或保持发动机负荷不变,发动机转速产生一个明显的阶跃。 1.转速或负荷线性变化工况 发动机转速不变,负荷线性变化(见表1)。

全自动生化分析仪产品技术要求mairui10

2.2. 1主要性能指标 2. 1. 1杂散光 BS-180/BS-190:吸光度应不小于5。 BS-230/BS-240:吸光度应不小于5. 6。 2. 1. 2吸光度线性范围 BS-180/BS-190:相对偏倚在±5%范围内的最大吸光度应不小于3.5 。 BS-230/BS-240:相对偏倚在±5%范围内的最大吸光度应不小于4。 2. 1. 3吸光度准确度 吸光度准确度应满足表1的要求。 2.1.4吸光度的稳定性 吸光度变化应不大于O.Olo 2. 1.5吸光度的重复性 用变异系数(CV 值)表示,应不大于1%。 2. 1.6反应杯温度准确度和波动度 温度为37°C,温度准确度为±0.3°C,波动度为±0. 1°C 。

2. 1. 7样品携带污染率 BS-180/BS-190:样品携带污染率应不大于0. 1%O BS-230/BS-240:样品携带污染率应不大于0. 05%。 2. 1. 8加样准确度与重复性 加样准确度和重复性应满足表2的要求。

2. 1. 9电解质分析模块携带污染率 电解质分析模块的携带污染率应满足表3的要求。 2. 1. 10电解质分析模块稳定性 电解质分析模块的稳定性应满足表3的要求。 2.1.11电解质分析模块准确度 电解质分析模块准确度应满足表3的要求。 2. 1. 12电解质分析模块精密度 电解质分析模块的精密度应满足表3的要求。 2. 1. 13电解质分析模块线性 电解质分析模块的线性应满足表3的要求。

2.1.14临床项目的批内精密度变异系数(CV)应满足表4的要求。 2. 2功能 2.2.1样本管理 应具有常规/急诊样本申请,测试结果查询、编辑、打印,手工结果编辑与査看功能。 2.2.2定标管理 应具有定标/试剂空白申请,定标结果查询和打印,定标曲线观察和打印,定标参数重新计算,试剂空白结果观察和打印功能。 2.2.3质控管理 应具有质控申请,实时质控、日内质控、日间质控的质控数据与质控图观察和打印功能。 2.2.4试剂管理 应具有试剂设置,试剂余量检测与观察功能。 2.2.5测试管理 应具有开始测试,加样暂停,插入急诊,紧急停止,换杯功能,测试过程中应能 自动按交叉污染安排测试流程功能O

发动机燃烧质量分析(1)

发动机燃烧质量分析 发动机的工作原理:下图为一单缸发动机示意图 与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施 一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为: 式中: U —火焰传播速度; T A —火焰前锋面积; T ρT—未燃混合气密度。 要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。 (一)火焰传播速度U T 火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。 “有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T 燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。

(三)可燃混合气密度ρT 增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。 二、混合气成分 改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混合气浓度的改变对发动机的动力性、燃油经济性及爆燃倾向有很大影响,因此,分析混合气成分对燃烧过程的影响是非常重要的。 燃料能否及时燃烧,取决于火焰传播速度。影响火焰传播速度的主要因素是混合气成分,火焰传播速度随过量空气系数的变化如图5-9所示。

全自动生化分析仪

全自动生化分析仪 全自动生化分析仪 全自动生化分析仪是根据光电比色原理来测量体液中某种特定化学成分的仪器。由于其测量速度快、准确性高、消耗试剂量小,现已在各级医院、防疫站、计划生育服务站得到广泛使用。配合使用可大大提高常规生化检验的效率及收益。

生化仪简介 全自动生化分析仪(简称ACA): 定义 生化分析仪:用于检测、分析生命化学物质的仪器,给临床上对疾病的诊断、治疗和预后及健康状态提供信息依据。 光学系统:是ACA的关键部分。老式的ACA系统采用卤钨灯、透镜、滤色片、光电池组件。新式ACA系统光学部分有很大的改进,ACA的分光系统因其光位置不同有前分光和后分光之分,目前,先进的光学组件在光源与比色杯之间使用了一组透镜,将原始光源灯投射出的光通过比色杯将光束变成光速(这与传统的契型光束不同),这样,即使比色杯再小,点光束也能通过。与传统方法相比,能节约试剂消耗40-60%。点光束通过比色杯后,在经这一组还原透镜(广差纠正系统),将点光束还原成原始光束,在经光栅分成固定的若干种波长(约10种以上波长)。采用光/数码信号直接转换技术即将光路中的光信号直接变成数码信号。将电磁波对信号的干扰及信号传递过程中的衰减完全消除。同时,在信号传输过程中采用光导纤维,使信号达到无衰减,测试精度提高近100倍。光路系统的封闭组合,又使得光路无需任何保养,且分光准确、寿命长。 恒温系统:由于生物化学反应时温度对反应结果影响很大,故恒温系统的灵敏度、准确度直接影响测量结果。早期的生化仪器采用空气浴的方

法,后来发展到集干式空气浴与水浴优点于一身的恒温液循环间接加温干式浴。其原理是在比色杯周围设计一恒温槽,在槽内加入一种无味、无污染、不蒸发、不变质的稳定恒温液,恒温液的容量大,热稳定性好、均匀。在比色杯不直接接触恒温液,克服了水浴式恒温易受污染和空气浴不均匀、不稳定的特点。 样品反应搅拌技术和探针技术:传统的反应搅拌技术采用磁珠式和涡旋搅拌式两种。现在流行的搅拌技术是模仿手工清洗过程的多组搅拌棒组成的搅拌单元,当第一组搅拌棒在搅拌样品/试剂或混合溶液时,第二组搅拌棒同时进行高速高效的清洗,第三组搅拌棒也同时进行温水清洗和风干过程。在单个搅拌棒的设计上,采用新型螺旋型高速旋转搅拌,旋转方向与螺旋方向相反,从而增加了搅拌的力度,被搅拌液不起泡,减少微泡对光的散射。试剂及样品探针依照早期电容式传感的原理,但略加改进,增加了血凝块和蛋白质凝块的报警,依照报警级别的重测结果,减少吸样误差,提高测试结果的可靠性。大型生化仪器每小时检测数多在1000个以上,因此自动重测相当重要,测试结果的主观评价和手工重测已不能满足临床的需要。 其他方面:试剂、样品的条形码识别和计算机登录,早期生化仪器由于缺乏条码识别功能,出现错误机会较多。近几年无论进口、国产生化仪器均采用条码检测,这项技术在生化仪器上的使用给高速ACA的研制提供了技术支持,也使得仪器相当支持。软件的开发简单易行,因此,条码检测是仪器智能化的基础。开放式试剂,作为医院选择机型的一项重要因素,仪器是否支持开放式试剂非常重要。试剂开放后,医院、科研单位可自主选择试剂供应商,在衡量价格、低度器结果的可靠性、试剂有效期等方面有了较大的自由度。离子选择电极分析附件(ISE)、人体血清和尿液电解质指标相当重要,ACA系统附带ISE后,医院可节省费用。 生化仪检验的原理 目前临床生化检验基本上都实现了自动化分析。自动化分析仪就是将原始手工操作过程中的取样、混匀、温育(37℃)检测、结果计算、判断、显示和打印结果及清洗等步骤全部或者部分自动运行。

全自动生化分析仪投放合作合同协议书范本

编号:_____________全自动生化分析仪投放合作合同 甲方:___________________________ 乙方:___________________________ 签订日期:_______年______月______日

甲方(设备提供方): 乙方(设备使用方): 甲乙双方经友好协商,就以下医疗设备(以下简称"设备")的投放合作事宜达成如下协议: 1、投放设备型号、名称: 2、投放设备数量:台 3、设备价值(含配件)合计:万元人民币 4、双方合作期限:年月日起至年月日止。 5、投放方法:甲方出全资购买全新含配套设施供乙方使用。在合作期限内,设备所有权归甲方,合作期满设备所有权归乙方。甲方负责进行设备使用培训及保修服务,维修时间在24小时到位(费用由甲方负责)。乙方方负责配备专门的设备使用操作人员,并对设备的安全性和有效性负责,并且要保证设备的正常使用。设备所使用的耗材有甲方负责提供,耗材、试剂价格按照湖南省物价局公开招标价格为准。甲方不得擅自提高设备所需耗材、试剂价格,乙方也不得从其他渠道购进设备所需耗材、试剂。 6、乙方全体员工有义务积极配合支持宣传全自动生化仪的工作,维护医院和合作商的共同利益。不得妨碍生化仪检测工作的正常开展。 7、甲方不对乙方在经营活动中因误诊等造成的安全事故负责,乙方责任对设备进行保管,如遗失或人为损坏,乙方必须按仪器约定价值进行赔偿。在合作期内,如该仪器不能再使用影响乙方业务开展,甲方应无条件更换一台同等或更高级生化仪一台。

8、结算方法:乙方在该设备的使用过程中,所用耗材、试剂费用实行按季结算。乙方如数将采购甲方耗材、试剂的款项支付给甲方,不得拖欠。 9、在执行本协议的过程中,如出现不尽事宜,双方友好协商解决。 10、本协议一式四份,甲方一份,乙方三份。 11、本协议自双方签字之日起生效。 甲方:(盖章)乙方:(盖章) 代表人:(签字)代表人:(签字) 联系电话:联系电话: 日期:日期:

发动机燃烧质量分析(1)上课讲义

发动机燃烧质量分析 (1)

发动机燃烧质量分析 发动机的工作原理:下图为一单缸发动机示意图 与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施 一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为: 式中: U —火焰传播速度; T A —火焰前锋面积; T ρ —未燃混合气密度。 T 要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。 (一)火焰传播速度U T 火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。 “有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T 燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。 (三)可燃混合气密度ρT 增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。 二、混合气成分 改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混

全自动生化分析仪工作原理(1)

一、基本结构 (一)按照反应装置的结构,自动生化分析仪主要分为流动式(Flow system)、分立式(Discrete system)两大类。 1.流动式指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。 2.分立式指各待测样品与试剂混合后的化学反应都是在各自的反应杯中完成。其中有几类分支。 (1)典型分立式自动生化分析仪。此型仪器应用最广。 (2)离心式自动生化分析仪,每个待测样品都是在离心力的作用下,在各自的反应槽内与试剂混合,完成化学反应并测定。由于混合,反应和检测几乎同时完成,它的分析效率较高。 3.袋式自动生化分析仪是以试剂袋来代替反应杯和比色杯,每个待测样品在各自的试剂袋内反应并测定。 4.固相试剂自定生化分析仪(亦称干化学式自动分析仪) 是将试剂固相于胶片或滤纸片等载体上,每个待测样品滴加在相应试纸条上进行反应及测定。操作快捷、便于携带是它的优点。 (二)典型分立式自动生化分析仪基本结构 1.样品(Sample)系统 样品包括校准品、质控品和病人样品。系统一般由样品装载、输送和分配等装置组成。 样品装载和输送装置常见的类型有: (1)样品盘(Sample disk),即放置样品的转盘有单圈或内外多圈,单独安置或与试剂转盘或反应转盘相套合,运行中与样品分配臂配合转动。有的采用更换式样品盘,分工作和待命区,其中放置多个弧形样品架(Sector)作转载台,仪器在测定中自动放置更换,均对样品盘上放置的样品杯或试管的高度、直径和深度有一定要求,有的需专用样品杯,有的可直接用采血试管。样品盘的装载数,以及校准品、质控品、常规样品和急诊样品的装载数,一般都是固定的。这些应根据工作需要选择。 (2)传动带式或轨道式进样即试管架(Rack)不连续,常为10个一架,靠步进马达驱动传送带,将试管架依次前移,再单架逐管横移至固定位置,由样品分配臂采样。 (3)链式进样试管固定排列在循环的传动链条上,水平移动到采样位置,有的仪器随后可清洗试管。 分配加样装置大都由注射器、步进马达或传动泵、加样臂和样品探针等组成,①注射器(syrine unit)。根据注射器直径和活塞移动距离的多少,定量吸取样品或试剂。它的精度决定加样的

相关主题
文本预览
相关文档 最新文档