当前位置:文档之家› 零折射率超材料

零折射率超材料

零折射率超材料
零折射率超材料

阿贝折射仪测介质折射率

实验阿贝折射仪测介质折射率 折射率是透明材料的一个重要光学常数。测定透明材料折射率的方法很多,如全反射法和最小偏向角法,最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法具有测量方便快捷,对环境要求不高,不需要单色光源等特点。然而,因全反射法属于比较测量,故其测量准确度不高(大约Δn=3×10-4),被测材料的折射率的大小受到限制(约为1.3~1.7),且对固体材料还需制成试件。尽管如此,在一些精度要求不高的测量中,全反射法仍被广泛使用。 阿贝折射仪就是根据全反射原理制成的一种专门用于测量透明或半透明液体和固体折射率及色散率的仪器,它还可用来测量糖溶液的含糖浓度。它是石油化工、光学仪器、食品工业等有关工厂、科研机构及学校的常用仪器。 【实验目的】 1.加深对全反射原理的理解,掌握应用方法。 2.了解阿贝折射仪的结构和测量原理,熟悉其使用方法。 3.通过对葡萄糖溶液折射率的测定确定其浓度。 【实验仪器】 WAY阿贝折射仪、标准玻璃块一块,折射率液(溴代萘)一瓶,待测液(自来水,酒精,糖溶液)、滴管、脱脂棉及擦镜纸 【实验原理】 一、仪器描述 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。 阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。 望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白炽灯)射入进光棱镜1时便在磨砂面上

超材料doc

超材料——过去十年中人类最重大的十项科技突破之一 狭义上超材料即指电磁超材料,电磁超材料具有超越自然界材料电磁响应极限的特性,能够实现对电磁波传播的人为设计、任意控制。目前该材料被应用在定向辐射高性能天线、电磁隐身、空间通信、探测技术和新型太赫兹波段功能器件等方面。 看好电磁超材料在军工、通信和智能结构等方面的应用前景 电磁超材料在军工领域的应用比较广泛,目前已应用的超材料产品包括超材料智能蒙皮、超材料雷达天线、吸波材料、电子对抗雷达、超材料通讯天线、无人机雷达、声学隐身技术等。 通信领域电磁超材料最具应用前景的就是无线Wi-fi网络,目前光启已进入该领域。 电磁超材料在智能结构中的应用主要有两类:地面行进装备用智能结构和可穿戴式超材料智能结构。智能结构用电磁超材料的市场前景非常广阔 超材料主题相关主要包括:(300077)、龙生股份(002625)、(600804)和(600490)等,建议重点关注国民技术、鹏博士和鹏欣资源。 超材料 “Metamaterial”是21世纪物理学领域出现的一个新的学术词汇,近年来经常出现在各类科学文献。拉丁语“meta-”,可以表达“超出…、亚…、另类”等含义。对于metamaterial一词,目前尚未有一个严格的、权威的定义,各种不同的文献上给出的定义也各不相同。但一般文献中都认为metamaterial是“具有天然材料所不具备的超常物理性质的人工复合结构或复合材料”。 迄今发展出的“超材料”包括:“左手材料”、光子晶体、“超磁性材料”等。 “左手材料”是一类在一定的频段下同时具有负的磁导率和负的介电常数的材料系统(对电磁波的传播形成负的折射率)。近一两年来“左手材料”引起了学术界的广泛关注,曾被美国杂志评为2003年的"年度十大科学突破"之一。 原理 超材料的应用与原有的材料制备有很大的区别,以往是自然界有什么材料,就能制造出什么物品,而超材料完全是逆向设计,根据针对电磁波的具体应用需求,制造出具有相应功能的材料。 特征 metamaterial重要的三个重要特征: (1)metamaterial通常是具有新奇人工结构的复合材料; (2)metamaterial具有超常的物理性质(往往是的材料中所不具备的); (3)metamaterial性质往往不主要决定与构成材料的本征性质,而决定于其中的人工结构。 隐形功能 具有讽刺意味的是,超材料曾被认为是不可能存在的,因为它违反了光学定律。 然而,2006年,北卡罗来纳州的(Duke University)和(Imperial College)的研究者成功挑战传统概念,使用超材料让一个物体在微波射线下隐形。尽管仍有许多难关需要克服,但我们有史以来头一次拥有了能使普通物体隐形的方案(五角大楼的国防高级研究计划署[The Pentagon’s Defense Advanced Research Project Agency,DARPA]资助了这一研究)。 制造研究

14种光学塑料的材料特点

14种光学塑料的材料特点 一、光学塑料分类塑料材料一般分为热塑性和热固性塑料。热塑性塑料指的是可反复加热仍可塑的塑料。光学塑料大部分为热塑性塑料,常用的有:聚甲基丙烯酸甲脂(PMMA)聚苯乙烯(PS)聚碳酸脂(PC)等。热固性塑料:指的是在所用的合成树脂在加热初期软化,具有可塑性,继续加热则随着化学反应燮硬使形状固定不再发生变化。常用的材料有:烯丙基二甘醇碳酸脂(CR-39)环氧光学塑料 二、主要的光学塑料 1.聚甲基丙烯酸甲脂PMMA Polymethylmethacrylate,简称PMMA,也称Acrylic。摩尔量约为50万---100万,(摩尔量对聚合物的性能有很大的影响)nd=1.491,色散系数Vd=57.2,是“王冕”材料,透过率约92%,加速老化后240H透过率仍能达到92%,在室外使用10年后只降到88%,能透过波长270nm以上的紫外光。PMMA能透过X射线和Y射线,其薄片能透过α射线和β射线,但是能吸收中子线。PMMA密度为1.19kg/m3,在20℃*109Pa时的平均吸水率为2%,在所有光学塑料中它的吸水率最高,弹性模量为3.16*109Pa,泊松比为0.32,抗张强度为(462---703) *109Pa。PMMA 的线形膨胀系数为 8.3*10-5 K-1,比K9玻璃大10倍,但PMMA从高温冷却时的光学记忆即组件恢复到它原来尺寸的性能要比玻璃好,它

的折射率随温度的变化dn/dt为-8.5*10-5,比K9玻璃大出约30倍,但是它是负值。热导率为0.192W/(m*k),比热容为1465J/(kg*k),它的玻璃化温度为105℃,熔化温度为180℃。PMMA耐稀无机酸去污液,油脂和弱碱的性能优良,耐浓无机酸中等,不耐醇,酮,溶于芳烃,氯化烃有机溶剂,为强碱及温热的NaOH,KOH所侵蚀,与显影液不起反应。PMMA有优良的耐气候性,在热带气候下曝晒多年,它的透明度和色泽变化小。PMMA目前于广泛被用于制造照相机,摄录一体机,投影机,光盘读出头以及军用火控和制导系统中的非球面透镜和反射镜,还用来制造菲涅尔透镜,微透镜数组,隐形眼镜,光纤,光盘基板等零件。 2.聚苯乙烯PS Polystyrene,简称PS,也称Styrene。这是一种火石类热塑性光学塑料,尽管它的抗紫外辐射性能,抗划伤性能都不如PMMA,但它折射率高,nd=1.59—1.660,阿贝系数小Vd=30.8,所以当它和PMMA组合时可以成为对F和C谱线进行校正的消色差透镜,二级光谱的校正一般比玻璃的消色差透镜还要更好一些。它的透过率为88%,它的双折射率较大,在阳光作用下聚苯乙烯容易变黄。PS能自由着色,无嗅无味无毒,不致产生霉菌,吸湿性小吸只有0.02%。PS热变形温度为70--98℃,与配方及后处理有关,它的最高连续使用温度为60--80℃,成型收缩率为0.45%,其零件经退火处理可减少内应力还可提高机械强度,无前因

折射率改变材料

(1)用a repetition rate of 1 kHz. a wavelength of 800 nm. 40×, NA = 0.65 microscope objective在LiNbO3中能诱导负的折射率改变 FIGURE 1 Refractive index profiles of two typical waveguides measured with a shearing interference microscope at a wavelength of 550 nm. (a) Δne and (b) Δno of a waveguide in z-cut LiNbO3 written with 1 μJ, 420 fs pulses. (c) Δne and (d) Δno of a waveguide in an x-cut crystal written with 0.2 μJ, 380 fs pulses. (e) Waveguide mode field at a wavelength of 633 nm corresponding to the refractive index profile of (c) Both structures show an increase solely in the extraordinary index n e. The ordinary index n o is decreased in both crystals. (上图中n e.均有上升,而n o均有下降) At lower intensities, an increase of the extraordinary refractive index n e was observed that can be used to form high-quality optical waveguides. Higher intensities cause a decrease of no and ne accompanied by stress in the surrounding crystal as well as material damage.(在激光强度较高的时候n o和n e.均有下降) Structural properties of femtosecond laser-induced modifications in LiNbO3 j. burghoff1,_h. hartung1s. nolte1a. t ¨unnermann1,2 (2)在UBK7(74SiO2 10B2O3 15Na2O/K2O1BaO) FP10(10Sr(PO3)2 35AlF3 30CaF2 15SrF2 10MgF2) FP20(20Sr(PO3)2 30AlF3 22CaF2 18SrF2 10MgF2) 中会产生负的折射率 Femtosecond-laser-writing in various glasses D. Ehrt a,*, T. Kittel a, M. Will b, S. Nolte b, A . Tu¨nnermann b Journal of Non-Crystalline Solids 345&346 (2004) 332–337

3D-材质-常用物体折射率表

常用物体折射率表 材质IOR 值 空气 1.0003 液体二氧化碳 1.200 冰 1.309 水(20度) 1.333 丙酮 1.360 普通酒精 1.360 30% 的糖溶液 1.380 酒精 1.329 面粉 1.434 溶化的石英 1.460 Calspar2 1.486 80% 的糖溶液 1.490 玻璃 1.500 玻璃,锌冠 1.517 玻璃,冠 1.520 氯化钠 1.530 氯化钠(盐)1 1.544 聚苯乙烯 1.550 石英 2 1.553 翡翠 1.570 轻火石玻璃 1.575 天青石 1.610 黄晶 1.610 二硫化碳 1.630 石英 1 1.644 氯化钠(盐)2 1.644 重火石玻璃 1.650 二碘甲烷 1.740 红宝石 1.770 兰宝石 1.770 特重火石玻璃 1.890 水晶 2.000 钻石 2.417 氧化铬 2.705 氧化铜 2.705 非晶硒 2.920 碘晶体 3.340 常用晶体及光学玻璃折射率表 物质名称分子式或符号折射率 熔凝石英SiO2 1.45843 氯化钠NaCl 1.54427 氯化钾KCl 1.49044

萤石CaF2 1.43381 冕牌玻璃K6 1.51110 K8 1.51590 K9 1.51630 重冕玻璃ZK6 1.61263 ZK8 1.61400 钡冕玻璃BaK2 1.53988 火石玻璃F1 1.60328 钡火石玻璃BaF8 1.62590 重火石玻璃 ZF1 1.64752 ZF5 1.73977 ZF6 1.75496 液体折射率表 物质名称分子式密度 温 度℃ 折射率 丙醇CH3COCH30.791 20 1.3593 甲CH3OH 0.794 20 1.3290 乙C2H5OH 0.800 20 1.3618 苯C6H6 1.880 20 1.5012 二硫化碳CS2 1.263 20 1.6276 四氯化碳CCl4 1.591 20 1.4607 三氯甲烷CHCl3 1.489 20 1.4467 乙醚C2H5·0·C2H50.715 20 1.3538 甘油C3H8O3 1.260 20 1.4730 松节油0.87 20.7 1.4721 橄榄油0.92 0 1.4763 水H2O 1.00 20 1.3330 晶体的折射率n o和n e表 物质名称分子式n o n e 冰H20 1.313 1.309 氟化镁MgF2 1.378 1.390 石英Si02 1.544 1.553 氯化镁MgO·H2O 1.559 1.580 锆石ZrO2·SiO2 1.923 1.968 硫化锌ZnS 2.356 2.378 方解石CaO·CO2 1.658 1.486 钙黄长石2Ca0·Al203·SiO2 1.669 1.658 菱镁矿ZnO·CO2 1.700 1.509 刚石Al2O3 1.768 1.760 淡红银矿3Ag2S·AS2S3 2.979 2.711 注:n o、n e分别是晶体双折射现象中的“寻常光”的折射率和“非常光”的折射率。

透明材料折射率测量

实验名称:透明材料折射率测量 仪器与用具:2WAJ型阿贝折射仪、蒸馏水、脱酯棉、无水乙醇、葡萄糖溶液、滴管、螺丝刀等 实验目的: 1、理解全反射原理及其应用,学会使用阿贝折射仪测量折射率; 2、测量无水乙醇的折射率; 3、测量葡萄糖溶液的浓度。 注意:实验报告要书写规范、完整,内容包括实验名称、实验者基本信息、实验仪器与用具、实验目的、实验原理、实验内容与步骤、数据记录与处理、实验结论与分析、思考题、注意事项等。 折射率是透明材料的重要光学常数。本实验应用阿贝折射仪采用建立在全反射原理基础上的掠入射法(全反射法)测量透明物质的折射率。 测量透明材料折射率最常用的方法是最小偏向角法和全反射法,前者具有测量精度高,被测折射率的大小不受限制等优点,但是被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量;全反射法属于比较测量,虽然测量准确度较低(大约ΔnD=3×10-4),被测折射率的大小受到限制(nD大约为1.3~1.7),但是全反射法具有操作方便迅速,环境条件要求低,不需要单色光源等优点。 阿贝折射仪就是利用全反射法制成的,专门用于测量透明或半透明液体或固体折射率及平均色散的仪器,它还能测量糖溶液的含糖浓度。它是石油、油脂、制药、制漆、制糖和日用化学工业、地质勘察等有关工矿、学校及科研单位不可缺少的常用设备之一。 通过本实验,学会阿贝折射仪的调整和使用方法;掌握用掠入射法测定物质的折射率;测量酒精的折射率和葡萄糖溶液的浓度。 【实验原理】 应用阿贝折射仪测量物质的折射率的方法是建立在全反射原理基础上的掠入射法。 (认真阅读实验讲义P216~220内容,弄清实验原理和内容) 在阿贝折射仪中,实际上是用转动棱镜的方法去改变i,以适应不同折射率n1值的测量。而读数望远镜中的标尺(分度盘),则已按(5.1.5)式将出射角i换算成折射率值标出,故现场中的读数即为被测物质的折射率。阿贝折射仪的设计特别考虑了糖溶液的浓度与其折射率的对应关系,将其浓度值在刻度盘上直观地显示出来,可以方便地直接测量糖溶液的浓度。 【实验内容及步骤】 1.了解实验仪器、材料及其用途 2WAJ型号的阿贝折射仪、脱脂棉、蒸馏水、无水乙醇、葡萄糖溶夜、滴管 2.了解注意事项 (1)尽量不要移动阿贝折射仪,确需移动时一定要轻拿轻放,避免振动,防止倾倒,切忌在实验台面上硬拖硬拉! (2)调整阿贝折射仪的各可调整部分时,要用力适中,细心慢调,不能蛮力调整。 (3)各试剂瓶子与滴管一一对应,不能混用。 (4)对号入座,各组仪器、用品不可混用。 (5)本实验采用老师讲解演示和同学练习同步进行的方式,一定要注意精力集中,提高效率。 3.学习阿贝折射仪的使用 依次学习练习目镜(调焦)、反光板(反光孔)、进光孔、进光棱镜、折射棱镜、棱镜锁定手轮、棱镜转动手轮、阿米西

光学材料折射率的测定报告

光学材料折射率的测定 Summary :Refractive index is one of the important parameters of optical materials, which often needs to be measured in scientific research and production practice. The method of measuring the refractive index can be divided into two categories: one is the application of refractive index and reflection, total reflection law, through the accurate measurement of the angle of the refractive index of the geometric optics method, such as the minimum deviation angle method, grazing incidence method, total reflection method and displacement method, etc. Another kind is the light passed the medium (or by a dielectric reflection) and the polarization state changes of the phase change of the transmitted light or reflected light) and refraction rate is closely related to the principle to measure the refractive index of the physical optics method, such as cloth Brewster angle method, interferometry, ellipsometry etc.. 摘要:折射率是光学材料的重要参数之一,在科研和生产实际中常需要测量它。测量折射率的方法可分为两类:一类是应用折射率及反射、全反射定律,通过准确测量角度来求折射率的几何光学方法,如最小偏向角法、掠入射法、全反射法和位移法等。另一类是利用光通过介质(或由介质反射)后,透射光的相位变化(或反射光的偏振态变化)与折射率密切相关的原理来测定折射率的物理光学方法,如布儒斯特角法、干涉法、椭偏法等。 关键词:最小偏向角 偏振 全反射 分光计 干涉 布儒斯特角 引言:本实验要求综合已学过的光学知识和基本实验操作,查阅有关资料,拟定实验方案,完成对各种待测样品的折射率测定,从而对光学材料折射率的测量,在原理和方法上有更全面的认识。加深对分光计、阿贝折射仪、迈克尔孙干涉仪等光学仪器使用方法的了解。 一、最小偏向角法 【实验原理】 由图1的三棱镜光路图,可以证明: 2 sin 2sin sin sin min 1 1 A A r i n +== δ 其中A 是三棱镜的顶角,δmin 是出射光在i 1=i 2时的最小偏向角。由上式可见,只要测得三棱镜的顶角A 和对钠黄光的最小偏向角δmin ,便可间接测出对该波长的光的折射率n 。 【实验步骤】 1. 调节分光计到使用状态,打开汞灯照明平行光管,找到折射光谱 2. 对准某条谱线,转动游标盘和望远镜跟踪此谱线,当其不再继续移动而反向移动时,记录游标盘读数θ1、θ2 3. 测定入射光方向,将望远镜对准平行光管,使分划板十字竖线对准狭缝中央,读出此时两游标的读数θ1'、θ2',则最小偏向角δmin 为: ()()[] '2 1 22'11min θθθθδ-+-= 4. 重复测量,求平均值 图1 三棱镜中的光路图

14种光学塑料的材料特点

14 种光学塑料的材料特点 、光学塑料分类塑料材料一般分为热塑性和热固性 塑料。热塑性塑料指的是可反复加热仍可塑的塑料。光学塑 料大部分为热塑性塑料,常用的有:聚甲基丙烯酸甲脂(PMMA)聚苯乙烯(PS)聚碳酸脂(PC)等。热固性塑料:指的是在所用的合成树脂在加热初期软化,具有可塑性,继续加热则随着化学反应燮硬使形状固定不再发生变化。常用的材料有:烯丙基二甘醇碳酸脂(CR-39)环氧光学塑料 二、主要的光学塑料1.聚甲基丙烯酸甲脂PMMA Polymethylmethacrylate ,简称PMMA ,也称Acrylic 。摩尔 量约为50 万---100 万,(摩尔量对聚合物的性能有很大的影响) nd=1.491,色散系数Vd=57.2,是“王冕”材料,透过率约92%,加速老化后240H 透过率仍能达到92%,在室外 使用10 年后只降到88%,能透过波长270nm 以上的紫外光。 PMMA能透过X射线和丫射线,其薄片能透过a射线和P 射线,但是能吸收中子线。PMMA密度为1.19kg/m3,在20C *109Pa时的平均吸水率为2%,在所有光学塑料中它的 吸水率最高,弹性模量为 3.16*109Pa,泊松比为0.32,抗张 强度为(462---703) *109Pa。PMMA的线形膨胀系数为8.3*10-5 K-1,比K9玻璃大10倍,但PMMA 从高温冷却时

的光学记忆即组件恢复到它原来尺寸的性能要比玻璃好,它 的折射率随温度的变化 dn/dt 为-8.5*10-5 ,比K9玻璃大出约 30 倍,但是它是负值。热导率为 0.192W/(m*k) ,比热容为 1465J/(kg*k),它的玻璃化温度为 105 C,熔化温度为180 C 。 PMMA 耐稀无机酸去污液, 油脂和弱碱的性能优良, 机酸中等,不耐醇,酮,溶于芳烃,氯化烃有机溶剂,为强 碱及温热的 NaOH , KOH 所侵蚀,与显影液不起反应。 PMMA 有优良的耐气候性, 在热带气候下曝晒多年, 它的透 明度和色泽变化小。 PMMA 目前于广泛被用于制造照相机, 摄录一体机,投影机,光盘读出头以及军用火控和制导系统 中的非球面透镜和反射镜,还用来制造菲涅尔透镜,微透镜 数组,隐形眼镜,光纤,光盘基板等零件。 2.聚苯乙烯 PS Polystyrene ,简称PS ,也称Styrene 。这是 种火石类热塑性光学塑料,尽管它的抗紫外辐射性能,抗 划伤性能都不如 PMMA ,但它折射率高, nd=1.59—1.660, 阿贝系数小 Vd=30.8 ,所以当它和 PMMA 组合时可以成为对 F 和C 谱线进行校正的消色差透镜,二级光谱的校正一般比 自由着色,无嗅无味无毒,不致产生霉菌,吸湿性小吸只有 0.02%。 PS 热变形温度为70--98 C,与配方及后处理有关, 它的最高连续使用温度为 60--80 C,成型收缩率为 0.45%, 耐浓无 玻璃的消色差透镜还要更好一些。 它的透过率为 88%,它 的双折射率较大,在阳光作用下聚苯乙烯容易变黄。 PS 能

材料物理性能名词解释

铁电性:电偶极子由于它们的相互作用而产生的自发平行排列的现象。 屈服极限:中档应力足够大,材料开始发生塑性变形,产生塑性变形的最小应力。 延展性:指材料受塑性形变而不破坏的能力。 构建的受力模型:拉伸、压缩、剪切、扭转、弯曲 塑性形变:指外力移去后不能恢复的形变。 热膨胀:物体的体积或长度随着温度的升高而增加的现象称为热膨胀,本质是点阵结构中质点的平均距离随温度升高而增大。 色散:材料的折射率随入射光频率的减小而减小的性质。 抗热震性:是指材料承受温度的剧烈变化而抵抗破坏的能力。 蠕变:对材料施加恒定应力时。应变随时间的增加而增加,这种现象叫蠕变。此时弹性模量也将随时间的增加而减少。 弛豫:对材料施加恒定应变,应力随时间减少的现象,此时弹性模量也随时间而降低。 滞弹性:对于理想弹性固体,作用应力会立即引起弹性形变,一旦应力消除,应变也随之消除。对于实际固体,这种应变的产生和消除需要一定的时间,这种性质叫滞弹性。 粘弹性:有些材料在比较小的应力作用下可以同时表现出弹性和粘性。 虎克定律:材料在正常温度下,当应力不大时其变形是单纯的弹性变形,应力与应变的关系由实验建立。 晶格滑移:晶体受力时,晶体的一部分相对于另一部分发生平移滑动。 应力:单位面积上所受的内力。形变:材料在外力作用下,发生形状和大小的变化。 应变:物质内部各质点之间的相对位移。 本征电导:由晶体点阵的基本离子运动引起。离子自身随热运动离开晶格形成热缺陷,缺陷本身是带电的,可作为离子电导截流子,又叫固有离子电导,在高温下显著。 杂质电导:由固定较弱的离子的运动造成,主要是杂质离子。在低温下显著。杂质电导率要比本征电导率大得多。离子晶体的电导主要为杂质电导。 热电效应:自发极化电矩吸附异性电荷,异性电荷屏蔽自发极化电场而自发极化对温度影响当温度变化时释放出电荷。

超材料

超材料:科学与技术发展的一种新前沿 摘要:超材料指的是一些具有自然界的天然材料所不具备的超常物理性质的人工复合结构或复合材料,在近十年来已经成为了材料科学、物理、化学以及工程学等学科的前沿发展方向。本文对超材料的基本理论与原理、最新的进展以及未来的发展方向做了详细的介绍。首先展示了超材料的基本原理与理论以及发展历程,其次针对最新发展做了介绍,包括超透镜、隐身斗篷和光子晶体以及超材料制备等。最后,本文对超材料研究的未来发展方向与趋势作了详细讨论。 关键字:超材料负折射完美透镜光子晶体材料制造 1引言 在3000多年前,人类就掌握了制铜技术,并学会了制作较高性能的铜合金的方法。在2000多年前人们又掌握了炼铁技术。在20世纪六十年代,半导体材料飞速发展起来。人们在利用这些材料基本是在原子与分子级别。近些年来纳米技术又飞速的发展,在纳米尺寸级别人类又有很多重要的发现与发明。 超材料是一种与上面所介绍的材料都不一样的全新材料。它提供了一种可以让人们随心所欲的制造具有许多特殊物理性质的全新思路与方法。超材料的基本设计思路是以某种具有特殊功能的人工结构为基础。例如,材料中所呈现的一些物理性质往往和材料结构中的关键物理尺度有关,一个最直观的例子是晶体。晶体是自然界中物质的有序结构的一个重要形式,它的有序主要存在于原子层次,正是由于在这个尺度上的有序性调制,使晶体材料形成了一些无定型态所不具备的物理特征,上面所提到的半导体材料中最重要的单晶硅即是一种典型的晶体。由此类比,在其它层次上的有序排列则可能获得一定程度的自然界中的材料所不具备的物理性质.。因此,人们可以通过各种层次的有序结构实现对各种物理量的调制,从而获得自然界中在该层次上无序或无结构的材料所不具备的物理性质。 2 基本原理 1

材料性能知识点

重要知识点:见课本 重要概念: 矫顽力(电场、磁场) 居里温度 抗磁性、顺磁性、铁磁性特点 压电、热释电、铁电产生的条件 介电常数、折射、反射和散射的关系 压电材料的预极化条件 介电材料损耗的影响因素 重要应用例子 铁磁性材料在信息记录和读取中的应用 压电:电子天平、潜艇探测等 热释电:高温测温、火灾报警等 铁电:电控双折射、电控光散射等 半导体热敏和电压敏感效应应用例子 全反射概念及重要的应用例子 磁学性能 材料磁性是由材料内部电子循轨和自旋运动产生的 材料磁性分类——抗磁性物质:使磁场减弱的物质;顺磁性物质:使磁场略有增强的物质;铁磁性物质:使磁场强烈增加的物质。 材料被磁化后,磁化矢量与外加磁场方向相反的称为抗磁性 材料被磁化后,磁化矢量与外加磁场方向相同的称为顺磁性 特点:磁化强度与磁场强度之间均呈直线关系;当除去外磁场之后,扔恢复到未磁化前的状态,即存在磁化可逆性。 材料的抗磁性来源于电子循轨运动时受外加磁场作用所产生的抗磁矩。 材料的顺磁性主要来源于原子(离子)的固有磁矩。 铁磁性来源于原子未被抵消的自旋磁矩和自发磁化。 原子内层电子交互作用其积分常数A>0,使彼此的自旋磁矩同向排列形成自发磁化;铁、钴、镍因其交换积分常数A具有较大的正值,有较强的自发磁化倾向;稀土元素常温下为顺磁性。 磁化到饱和磁化状态后.当H=0时,磁感应强度B并不等于零,而是保留一定大小的数值Br,铁磁金属的剩磁现象 要使B值继续减小,必须加一个反向磁场-H,当H等于一定值Hc时,B=0。Hc 为去掉剩磁的临界外磁场,称为矫顽力. 磁化强度的饱和值称为饱和磁化强度,M S;与其对应的磁感应强度称为饱和磁感应强度,B S。

vray材质的折射率

材质颜色折射率列表金属颜色/RGB 漫射镜面反射凹凸% 铝箔 铝箔 180,180,180/ 32 / 90 / 65 / 8 铝箔(纯) 180,180,180/ 50 /45 / 35 / 15 铝 220,223,227/ 35 / 25 / 40 / 15 磨亮的铝 220,223,227/ 35 / 65 / 50 / 12 黄铜 191,173,111/ 40 / 40 / 40 / 20 磨亮的黄铜 194,173,111/ 40 / 65 / 50 / 10 镀铬合金 150,150,150/ 40 / 40 / 25 / 35 镀铬合金2 220,230,240/ 25 / 30 / 50 / 20 镀铬铝 220,230,240/ 15 / 60 / 70 / 10 镀铬塑胶 220,230,240/ 15 / 60 / 85 / 10 镀铬钢 220,230,240/ 15 / 60 / 40 / 5 纯铬 220,230,240/ 15 / 60 / 65 / 5 铜 186,110,64/ 45 / 40 / 65 / 10 18K金 234,199,135/ 45 / 40 / 45 / 10 24K金 218,178,115/ 35 / 40 / 65 / 10 未精炼的金255,180,66/ 35 / 40 / 15 / 25 黄金 242,192,86/ 45 / 40 / 25 / 10 石墨 87,33,77/ 42 / 90 / 15 / 10 铁 118,119,120/ 35/ 50 / 25 / 20 铅锡锑合金 250,250,250/ 30 / 40 / 15 / 10 银 233,233,216/ 15 / 90 / 45 / 15 钠 250,250,250/ 50 / 90 / 25 / 10 废白铁罐 229,223,206/ 30 / 40 / 45/ 30 不锈钢 128,128,126/ 40 / 50 / 35 / 20 磨亮的不锈钢220,220,220/ 35 / 50 / 25 / 35 锡 220,223,227/ 50 / 90 / 35 / 20

超材料

超材料的发展及国内外研究现状 目前,国际上学者将由人工设计的、具有特异电磁性质的结构安排制备形成的材料统称为超材料(metamaterial)。近年来人们对这种超材料特别感兴趣,原因在于这种超材料结构的周期长度远小于电磁波波长,有利于器件的小型化和集成化,这是普通的光子晶体无法比拟的。超材料有单负材料(single-negative materials:SNG)和双负材料(double.negative materials:DNG)两种。把介电常数和磁导率均为负的材料称之为DNG,即左手材料(1eft.handed materials:LHMs);把介电常数和磁导率仅有一者为负的材料称之为SNG。相应地将同时具有正介电常数和正磁导率的材料称为双正材料(double positive materials:DPS)即右手材料(right handed materials:RHMs)。 左手材料的基本理论及国内外研究现状 介电常数ε和磁导率μ是用于描述物质电磁性质的最基本的两个物理量,它们决定了电磁波在物质中的传播特性。对一般电介质而言,介电常数ε和磁导率μ都是非负的常数。由Maxwell方程组可知,在ε和μ都为正值的物质中,入射电磁波的电场、磁场和波矢(相位传播方向)三者构成右手关系,这样的物质被称为RHMs。迄今为止在自然界见到的都是RHMs。然而,前苏联物理学家Veselago[1]在1968年提出,当ε和μ同时为负值时,Maxwell方程依然成立,电磁波仍然可以在这种“双负材料”中传播。由于在这种材料中电场强度、磁场强度与波矢之间构成左手关系,故Veselago称这种材料为左手材料(LHMs)同时也称双负材料(DNG)。LHMs有时也被称为负折射率材料(negative inedex ofrefraction materials:NIR materials)。由于这种材料的介电常数和磁导率都是负数,折射率也是负的,电磁学理论与后来的实验结果都证实它有很多奇异的特性,比如负折

基本材料

LASER Light Amplification by Stimulated Emission of Radiation 激光倍频 利用非线性晶体在强激光作用下的二次非线性效应,使频率为ω的激光通过晶体后变为频率为2ω的倍频光,称为倍频技术,或二次谐波振荡。如将1.06微米的激光通过倍频晶体,变成0.532微米的绿光。倍频技术扩大了激光的波段,可获得更短波长的激光。 倍频激光器 用非线性材料产生倍频激光的器件称为倍频激光器。一般把入射地激光称为基频光,由倍频激光器出来的激光称为倍频光或二次谐波。 根据非线性材料特性,我们一般采用角度相位匹配来得到二次谐波。角度相位匹配是利用晶体的双折射来补偿正常色散而达到相位匹配的一种方法。使入射晶体的基频光和产生的倍频光具有不同的偏振态,而所用晶体应预先根据晶体光学的理论和有关的折射率数据,计算出切割晶体的方向,磨制成所需形状,使基频光和倍频光能满足相位匹配条件。 两类匹配方式 按照入射基波的偏振态又可将角度匹配方式分为两类:一种是基波取单一的线偏振光(如o光)形式入射,而倍频波为另一状态的线偏振光(如e光),这种情况通常称之为第I类相位匹配。这一倍频过程用一式子表示为“o + o→e”,因为两个基波的偏振方向是平行的,所以又称平行式位相匹配。另一种情况是基波同时取两种不同的线偏振光(o 光e光)形式入射,即两者的偏振方向是相垂直的,而产生的倍频波为单一状态的线偏振光(如e光),这种情况通常称为第Ⅱ类位相匹配,记作“e + o→e”。因为第Ⅱ类匹配方式,在非线性极化过程中,不是单纯由基波的o光(或e光)的分量乘积在起作用,而是o光和e光分量同时在起作用。 一束自然光入射于单轴晶体时,会变成两束折射光,称为e光。 o光就是寻常光,沿不同方向传播速度相同,e光沿不同方向传播速率不同。 o光、e光都是线偏振光,o光的振动方向垂直于o光的主平面,e光的振动方向在e光的主平面内。 光在非均质体中传播时,其传播速度和折射率值随振动方向不同而改变,其折射率值不止一个。光波入射非均质体,除特殊方向以外,都要发生双折射,分解成振动方向互相垂直,传播速度不同,折射率不等的两种偏振光,此现象称为双折射。以寻常折射率传播的为o光,满足折射定律;以非寻常折射率传播的为e光,不满足折射定律 Nd:YVO4介绍: 掺钕钒酸钇(Nd:YVO4)晶体是一种性能优良的激光晶体,适于制造激光二极管泵浦特别是中低功率的激光器。与Nd:YAG相比Nd:YVO4对泵浦光有较高的吸收系数和更大的受激发射截面。激光二极管泵浦的Nd:YVO4晶体与LBO,BBO,KTP等高非线性系数的晶体配合使用,能够达到较好的倍频转换效率,可以制成输出近红外、绿色、蓝色到紫外线等类型的全固态激光器。现在Nd:YVO4激光器已在机械、材料加工、波谱学、晶片检验、显示器、医学检测、激光印刷、数据存储等多个领域得到广泛的应用。而且Nd:YVO4二极管泵浦固态激光器正在迅速取代传统的水冷离子激光器和灯泵浦激光器的市场,尤其是在小型化和单纵模输出方面。 Nd:YVO4与Nd:YAG比较的优势: 在808nm左右的泵浦带宽,约为Nd:YAG的5倍。

材料物理性能

第一份 一、填空题(每空1分,共30分): 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是:、 2、列举三种你所知道的热分析方法:、、 3、磁各向异性一般包括、、等。 4、热电效应包括效应、效应、效应,半导体制冷利用的是效应。 5、产生非线性光学现象的三个条件是、、。 6、激光材料由和组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的功能、功能、功能、 功能或功能。 8、拉伸时弹性比功的计算式为,从该式看,提高弹性比功的途径有二: 或,作为减振或储能元件,应具有弹性比功。 9、粘着磨损的形貌特征是,磨粒磨损的形貌特征是。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐的现象称为应力松弛,材料抵抗应力松弛的能 力称为。 二、是非题(每题1分,共10分): 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。() 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。() 3、原子磁距不为零的必要条件是存在未排满的电子层。() 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD分布。() 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。() 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。() 7、由于严格的对应关系,材料的发射光谱等于其吸收光谱。() 8、凡是铁电体一定同时具备压电效应和热释电效应。() 9、硬度数值的物理意义取决于所采用的硬度实验方法。() 10、对于高温力学性能,所谓温度高低仅具有相对的意义。() 三、单项选择(每题2分,共20分): 1、关于材料热容的影响因素,下列说法中不正确的是() A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D材料热容与温度的精确关系一般由实验来确定。 2、关于热膨胀,下列说法中不正确的是() A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是() A 顺磁性 B 亚铁磁性 C反铁磁性 D抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是()

材质颜色 折射率列表

材质颜色折射率列表 金属颜色/RGB 漫射镜面反射凹凸% 铝箔180,180,180/ 32 / 90 / 65 / 8 铝箔(纯)180,180,180/ 50 /45 / 35 / 15 铝220,223,227/ 35 / 25 / 40 / 15 磨亮的铝220,223,227/ 35 / 65 / 50 / 12 黄铜191,173,111/ 40 / 40 / 40 / 20 磨亮的黄铜194,173,111/ 40 / 65 / 50 / 10 镀铬合金150,150,150/ 40 / 40 / 25 / 35 镀铬合金2 220,230,240/ 25 / 30 / 50 / 20 镀铬铝220,230,240/ 15 / 60 / 70 / 10 镀铬塑胶220,230,240/ 15 / 60 / 85 / 10 镀铬钢220,230,240/ 15 / 60 / 40 / 5 纯铬220,230,240/ 15 / 60 / 65 / 5 铜186,110,64/ 45 / 40 / 65 / 10 18K金234,199,135/ 45 / 40 / 45 / 10 24K金218,178,115/ 35 / 40 / 65 / 10 未精炼的金255,180,66/ 35 / 40 / 15 / 25 黄金242,192,86/ 45 / 40 / 25 / 10 石墨87,33,77/ 42 / 90 / 15 / 10 铁118,119,120/ 35/ 50 / 25 / 20 铅锡锑合金250,250,250/ 30 / 40 / 15 / 10

负折射率材料特点及其应用

负折射率材料的特点及其应用 背景 自然界存在的介质都是折射率大于0的,我们常接触的材料的折射率多数都是大于1,在定性思维的误区下,人们认为介质的折射率都为正。 直到1968年,苏联物理学家维克托·韦谢拉戈(Victor Veselago)【1】提出了负折射率的理论。由于韦谢拉戈的这一设想完全颠覆了人们所认知的光学世界,它能够使光波看起来如同倒流一般,在许多现象描述上完全背离常规,所以在相当长的时间内都不被人们认可,这种荒诞的想法没有必要去研究证明。 Veselago为了证明自己的观点开始苦苦寻求满足要求的物质,但是他失败了。没有充足的证据证明他的猜想,渐渐地就被人们淡忘了。 19966年~1999年,英国的Pendry从理论上提出了一种由开路谐振金属环构成,具有等效的负介电常数和负磁导率的三维周期结构,【2】~【3】这一发现理论上证明了负折射率材料的可存在性,使Veselago的猜想重新摆在了人们面前。 不久,美国的Smith等在2000年金属丝板和SRR板有规律地排列在一起,制作了世界上第一块等效介电常数和等效磁导率同时为负数的介质,从实验上验证了负折射率的存在。【4】~【5】他们研制出了相应的器件,负折射率材料由此进入了实质性研究的阶段。 2001年,Shelby等人首次在实验上证实了当电磁波斜入射到左手材料与右手材料的分界面时,折射波的方向与入射波的方向在分界面法线的同侧。【6】 图1.负折射率的超材料 近年来,负折射率材料的研究愈发成为科学界的热点,这要应用于军事、航天等高端领域,起因了国内外众多研究者的注意,涉及电磁波、光电子学、材料学等方面。

随着对负折射率材料的研究,又掀起了一阵对新兴领域的发展,即超颖材料(Metamaterials )。超颖材料不只包含负折射率材料,也包含单负材料,人工超 低折射率材料和超高折射率材料等。【7】 正如折射率材料的提出一样,超颖材料的重要意义不仅体现在所研制出的几种人工材料,也体现在了一种全新的思维方法。为新型功能材料的设计提供了一个广阔的空间。 理论分析 首先来看一下负折射率材料的概念,负折射率材料也称为左手材料(left handed medium ),简写为LHM (这一命名原由将在后面给予证明)。指的是介电 常数ε、磁导率μ、折射率n 同时为负的介质。【5】 麦克斯韦方程组在物理领域有着至高无上的地位,主要是由于麦克斯韦方程组适用广泛,所以这里我们也从麦克斯韦方程组开始着手。 电磁波尸油谐振的电场和磁场组成。各向异性介电物质中电位移矢量与电场强度矢量方向一致,大小成正比,有 (1)E D ε= 式中ε是比例系数,成为介电常数。 对于各项同性非铁磁性物质,磁感应强度矢量与磁场强度矢量方向保持一致,大小成正比,有 (2)H B μ= 式中μ成为磁导率。 再加上, (3)E J σ= 以上三个式子被称为物质方程。 我们再来看麦克斯韦方程组的微分形式: ???????????+=????-=??=??=??)4(0t D j H t B E B D ρ 麦克斯韦方程组表明,任何随时间而变化的磁场,都是和涡旋电场一起的。任何变化的电场,都是和磁场联系在一起的。

相关主题
文本预览
相关文档 最新文档