当前位置:文档之家› 必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题
必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.

一、作差构造法

1.直接作差构造

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

高中数学含参导数问题

由参数引起的案—— 含参导数问题 一、已知两个函数k x x x f -+=168)(2 ,x x x x g 452)(2 3 ++=,按以下条件求k 的范围。 (1)对于任意的]3,3[-∈x ,都有)()(x g x f ≤成立。 (构造新函数,恒成立问题) (2)若存在成立。,使得)()(]3,3[000x g x f x ≤-∈ (与恒成立问题区别看待) (3)若对于任意的).()(]3,3[2121x g x f x x ≤-∈,都有、 (注意21,x x 可以不是同一个x ) (4)对于任意的)()(],3,3[]3,3[1001x f x g x x =-∈-∈使得,总存在。 (注意:哪个函数的值域含于哪个函数的值域取决于:谁的x 是任意取的,谁的x 是总存在的。) (5)若对于任意0x []3,3∈-,总存在相应的[]12,3,3x x ∈-,使得102()()()g x f x g x ≤≤成立; (与(4)相同) 二、已知函数()2 1ln (1)2 f x a x x a x =+-+, a R ∈ (1)函数f (x )在区间(2,﹢∞)上单调递增,则实数a 的取值范围是 ,

(2)函数f (x )在区间(2,3)上单调,则实数a 的取值范围是 . 三、设函数3()3f x x ax =- (a R ∈),若对于任意的[]1,1-∈x 都有()1f x ≤成立,求实数a 的取值范围. 四、含参数导数问题的三个基本讨论点 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根 是否落在定义域内,从而引起讨论。 三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落 在定义域内,但不知这些实根的大小关系,从而引起讨论。 例1、设函数3221 ()23()3 f x x ax a x a a R =-+-+∈.求函数)(x f 的单调区间和极值; (可因式分解,比较两根大小,注意别丢两根相等情况) 解: 2 2 ()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间, 函数的极大值是(3)f a a =;函数的极小值是3 4()3 f a a a =- ;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>, 因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间 函数的极大值是3 4()3 f a a a =- ,函数的极小值是(3)f a a = ………………10分 例1变式.若2 '()(1)f x x a x a =-++,若(0,)x ∈+∞,讨论()f x 的单调性。(比较根大小,考虑定义域)

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

构造函数利用导数解决函数问题

构造函数利用导数解决函数问题

构造函数解决不等式问题 例:[2011·辽宁卷]函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2, 则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞)C .(-∞,-1) D .(-∞,+∞) 【解析】构造函数G (x )=f (x )-2x -4,所以G ′(x )=f ′(x )-2,由于对任意x ∈R ,f ’(x )>2, 所以G ′(x )=f ′(x )-2>0恒成立,所以G (x )=f (x )-2x -4是R 上的增函数, 又由于G (-1)=f (-1)-2×(-1)-4=0,所以G (x )=f (x )-2x -4>0, 即f (x )>2x +4的解集为(-1,+∞),故选B. 训练: 1.已知函数()y f x =的图象关于y 轴对称,且当 (,0),()'()0 x f x xf x ∈-∞+<成 立0.2 0.22 (2) a f =g ,log 3(log 3) b f π π=g ,3 3log 9(log 9) c f =g ,则a,b,c 的大小关系是 ( ) A. b a c >> B.c a b >> C.c b a >> D.a c b >> 解: 因为函数()y f x =关于y 轴对称,所以函数()y xf x =为 奇函数.因为 [()]'()'() xf x f x xf x =+,所以当 (,0) x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数 () y xf x =单调递减,当 (0,) x ∈+∞时,函数() y xf x =单调递减.因为 0.2122 <<,0131og π <<,3192 og =,所以0.23013219 og og π <<<,所以

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

导数复习专题(含参问题汇总)

高二理数期中专题复习卷----导数专题(二) 【知识点5:含参数的单调性问题】 1.若3 2 ()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值围是( ) A .12a -<< B .2a >或1a <- C .2a ≥或1a ≤- D .12a a ><-或 2.已知函数3 2 ()1f x x ax x =-+--在(),-∞+∞上单调递减,则实数a 的取值围是( ) A.( ),33,?-∞-+∞ ? U B.3,3?- ? C.(),33,-∞-+∞ U D.(3,3 3.若函数2 ()2ln f x x x =-在定义域的一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值围是 . 4.已知函数2 ()ln (2)f x x ax a x =-+-,讨论()f x 的单调性. 5.设函数1 ()(2)ln 2.f x a x ax x =-+ + (1)当0a =时,求()f x 的极值; (2)设1 ()()g x f x x =-在[)1,+∞上单调递增,求a 的取值围; (3)当0a ≠时,求()f x 的单调区间. 【知识点6:含参数的零点个数问题】 1.设a 为实数, 函数3 ()3f x x x a =-++ (1)求()f x 的极值; (2)若方程()0f x =有3个实数根,求a 的取值围; (3)若()0f x =恰有两个实数根,求a 的值. 2.已知函数32 11(),,32 a f x x x ax a x R -= +--∈其中0a >. (1)求函数()f x 的单调区间; (2)若函数()f x 在区间(2,0)-恰有两个零点,求a 的取值围. 3.已知函数()1x a f x x e =-+ (,a R e ∈为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴, 求a 的值. (2)求函数()f x 的极值; (3)当1a =时,,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

(完整word版)2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题

构造函数解决高考导数问题 1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.(2017·天津文)(本小题满分14分) 设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间; (Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0; (ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2 . ①求方程f (x )=2的根; ②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题 一、问题的提出 应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。其中,学生用导数求单调区间最困难的是对参数分类讨论。尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类 二、课堂简介 请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。 例1、 求函数R a a x x x f ∈-= ),()(的单调区间。 解:定义域为),0[+∞ ,23)('x a x x f -=令,0)('=x f 得,3 a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增; (2) 0>a ,令0)('>x f 得∴> 3a x )(x f 在)3,0[a 上单调递减,在),3 [+∞a 上单调递增。 所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3 ,0[a 上单调递减,在),3 [+∞a 上单调递增。 分类讨论特点:一次型,根3 a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。 解:定义域R ),1)](1([1)('2---=-+-=x a x a ax x x f 令,0)('=x f 得1,121=-=x a x (1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。 (2) 21 1==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。 (3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。 所以,当2>a 时,)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调

导数讨论含参单调性习题(含详细讲解答案解析)

精品 1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域内不单调,求的取值范围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域内为单调函数,求的取值范围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值范围上恒成立,求的取值范围; 感谢下载载

word 格式整理版 范文范例 学习指导 (3)讨论关于的方程的根的个数. 6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ??∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12 x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,求实数a 的取值范围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

导数讨论含参单调性习题(含详细讲解问题详解)

1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域不单调,求的取值围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域为单调函数,求的取值围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值围上恒成立,求的取值围;

6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,数a 的取值围; (2)若21,a e ??∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,数m 的取值围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12 x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,数a 的取值围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值围。

2021届高三理科数学二轮复习专练:构造函数解决导数问题(含解析)

《构造函数解决导数问题》专练 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则 ()24f x x >+的解集为( ). A .R B .(),1-∞- C .()1,1- D .()1,-+∞ 2.设函数()f x 是定义在()0-∞, 上的可导函数,其导函数为()'f x ,且有22()()f x x f x x '+?>,则不等式2(2021)(2021)4(2)0x f x f +?+-?->的解集为 ( ) A .(2023)-∞-, B .()2-∞-, C .(20)-, D .(20220)-, 3.设()f x 是定义在(,0) (0,)ππ-的奇函数,其导函数为()'f x ,当(0,)x π∈时, ()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6 f x f x π <的解集为 ( ) A .(,0)(0,)66 π π - ? B .(,0)(,)66 π π π- C .(,)(,)66 π π ππ-- ? D .()(0,)66 π π π-- , 4.定义在R 上的函数()f x 的导函数为()'f x ,若()()f x f x '>,(2)1008f =,则不等式2 1 e ( 1) 1008e 0x f x ++->的解集为( ) A .(1,)-+∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞ 5.已知()f x 是定义在()(),00,-∞?+∞上的奇函数,且0x >时 ()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( ) A .() (),11,-∞-+∞ B .()()1,00,1- C .()()1,01,-?+∞ D .()(),10,1-∞-? 6.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<, ()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集 为( )

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

导数运算中构造函数解决抽象函数问题

. 导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 xx)](x'(x)?fx[ef()]'?e[f0f'(x)?f(x)? 1)构造()(x'(x)?f)?0[xf(x)]'?xfxf'(x)?f(x 2()构造n?1nn?1n[xf'(x)?(xx)]'?xf'(x)?nx)?xnf(x)]fx[f(0nf(x)?xf'(x)?)构造3(x(注意对的符号进行讨论)关系式为“减”型xx f'(x)?f(x?f(x)e)f(x)f'(x)e?[]'?0(x)?f'(x)?f(1)构造 xx2x ee(e)f(x)xf'(x)?f(x)]'?[0?f(x)xf'(x)?构造(2) 2xx nn?1f(x)xf'(x)?nff(x)x(f'(x)?nxx)?[]'?0x)?'(x)?nf(xf 3)构造 (n2nn?1xx(x)x的符号进行讨论)(注意对小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: f(x)、g(x)f'(x)g(x)?f(x)g'(x)?0g(?3)?0R,求不是,例1.设上的可导函数,f(x)g(x)?0的解集等式 f(x)、g(x)x?0R时,函数当变式:设,上的奇函数、偶分别是定义在 f'(x)g(x)?f(x)g'(x)?0g(?3)?0f(x)g(x)?0的解集. ,求不等式, f(x)2.例R)x(x)、g(f x满足已知定义在上的函数a?f'(x)g(x)?f(x)g'(x),,且 g(x)??5(f(1)f?1)31)nf(*??nn(n?N). 的前项和等于,则等于若有穷数列,?? 2?(1)gg(1)32g(n)??f(x)x a?f'(x)g(x)?f(x)g'(x)f(x)、g(x)R满足上的函数,,且变式:已知定义在)g(xf(1)f(?1)5??logx?1x的解集. 若若,求关于的不等式a g(1)g(?1)2 1 / 2 . )(xf3.例R0?x)f'(x)f(x时,的奇函数的导函数为,已知定义域为当0??)f'(x, x111)ln2?lnf(f(?2)c,f(),b?a??2c,,ba,则关于若的大小关系是222 4.例RR?x?x)f'(x)f()(xf上的可导奇函数,且已知函数对于任意恒成为定义在)xf(f(3)=e,则/e^x<1的解集为立,且 1?f(2))xf((1))f(0)?1f(f'(x)??fx R. ,求是,变式:设上的可导函数,且的值. 2e2x2f(x?'(x))?xf)xf()xf'(R上的导函数为,例5.设函数在,且)xf(1?f(1)?xf'(x)2f'(x)f(x)0x?,若存在,且时,,当的导函数为变式:已知2?x)?f(xRx?x. ,使,求的值: 巩固练习??????''x31xff?x2?f)xf(R的不,且,则关于定义在1.满足上的函数,其导函数??1xx??f.等式的解集为▲//)(xy?f)(x)?ff(x)f(x R,且2.已知定义在 的导函数为上的可导函数,满足x1?1)f(2)y?f(x?ex()?f为偶函数,▲,则不等式的解集为 ????0?xx)g)))f(x)g(xf(f)(xg((xI上恒成立,的导函数,若3.设分别是和在区间和 132))g(xf(xax??2xf(x)?2bxx)?xg(I在若函数在区间和与则称上单调性相反.3(a,b)b?a0a?的最

相关主题
文本预览
相关文档 最新文档