当前位置:文档之家› 空间向量及其运算练习题

空间向量及其运算练习题

空间向量及其运算练习题
空间向量及其运算练习题

空 间 向 量 及 其 运 算 练 习 题

一 选择题

1.已知空间三点A ,B ,C ,则+-等于( ) A. B. C. D.

2.在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若a AB =,b AD =,c AA =1,则下列向量中与AM 相等的向量是( ) A.c b a -+2121 B.c b a ++21 C. c b a ++2121 D. c b a +-2

121 3.空间四边形OABC 中,=,=,=,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )

A .213221+-

B .212132++-

C .322121-+

D .2

13232-+ 4.已知向量=(3,-2,1),=(-2,4,0),则4+2等于( )

A.(16,0,4)

B.(8,-16,4)

C.(8,16,4)

D.(8,0,4)

5.若A (2,-4,-1),B (-1,5,1),C (3,-4,1),令CA a =,CB b =,则b a +的坐标为( )

A.(5,-9,2)

B.(-5,9,-2)

C.(5,9,-2)

D.(5,-9,2)

6.已知点A (1,1,-2),点B (1,1,1),则线段AB 的长度是( )

A.1

B.2

C.3

D.4

7.若=(2,-3,1),=(2,0,3),=(0,2,2),)(a +的值为( )

A .4

B .15

C .7

D .3

8.若向量)0,1,1(=a ,)1,0,1(=b ,则向量a 与b 的夹角为( )

A. 45

B. 60

C. 90

D. 120

9.已知=(2x ,1,3),=(1,-2y ,9),如果与为共线向量,则( )

A.x =1,y =1

B.x =

21,y =21- C.x =61,y =23- D.x =6

1-,y =23 10.已知向量a =(1,0,1),b =(-1,1,k ),且+与-互相垂直,则k 的值是( ) A.1 B.1- C.0 D.2-

11.棱长均为1的三棱锥BCD A -中,AB ?-+?=( )

A.1

B.1-

C.2

D.2-

12.在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别为棱AA 1和BB 1的中点,则sin 〈,D 1〉的值为( )

A.91-

B.9

1 C.594- D.59

4 二 填空题 13.已知正方体D C B A ABCD ''''-的棱长等于1,则C A ''?=__________.

14.如果三点A (1,5,-2),B (2,4,1),C (a,3,b +2)共线,那么a -b =________.

15.已知向量a ,b ,c 满足0=++c b a ,3||=a ,1||=b ,4||=c ,则a c c b b a .+?+? = .

16.已知空间三点A 、B 、C 坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P 在xOy 平面上且P A ⊥AB ,P A ⊥AC ,则点P 坐标为 .

三 解答题

17.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设a AB =,b AD =,

=1,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用,,表示

下列各向量:

(1) (2)A 1 (3)1NC +

18.已知空间中三点)1,0,1(A ,)2,1,0(B ,)3,1,2(--C ,求下列各值

(1)+ (2)2- (3)2)3(-

19.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设=,

=.

(1)求a 与b 夹角的余弦值.

(2)若向量k +与a 2-互相平行,求k 的值.

(3)若向量k +与2-互相垂直,求k 的值.

拓 展 练 习

20.已知正方体D C B A ABCD ''''-的棱长为2,且=,=,A A =',求:

(1))(b a a -? (2)|2|c b a --

21.已知空间三点A (0,2,3),B (1,1,3),C (1,3,2).

(1)若向量与AB 同向,且22||=,求向量.

(2)若向量分别与向量,垂直,且62||=,求向量.

22.在直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2, M 、N 分别是A 1B 1,AA 1的中点.

(1)求的长BN . (2)求的值><11,cos CB BA .

(3).:11M C B A ⊥求证

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

3.1空间向量及其运算第1课时完美版

§3.1.1空间向量及加减其运算 【学情分析】: 向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。【教学目标】: (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。 【教学重点】: 空间向量的概念和加减运算 【教学难点】: 空间向量的应用

四.练习巩 固 1.课本P86练习1-3 2.如图,在三棱柱1 11C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1 解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =-- 巩固知识,注意区别加 减法的不同处. 五.小结 1.空间向量的概念: 2.空间向量的加减运算 反思归纳 六.作业 课本P97习题3.1,A 组 第1题(1)、(2) 练习与测试: (基础题) 1.举出一些实例,表示三个不在同一平面的向量。 2.说明数字0与空间向量0的区别与联系。 答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。 3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。 4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

3.1.1空间向量及其加减运算专项练习与答案

3.1.1空间向量及其加减运算专项练习 一、选择题(每小题5分,共20分) 1.在平行六面体ABCD -A ′B ′C ′D ′中,与向量A ′B ′―――→ 的模相等的向量有( ) A .7个 B .3个 C .5个 D .6个 解析: |D ′C ′―――→|=|DC ―――→|=|C ′D ′―――→|=|CD →|=|BA →|=|AB →|=|B ′A ′―――→|=|A ′B ′―――→ |. 答案: A 2.已知向量a ,b 是两个非零向量,a 0,b 0是与a ,b 同方向的单位向量,那么下列各式中正确的是( ) A .a 0=b 0 B .a 0=b 0或a 0=-b 0 C .a 0=1 D .|a 0|=|b 0| 解析: 两单位向量的模都是1,但方向不一定相同或相反. 答案: D 3.下列命题是真命题的是( ) A .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量 B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反 C .若向量AB →,C D →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD → D .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD → 解析: A 错.因为空间任两向量平移之后可共面,所以空间任两向量均共面. B 错.因为|a |=|b |仅表示a 与b 的模相等,与方向无关. C 错.空间任两向量不研究大小关系,因此也就没有AB →>C D → 这种写法. D 对.∵AB →+CD → =0, ∴AB →=-CD →,∴AB →与CD →共线,故AB →∥CD → 正确. 答案: D 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC → |,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC → 同向 D.AC →与CB → 同向 解析: 由|AB →|=|AC →|+|BC →|=|AC →|+|CB → |,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB → 同向. 答案: D

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

6 第6讲 空间向量的运算及应用

第6讲 空间向量的运算及应用 1.空间向量的有关定理 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底. 2.两个向量的数量积(与平面向量基本相同) (1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π 2, 则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积 两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质 ①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ?a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |. (4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律); ③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算 (1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3), λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥ b ?a 1b 1+a 2b 2+a 3b 3=0, a ∥ b ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

【2021】第7章 第5节 空间向量的运算及应用 Word版含答案

第五节空间向量的运算及应用 [考点要求] 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. (对应学生用书第130页 ) 1.空间向量的有关概念 名称定义 空间向量在空间中,具有大小和方向的量 相等向量方向相同且模相等的向量 相反向量方向相反且模相等的向量 共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. - 1 -

(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos 〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3). 5.空间位置关系的向量表示 - 1 -

空间向量及其运算测试题答案

新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a , 11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2 121 C .c b a +-2121 D .c b a +--2 1 21 2.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 3.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于( ) A .85 B .85 C .52 D .50 4.与向量(1,3,2)a =-r 平行的一个向量的坐标是( ) A .(31 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB u u u r u u u r 与的夹角是( ) A .0 B . 2 π C .π D . 32 π 6.已知空间四边形ABCD 中,c OC ,b OB , a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B . c b a 21 2132++- C .c b a 212121-+ D .c b a 2 13232-+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=?=?=?AD AB ,AD AC , AC AB ,则BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 图

(教案)空间向量及其运算

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +OB ). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量的运算及应用

空间向量的运算及应用 [考纲传真]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 【知识通关】 1.空间向量的有关概念 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 5.空间位置关系的向量表示 1.对空间任一点O ,若OP →=xOA →+yOB → (x +y =1),则P ,A ,B 三点共线. 2.对空间任一点O ,若OP →=xOA →+yOB →+zOC → (x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为??? n· a =0,n· b =0. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA → =0.( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( ) [答案] (1)√ (2)√ (3)× (4)×

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

2021年高考数学一轮精选练习:43《空间向量的运算及应用》(含解析)

2021年高考数学一轮精选练习: 43《空间向量的运算及应用》 一、选择题 1.已知a=(-2,1,3),b=(-1,2,1),若a ⊥(a -λb),则实数λ的值为( ) A.-2 B.-143 C.14 5 D.2 2.若A ,B ,C 不共线,对于空间任意一点O 都有OP →=34OA →+18OB →+1 8 OC →,则P ,A ,B ,C 四点( ) A.不共面 B.共面 C.共线 D.不共线 3.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 的中点, 则△AMD 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定 4.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在 线段MN 上,且分MN 所成的比为2,现用基向量OA →,OB →,OC →表示向量OG →,设OG →=xOA →+yOB →+zOC →, 则x ,y ,z 的值分别是( ) A.x=13,y=13,z=13 B.x=13,y=13,z=16 C.x=13,y=16,z=13 D.x=16,y=13,z=13 5.已知空间向量a ,b 满足|a|=|b|=1,且a ,b 的夹角为π 3 ,O 为空间直角坐标系的原点,点A , B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( ) A.52 3 B.54 3 C.74 3 D.114 6.如图,在空间四边形OABC 中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA 与BC 所成角的余弦值为( ) A. 3-225 B.2-26 C.12 D.3 2

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系 基础知识归纳 一、空间向量及其有关概念 二、数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉; (2)a⊥b?a·b=0(a,b为非零向量); (3)|a|2=a2,|a|=x2+y2+z2. 2.向量的坐标运算

三、平面的法向量 (1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量. (2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的. 基础题必做 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 解析:选C ∵c =(-4,-6,2)=2a ,∴a ∥c .又a ·b =0,故a ⊥b . 2. 若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 解析:选C 若c 、a +b 、a -b 共面, 则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0; ②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 解析:选D 可判断①②③正确. 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的 中点,则OE u u u r =________(用a ,b ,c 表示). 解析:如图,OE u u u r =12OA u u u r +12 OD u u u r

空间向量及其加减运算专题训练

A . a + b — c B . — a — b +c C . — a + b + c D . — a + b — c 解析:选 C.由于CD = CB +BA + AD = CB — AB +AD = b — a + c , 所以 C D = — a + b + c . 3.在正方体ABCD-A i B i C i D i 中,下列选项中化简后为零向量的 A. AB + A I D I + C i A i B .AB —A C+ BE B I C. AB + AD + AA i D .A C +CB 1 解析:选 A.在 A 选项中,AB +A ;D i + CA i = (AB +AD) + CA = AC + CA = 0. 4.设有四边形ABCD,O 为空间任意一点,且AO + O B = D O + OC, 全国名校高考数学复习优质专题训练汇编(附详解) 空间向量及其加减运算专题训练 [A 基础达标] 1.在空间四边形OABC 中,OA +A B — CB 等于( ) A .OA B .A B C.OC D .A C 解析:选 C.OA + A B — CB= OB — CB = BC — BO = OC. 2.已知空间四边形 ABCD 中,AB = a , CB = b , AD = c ,则CD 等

则四边形ABCD是()

全国名校高考数学复习优质专题训练汇编(附详解) A .平行四边形B.空间四边形 C.等腰梯形 解析:选A.由于AO+ A B, D O+O C=D C, 所以AB=DC,从而|AB|=|D C|,且AB与CD不共线, 所以AB DC, 所以四边形ABCD是平行四边形. 5 .已知平行六面体ABCD-A'B'CD 贝y下列四式中错误的是 ① AB—CB = AC:② A厅 =AB + B B ~C C + CC :③ AT C = CC ;@AB+ BB^ +BC+ C C C = A F . A.① c.③ 解析:选D.AB—CB=AB+BC=AC,①正确; A B+B"C+C C = A B+ B C+ C C=A C ,②正确; ③显然正确;AB+ B B+B C+CC=AB + BC+CC=AC,④错. 6 .式子(AB—CB)+CC I运算的结果是______ . 解析:(AB—CB)+ CC I =(AB+BC) + CC I=AC+CC I = AC I. 答案:A C I 7.给出下列几个命题: ①方向相反的两个向量是相反向量; ②若|a|= |b|,则a, b的长度相等,方向相同或相反;

相关主题
文本预览
相关文档 最新文档