当前位置:文档之家› 论文综述材料

论文综述材料

论文综述材料
论文综述材料

意识到咖啡因在易损的人类卵细胞中起到了稳定关键性分子的重要作用后

胚胎干细胞是人体内能够转换成任何细胞的基础细胞。至今为止,获得胚胎干细胞的最佳地点就是人体的胚胎。但日前,科学家们采用克隆技术,在实验室培育出了人类的干细胞。

因为科学家现在可以不使用胚胎,转而使用成年人的皮肤细胞来培育同胚胎细胞非常类似的干细胞。这种细胞名为诱导性多功能干细胞,可以避免胚胎干细胞带来的伦理问题。胚胎干细胞通常是通过毁掉胚胎得到的。

干细胞是起源细胞,是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。干细胞是一种未充分分化、尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称其为“万用细胞”。

该科研小组指出,他们的出发点是为不治之症寻找治疗方法。“我们的发现为部分组织和器官功能失调或受损的病人提供了新的生成干细胞的方法。这种干细胞可以再生并替代那些受损的细胞和组织,帮助数百万病人减轻痛苦。虽然要研发安全有效的干细胞治疗方法仍需科研人员付出很多努力,但是我们相信,新的成果是朝着可能用于再生医药的细胞的研发迈进的重要一步,”该小组的领导者舒克拉特·米塔利波夫博士说。

有专家推测,这项成果未来可能帮助客户定制干细胞,以帮助治疗多种疾病,例如,新的神经细胞可能缓解脊髓损伤带来的疼痛,新的心脏细胞可能治疗心脏病,老年痴呆症和多发性硬化等疑难杂症也有望得到根治。

从长远看,该技术有多重要是一个开放性的问题。自从首次尝试人类克隆,研究人员发现,他们可以通过将成年细胞“重新编程”为诱导多能干细胞(iPS细胞),以制作针对病

患的干细胞。科学家在2007年将该技术用于人体细胞,去除人类卵子以及不涉及胚胎两大因素使SCNT极具争议性并且价格昂贵。不过一些实验表明,至少在老鼠身上,来自克隆胚胎的ES细胞的质量要好于iPS细胞。

研究人员并不只是试图达到克隆科学的一座里程碑。相反,他们正在寻找一种更好的方法以培养新鲜的人体组织,并将其用于治疗严重伤害或疾病。

加了咖啡因的克隆:科学家无法从克隆的人类胚胎中得到干细胞,直到他们在一些关键时间点上给易损的人类卵细胞添加了起稳定作用的咖啡因。

科学家使用吸液管移除了人类卵细胞中的细胞核,这是制造个性化胚胎干细胞的第一步。

终于通过使用与1996年制造克隆羊多利相同的技术

接受了由9名23岁至31岁女性提供的100多个未受精的卵细胞。他们先将这些卵细胞去除DNA,植入了他人皮肤细胞的细胞核,经过电流刺激,有21个卵细胞发育到了被称为

囊胚的阶段,再取该组织的一部分进行培养,其中6个成为了胚胎干细胞。促使这些胚胎干细胞分化成心肌后,研究小组还确认了脉动。

据报道,在成功培育的6个胚胎干细胞中,有4个是由同一名女子提供的卵细胞制成的,它们似乎具有某种容易成为胚胎干细胞的特质

定制干细胞治病

干细胞是起源细胞,是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。人类胚胎干细胞能够演变成构成人体的大约200多种细胞中的任何一种,它具有再生各种组织器官和人体的潜在功能,因此也被医学界称为“万用细胞”。

在此次研究中培育出的人类胚胎干细胞没有出现任何染色体异常,这表明这种细胞具有正常的基因活性,能分化发育为更多特异性细胞类型,用于替换受损组织。

长年致力于灵长类动物基因研究的美籍维吾尔裔研究员米塔利波夫表示,“我们的这项发现为组织和器官功能失调或受损的患者,提供了干细胞新来源。这种干细胞可以更新和替换已经损坏了的细胞和组织,将为上百万的患者减缓病情。”

有专家推测,这项成果未来可能帮助客户定制干细胞,以帮助治疗多种疾病,例如,新的神经细胞可能缓解脊髓损伤带来的疼痛,新的心脏细胞可能治疗心脏病,老年痴呆症和多发性硬化等疑难杂症也有望得到根治。

再次引发

对克隆人类的担忧

虽然科学家之前也曾克隆出人类胚胎,但是从未从中提取到健康的干细胞。这项最新的科研成果可以被称为生物学领域的一项重大突破,哈佛干细胞研究所的科学家乔治·戴利用“无与伦比的成就”来称赞这项成果。但它可能也会再次引起人们对克隆人类,也就是复制与活着或已经死亡的个人基因相同的人类的担忧。

英国反克隆人类组织“人类基因警戒”的创始人戴维·金博士认为,这显示出通过立法禁止克隆人类的紧迫性,在有关立法出台之前不应该进行这样的研究,而发表这样的研究结果更是极其不负责任的行为。

尽管人胚胎干细胞有着巨大的医学应用潜力,但围绕该研究的伦理道德问题一直存在。这些问题主要包括人胚胎干细胞的来源是否合乎法律及道德,应用潜力是否会引起伦理及法律问题等。

材料化学论文

材料化学论文题目:高温超导材料研究 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO)

复合材料实习报告总结

复合材料实习报告总结 复合材料实习报告总结 ,隔离膜的铺放顺序,应为抽真空的缘故,我们要住辅助材料的边角不能覆盖至制品上,因为受压会使制品表面有压痕影响之间的工艺性能。一般的是隔离膜在制品的表面,然后是吸胶材料,最后是透气毡,而打真空袋是要明确以不能能漏气也就是要保证真空袋通过腻子胶条和模紧密贴合不漏气,另外一个是要是真空袋抽正空后要与模具和制品紧密贴合不能有褶皱。手糊成型的有点很多,如其一不需要复杂的设备,只需要简单的模具,工具,投资少,成本低。其二生产技术易掌控,人员只需经过短期的培训即可生产。其三复合材料产不受尺寸,形状的限制。其四可以与其他材料同时复合制成一体和对于一些不宜运输的大制品等。缺点就是产品质量不够稳定,生产环境差,气味大,加工时粉尘过多。不能用来制造高性能产品,生产效率低下。这是我感受到的,我对于手糊成型的理解。我们不仅要提高制品的工艺性能,更要减少制品的生产成本和提高工做卫生的环境条件。注重团队合作,时间的分配,设计的和理性的。 而手糊成型完了就接着是热压罐成型工艺过程: 一,模具的准备。模具要用软质材料轻轻搽拭干净,并检查时候漏气。然后在模具上涂布脱模剂。 二裁剪和铺叠。按样板裁好带有离型纸的预浸料,剪切时必须注意纤维方向然后将才好的预浸料揭去离型纸按照规定顺序和方向铺叠,每一层要用橡胶辊等工具将预浸料压实,赶出空气。

三组合和装袋,在模具上将预浸料胚料和各种辅助材料组合并装袋,应检查真空袋周边是否良好。 四热压固化,将真空袋系统组合到热压罐中,接好真空管路,关闭热压罐,然后按确定的工艺要求抽真空、加热、固化。最后就是出罐脱模,固化完成后,冷却到室温后,将真空移除热压罐,去除各种辅助材料后进行修整。 典型的热压罐固化工艺过程五个阶段: 1升温阶段; 2吸胶阶段; 3继续升温阶段 4保温热压阶段; 5冷却阶段。 我们小组遇到问题主要有裁剪时不一,就是尺寸不统一。在进行磨具合拢是不能很好的贴合,模具夹合时有缝隙需要要纤维预浸料填补。我们贴挡胶胶条是要注意把要流胶的位置都挡上。 再次,要深化自己的工作任务。熟悉每一件制品的制作方法,细节。做到烂熟于心。学会面对不同的困难,采用不同的操作技巧。力争让每一件制品都能然自己感到称心如意,更力争增加操作经验,提高产品质量。 最后,端正好自己心态。其心态的调整使我更加明白,不论做任何事,务必竭尽全力。这种精神的有无,可以决定一个人日后事业上的成功或失败,而我们的工作中更是如此。如果一个人领悟了通过全力工作来免除工作中的辛劳的秘诀,那么他就掌握了达到成功的原

无机材料研究进展综述

无机材料最新研究进展 摘要 无机材料指由无机物单独或混合其他物质制成的材料,一般可以分为传统的和新型的无机材料两大类。本文介绍了无机材料分类、方法及最新研究进展。 关键词:无机材料、分类、方法、展望 前言 无机材料一般可以分为传统的和新型的无机材料两大类。传统的无机材料是指以二氧化硅及其硅酸盐化合物为主要成分制备的材料,因此又称硅酸盐材料。新型无机材料是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种非金属化合物经特殊的先进工艺制成的材料。无机材料根据不同用途其特性也不同。总体来说无机材料有耐高温、耐腐蚀、耐磨性好、强度高。有些材料导电性能好,有些材料光导性好,有些材料有自洁功能。由于无机材料的多样性并有着各色各样的性质,其应用也相当广泛并得到了人们足够的重视,尤其是近些年新型的新材料,引起了我们广大的兴趣。 新材料是发展高新技术的物质基础, 新材料及与其直接相关的研究领域, 如信息存储材料、微电子材料、生物材料、纳米材料、超导材料及高温电子学等, 在当今高新技术领域及未来技术中均占有重要地位。因此世界各国都给予高度重视, 很多国家把新材料的研究与开发列为关键技术。而在新材料中, 新型无机非金属材料又是特别活跃的领域, 在整个新材料中占据主要地位[1]。 1.无机材料分类 无机材料分为新型无机材料和传统无机材料。传统无机材料分为玻璃、水泥、陶瓷;新型无机材料分为高性能结构陶瓷、电子功能陶瓷材料、敏感功能(陶瓷)材料、光功能陶瓷材料、人工晶体、功能玻璃、催化及环保用陶瓷等。

1.1水泥 水泥,粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。水泥的历史最早可追溯到5000年前的中国秦安大地湾人,他们铺设了类似现代水泥的地面。后来古罗马人在建筑中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,是建筑工业三大基本材料之一[2]。水泥行业中球磨工艺应用于两个生产环节,一个环节与火电行业相同,应用于磨制煤粉,为生产提供燃煤;另一个环节应用于将烧结成块的水泥熟料磨制成粉状,这一环节对于水泥企业的生产效率与产品品质起着至关重要的作用。近几年,由于固定资产投资增加,基础设施建设、房地产业的快速发展对水泥产量的拉动作用十分明显。在巨大的需求拉动下,水泥产量仍将保持较为稳定的增长。据相关数据统计,2012年水泥行业产量已达到21亿吨。 1.2陶瓷 陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。人们把一种陶土制作成的在专门的窑炉中高温烧制的物品叫陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。陶瓷的主要产区为景德镇、高安、丰城、萍乡、佛山、潮州、德化、醴陵、淄博等地。新型功能陶瓷材料是以电、磁、光、声、热、力学、化学和生物等信息的检测、转换、耦合、传输、处理和存储等功能为其特征的新型材料,已成为微电子技术、激光技术、光纤技术、传感技术以及奎间技术等现代高级技术发展不可替代的重要支撑性材料,在通信电子、自动控制、集成毫路、计算槐、信息处理等方嚣的应用墨益及。功熊陶瓷材料是电予材料中最重要的一个分支,其产值约占整个新型陶瓷产业产饭的70%。随着现代新技术的发展,功能陶瓷及其应用正向着高可靠、微型化、薄膜化、精细化、多功能、智能化、集成化、高性能、高功能和复合结构方向发展[3]。 1.3 玻璃 玻璃是无机非金属材料的又一重要产品, 它和我们的生活密切相关, 几乎每一个人都要接触和使用玻璃产品. 玻璃具有良好的光学和电学性能, 有较好的化

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

新型复合材料论文

陶瓷基复合材料的生产应用及发展前景 概论:科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景。 陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。 陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。 连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点及纳米陶瓷。 (1) 基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 (2) 增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 a. 纤维: 在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; b. 晶须: 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度由于晶须具有最佳的热性能、低密度和高杨氏模量,从而引起了人们对其特别的关注。 在陶瓷基复合材料中使用得较为普遍的是SiC、A12O3及Si3N4晶须。 c.颗粒

超导体论文

超导体的原理、性质及其应用 …(…) (..,南京 211189) 摘要:1911年,荷兰莱顿大学的卡末林—昂内斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失; 后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林—昂内斯称之为超导态。低温时,导体导电度急剧增加,即电阻值为零时,我们称之为超导状态。而处于超导状态的导体我们称之为超导体。超导电性和抗磁性是超导体的两个重要特性。为了实现超导材料的实用性,科学家们经过数十年的努力,跨越了超导材料的磁电障碍,开始了探索高温超导的历程。 关键词:超导应用原理 Principles, Properties and Applications of Superconductors … (…, Nanjing 210000) Abstract: In 1911, H.Kamerlingh Onnes from the University of Leiden finds that when the mercury cooled to -268.98 ℃, the resistance of it suddenly disappeared. Later he found that many metals and alloys are similar to the above mercury at low temperatures. Due to its special conductive properties H.Kamerlingh Onnes calls it the superconducting state. AT low temperatures, the conductor conductivity increased dramatically, we call it the superconducting state. While in the superconducting state, we call the conductor superconductors. Superconductivity and anti-magnetic superconductors are two important features. In order to achieve practical superconducting materials, scientists have spent decades exploring the course. key words: Superconductors Applications Principles 一般材料在温度接近绝对零度的时候,物体分子 热运动几乎消失,材料的电阻趋近于0,此时称为超导体,达到超导的温度称为临界温度。超导体的一系列应用与发展正是基于超导体这一特殊的性质。本文对超导体的原理、性质以及它在现代技术的广大应用进行具体的介绍。超导体原理的介绍 1911年,卡末林发现了零电阻的现象。1914年,他又发现,将超导体置于磁场中,当磁场增大到某一临界值B C时,或者在超导体中通过的电流密度超过某一临界值j C时,超导体都将从超导态转

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

论文综述

电化学沉积金属的二氧化钛纳米管的制备与表征 纳米材料一般是由1~100nm间的粒子组成,它介于宏观物质和围观分子﹑原子交界的过渡区域,是一种典型的介观系统。纳米材料研究主要分成两个方面: ①系统研究的纳米材料的性能﹑微结构和谱学特征,通过和常规材料相比较,找出纳米材料的特殊规律,建立表征纳米材料的新概念和新理论发展和完善纳米材料科学系统; ②开发研制新的纳米材料,纳米材料的特殊结构使之产生独特的物理化学性能。例如:小尺寸效应,表面效应,量子尺寸效应,宏观量子隧道效应,介电限域效应等,借助于纳米材料这种特殊的性质,使材料在光﹑电﹑力﹑磁﹑超导性乃至热力学等领域注入了新的活力。 1、1 二氧化钛 自二十世纪七十年代,日本科学家Fujishima发现二氧化钛半导体上的光催化分解水作用以来,二氧化钛由于具有独特的光物理和光化学性质,在光学材料、光电化学和光电池、光催化降解有机物方面有广泛的应用前景。引起了人们很大的兴趣。九十年代,纳米材料科学的兴起,发展了以二氧化钛为对象的基础理论和应用。由于纳米粒子的量尺子效应、表面效应等使得二氧化钛纳米材料的结构和性质都与常规二氧化钛有很大差别,在光物理学、光化学反面呈现出的特的应用前景,成为二十一世纪的一大研究热门。 1、1、1 二氧化钛的晶型结构 二氧化钛警惕有三种重要的不同结构:金红石、锐钛矿、和析钛矿。但是,仅是金红石和锐钛矿在二氧化钛的应用领域中起重要作用,表面科学技术的研究兴趣主要也是在金红石和锐钛矿上,在两种结构中,其基本的结构单元包含一个钛原子,该原子处于六个氧原子形成的异构八面体构型中,在每种结构的八面体结构中两个钛原子和氧原子间的化学键稍长一些,在锐钛矿中,键角90o有一个较大的偏离。在金红石中,相邻的八面体共用一个方向上的点沿着长轴在90o方向交替堆积,在锐钛矿中,共点的八面体形成面,它们还与下层的八面体面共边。 1、1、2 二氧化钛纳米材料的研究发展 自从1972年,A.fujishima等发现受辐射的二氧化钛表面能发生对水的持续氧化、还原反应以来,纳米二氧化钛作为光催化剂用来催化降解有机污染物,引起了人们的普遍关注,将这种材料做成空心小球浮在含有有机物的废水表面上,利用太阳光可以进行有机物的降解,美国、日本利用这种方法对海上石油泄漏造成的污染进行处理,将二氧化钛粉体添加到陶瓷的釉料中,具有保洁杀菌的功能,也可以添加到人造纤维中制成杀菌纤维;锐钛矿纳米二氧化钛表面Cu﹢、Ag﹢修饰,杀菌效果更好,在电冰箱、空调、医疗器械等方面有着广泛的应用前景。铂化的二氧化钛纳米粒子的光催化可以使丙炔与水蒸气反应,生成可燃性的甲烷、乙烷和丙烷;纳米二氧化钛的光催化效应可以从甲醇水溶液中提取H2而被广泛研究用于清洁氢能源的开发。近年来,纳米二氧化钛的光催化在有机污染物

高温超导材料的研究进展及前景展望论文正稿

兴义民族师范学院 2013届本科毕业生学位论文 高温超导材料的研究进展及 前景展望 姓 名: 马 关 爱 教 学 系: 物 理 系 专 业: 物 理 学 导师姓名: 张 星 中国﹒贵州﹒兴义 2013年5月

目录 摘要............................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论. (1) 1.1超导体的发现 (1) 1.2高温超导体的概述 (4) 第二章高温超导材料研究的内容 (6) 2.1高温超导材料的研究背景 (6) 2.2高温超导材料的特性 (7) 2.3高温超导材料的研究目标 (8) 2.4高温超导材料的研究状况 (9) 2.4.1高温超导的物理进展 (10) 2.4.2对BCS理论的修正[7] (11) 2.4.3RVB理论[7] (11) 2.4.4Luttinger液体理论[7] (12) 2.4.5铁磁自旋理论[7-10-11] (12) 2.4.6掺杂型高温超导体的研究进展 (12) 2.4.7高温超导材料其他方面的进展 (14) 2.5影响高温超导研究的因素 (14) 2.5.1交流损耗是一个影响高温超导材料应用的重要因素 (14) 2.5.2磁场是影响高温超导材料研究的一个重要因素 (15) 2.5.3量子限制效应对超导薄膜性质的影响 (15) 2.5.4超导体中的人工钉扎与磁通匹配效应 (15) 2.5.5薄膜表面等离子激元和增强透射效应 (15) 第三章高温超导材料的制备工艺 (16) 3.1高温超导材料的研究方法 (16) 3.1.1磁控溅射(MS)法 (16) 3.1.2脉冲激光沉积法 (16)

材料概论论文

材料概论论文碳纤维复合材料 班级:2011级材料化学 姓名:邓开菊 学号:20110513454

摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。 关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。 1、引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。 2、碳纤维的发展 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

复合材料与工程专业毕业设计外文文献翻译

毕业设计外文资料翻译 题目POLISHING OF CERAMIC TILES 抛光瓷砖 学院材料科学与工程 专业复合材料与工程 班级复材0802 学生 学号20080103114 指导教师 二〇一二年三月二十八日

MATERIALS AND MANUFACTURING PROCESSES, 17(3), 401–413 (2002) POLISHING OF CERAMIC TILES C. Y. Wang,* X. Wei, and H. Yuan Institute of Manufacturing Technology, Guangdong University ofTechnology, Guangzhou 510090, P.R. China ABSTRACT Grinding and polishing are important steps in the production of decorative vitreous ceramic tiles. Different combinations of finishing wheels and polishing wheels are tested to optimize their selection. The results show that the surface glossiness depends not only on the surface quality before machining, but also on the characteristics of the ceramic tiles as well as the performance of grinding and polishing wheels. The performance of the polishing wheel is the key for a good final surface quality. The surface glossiness after finishing must be above 208 in order to get higher polishing quality because finishing will limit the maximum surface glossiness by polishing. The optimized combination of grinding and polishing wheels for all the steps will achieve shorter machining times and better surface quality. No obvious relationships are found between the hardness of ceramic tiles and surface quality or the wear of grinding wheels; therefore, the hardness of the ceramic tile cannot be used for evaluating its machinability. Key Words: Ceramic tiles; Grinding wheel; Polishing wheel

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

复合材料论文

摘要 与传统的CF增强材料相比,CNTs/CF混杂多尺度增强体在提高复合材料横向力学性能,充分发挥CNTs和cF的优异性能,开发具有综合优异性能的先进复合材料方面具有显著优势。目前该领域的研究尚处于起步阶段,几种常见的制备方法中化学气相沉积法尤其是等离子体化学气相沉积法获得的多尺度增强体的纳米结构在纤维表面均匀密布,具有广阔的发展前景和应Hj潜力。总之,CNTs/CF制备工艺的进一步完善和其与树脂复合后的新型复合材料的性能研究有待深入探索。 引言 碳纤维增强树脂基复合材料(CFRP)具有强度高、模量高、密度小、尺寸稳定等一系列优异性能,已器材等领域。众所周知,复合材料的性能主要取决于纤维和树脂基体本身的力学性能、纤维的表面能、纤维与基体之间的界面粘结以及界面应力传递能力。由于碳纤维(CF)表面为石墨乱层结构,纤维表面惰性大、表面能低,有化学活性的宫能}玎少,反应活性低,与基体的粘结性差,复合材料界面中存在较多的缺陷,界面粘结强度低,复合材料层间剪切强度(Interlaminar Sheafing Strength,ILSS)低。另外,纤维复合材料是各向异性十分突出的材料,其优异的物理、力学性能都集中在纤维的轴向,而在复合材料的横向无纤维加强作用.复合材料耐冲击性能较差。为改善纤维增强树脂基复合材料的性能,必须对纤维/树脂基体间的界面进行优化设计,同时改善树脂基体的性能指标。 纳米管(Carbon Nanotubes,CNTs)是由单层或多层石墨烯片围绕中心轴按一定的螺旋角卷绕而成的无缝、纳米级中空管体。组成CNTs的c—C共价键是自然界巾很稳定的化学键,理论计算和实验表明CNTs具有极高的强度和极大的韧性¨1,理论估计其杨氏模量高达5TPa,实验测得平均为1.8TPa,弯曲强度为14.2GPa,抗拉强度为钢的100倍,密度仅为钢的1/6~l/7。其直径在0.4—50nm之间,长度可达数微米至数毫米,因而具有很大的长径比,一般大于1000,是准一维的量子线,被看作复合材料增强体的终极形式,必将作为增强相而在复合材料中得到应用HJ。CNTs主要由碳元素组成,与聚合物有相似的结构,尺寸在同一数量级上,可将CNTs看作一种单元素的聚合物,且CNTs表面原子约占50%以上,与聚合物之间的相互作用强,研究表明,CNTs与聚合物之间的应力传递能力至少是传统纤维增强复合材料的10倍以上¨J,同时CNTs还具有很好的韧性,能够承受40%的张力应变,而不会呈现膪I生行为、塑性变形或键断裂.可以提高基体材料的韧性。6 J,因此可与聚合物复合制备高性能的复合材料。将准一维纳米材料CNTs与传统连续纤维混合作为复合材料增强相,有望同时改善复合材料的界面性能和树脂基体的抗冲强度。 CNTs/CF作为多尺度增强材料,其方式主要有掺杂法、化学气相沉积法、混纺法及化学接枝法。 碳纳米管/碳纤维混杂多尺度增强体 研究现状 掺杂法 掺杂法是将CNTs直接混合在树脂中,然后与连续CF复合,制备复合材料。究了多壁碳纳米管(MWCNTs)/T300连续cF环氧树脂复合材料的力学性能,当基体中CNTs的含量为3%时复合材料的力学性能最佳,断裂强度为1780MPa,模量为164GPa。国防科学技术大学采

超导材料论文

超导材料的研究进展 陈志义 2011326690110 应用物理11(1)班 摘要:超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。高温超导材料经过近 20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。 关键词:超导高温超导体进展超导超导材料临界温度进展 引言:随着社会的进步,工业的发展,人们对能源的需求量越来越大。但是,像石油、煤等能源储备有限且不可再生。故而,如何在有限能源的条件下使社会健康稳步地发展,亦即如何做到可持续发展成了当今人们亟需解决的问题。对于这些问题的解决方法,超导材料表现出了巨大的潜力。长期以来,如何找到一种完全没有电阻,能消除电能损耗的导电材料,一直是物理学家和材料科学工作者梦寐以求的愿望。1911年,荷兰物理学家卡麦林·昂尼斯首次意外地发现了超导现象:将水银冷却到接近绝对零度时,其电阻突然消失。这一现象的发现为解决电路损耗带来了福音。从此,对于超导材料的研究如火如荼。 一、超导材料的概念 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二、超导材料的分类 超导材料分为低温超导材料和高温超导材料。 1、低温超导材料 何谓低温超导材料?低温超导材料是具有低临界转变温度(T c<3OK=在液氦温度条件下工作)的超导材料,分为金属、合金和化合物。具有实用价值的低温超导金属是Nb(铌),T c 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,T c在9K以上。低温超导材料一般都需在昂贵的液氦环境下工作,由于液氦制冷的方法昂贵且不方便,故低温超导体的应用长期得不到大规模的发展。低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。 2、高温超导材料 高温超导体材料(HTS)具有超导电性和抗磁性两个重要特性。要让超导体得到现实的应用,首先要有容易找到的超导材料。即主要研究方向就是寻找能在较高温度下存在的超导体材料。高温超导材料用途非常广泛,大致可分三大类:大电流应用、电子学应用和抗磁性应用。大电流应用是由于超导材具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得的稳定强磁场。超导体的基本特性之一是当它处于超导态时具有理想的导电性,同时由于其载流能力远远强于常规导体,因此,利用超导体可以传输大电流和产生强磁场,并且没有电阻热损耗。电工设备的基本特点是大电流、强磁场和高电压,因此在电工设备中使用超导材料可以减少电气损耗、提高效率、缩小体积、减轻重量、降低成本,还可以提高装置

材料成型毕业论文范文2篇

材料成型毕业论文范文2篇 材料成型毕业论文范文一:金属材料加工中材料成型与控制工程 摘要:本文以金属材料为例,对材料成型与控制工程中的加工技术进行细化分析,首先,理论概述了金属材料的选材原则,然后具体分析了铸造成型、挤压与锻模塑性成型、粉末冶金以及机械加工四种加工方法,旨在为相关工作人员提供有借鉴性的参考资料,进一步提高我国制造业的加工水平与整体质量。 关键词:材料成型;控制工程;金属材料;加工工艺 0引言 对于我国制造业而言,材料成型与控制工程是其实现长期健康发展的根本保障,不仅如此,材料成型与控制工程也是我国机械制造业的关键环境,因此,相关企业必须对其给予高度重视。无论是电力机械制造,还是船只等交通工具制造,均离不开材料成型与控制工程,材料成型与控制技术的水平与质量将会直接决定机械制造水平与质量。因此,对材料成型与控制工程中的金属材料加工技术进行细化分析,具有非常重要的现实意义。 1金属材料选材原则 在金属复合材料成型加工过程中,将适量的增强物添加于金属复合材料中,可以在很大程度上高材料的强度,优化材料的耐磨性,但与此同时,也会在一定程度上扩大材料二次加工的难度

系数,正因此,不同种类的金属复合材料,拥有不同的加工工艺以及加工方法。例如,连续纤维增强金属基复合材料构件等金属复合材料便可以通过复合成型;而部分金属复合材料却需要经过多重技术手段,才能成型,这些成型技术的实践,需要相关工作人员长期不断加以科研以及探究,才能正式投入使用,促使金属复合材料成型加工技术水平与质量实现不断发展与完善。由于成型加工过程中,如果技术手段存在细小纰漏,或是个别细节存在问题,均会给金属基复合材料结构造成一定的影响,导致其与实际需求出现差异,最终为实际工程预埋巨大的风险隐患,诱发难以估量的后果。所以,相关工作人员在对金属复合材料进行选材过程中,必须准确把握金属材料的本质以及复合材料可塑性,只有这样,才能保证其可以顺利成型,并保证使用安全。 2金属材料加工方法 2.1机械加工成型 当前,金属材料成型与控制工程中,应用最为广泛的金属切割刀具便是金刚石刀具,以金刚石刀具对铝基复合材料进行精加工,与其他金属基复合材料,例如,钻、铣以及车等,均是现代社会中广而易见的。铝基复合材料的金刚石刀具加工形式可以细化为三种:其一,车削形式;其二,铣削形式;其三,钻削形式。其中,钻削即通过镶片麻花钻头对铝基复合材料进行加工,常见的有b4c以及sic颗粒钻削,然后添加适量的外切削液,可以有效强化铝基复合材料。铣削即通过 1.5%-2.0%(w+c)粘结剂,8.0%-8.5%pcd的端面铣刀对铝基复合材料进行加工,常见的有sic 颗粒铣削增强铝基复合材料,然后添加适量的切削液进行冷却。

相关主题
文本预览
相关文档 最新文档