当前位置:文档之家› 朴素贝叶斯分类模型

朴素贝叶斯分类模型

朴素贝叶斯分类模型
朴素贝叶斯分类模型

两种最广泛的分类模型——决策树模型和朴素贝叶斯模型。该模型是由贝叶斯公式延伸而来。讲到贝叶斯公式先要看条件概率公式

该公式说明了如何计算已知B发生的前提下A还要发生的概率。A和B是随机事件,是否独立事件都适合这个公式。举个例子比喻就是你宿舍哥们在北师找了个女朋友,之后分手了,那么在他已经在北师成功一次的条件下再次去北师找女朋友成功的概率。如果是独立事件呢,那就是问在他分手之后,你去北师找女朋友成功的概率(在他不参与指导的前提下)跟他找女朋友是两码子事。

回正题,之后出场了贝叶斯公式

公式很简单,但是该公式真的超级有用,它揭示了在某种未发生条件下和已发生条件下概率的计算关系,即根据B发生条件下A发生的概率可以推理出A发生下B发生的概率。在真实生活中我们很难获得P(B|A)的概率,但是根据我们已知的P(A|B)就可以获得它,所以该定理的用途十分广大,可以用作数据的预测分类等。

贝叶斯分类算法有很多如朴素贝叶斯算法,TAN算法等

朴素贝叶斯是一种很简单的分类思想,对于给出的带分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大就认为该待分类项属于哪个类别。简单点说,就是你在学院路上发现一个学生摸样的美女,让你猜这美女是哪的。大家十有八九会猜是北师的,因为北师有美女的概率更高,在没有其他更多信息的条件下,我们就将这个美女分类到了北师里。这就是朴素贝叶斯的思想。

朴素贝叶斯分类的正式定义如下:

1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。

3、计算。

4、如果,则。

对于贝叶斯的分类步骤说明如下,那病毒检测分类,对于一个病毒的定义可能会是包含多个向量的一个病毒的特征就是一个X,它包含N个特征向量,而对于学习集即N++个各种病

毒样本集可以分类为M个分类Y1,Y2....。为了将某一个病毒样本放入这M个类中,我们必须按个计算P(Y1|X),P(Y2|X)等N个计算,并找出其中最大的然后这个样本就归类完了。

但是我们如何计算P(Y1|X)呢,我如何知道这个病毒出现的状况下,它是Y1类病毒的概率呢。这就用到了贝叶斯公式了,根据贝叶斯公式我们可以得知,

P(Yi|X) = P(X|Yi)*P(Yi)/P(X),由于对于每个概率都要除以一个P(X)然后再比较大小,所以没有影响,关键的影响在于分子,又因为X是含有N个特征向量的空间,朴素贝叶斯分类器认为每个向量对于一个病毒的概率影响是相互独立的所以分子就中的乘项可以分解为:P(N1|Yi)*P(N2|Yi)*......*P(Yi)。

也就是说我只需要计算出每一个特征向量在某一种分类的累乘然后乘以这个分类的概率。这样算出的最大值所在的分类则为需要的分类。

再捋一捋哈,也就是说如果我要想将一个未知的病毒分类,那么我需要计算每个特征在每个类别中的特征出现的概率的累乘然后乘以该分类出现的概率,最后选取最大的则为该分类。贝叶斯的重要和利害在于把先验概率改成了后验概率,给力啊。

基于朴素贝叶斯模型的两类问题分类

基于朴素贝叶斯模型的两类问题分类 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes分类器性能的因素,掌握基于Bayes决策理论的随机模式分类的原理和方法,并理解ROC曲线的意义 二、实验内容 通过Bayes决策理论的分类器,从给定样本集选择训练集以及测试集进行训练并分类,用matlab实现,绘制ROC曲线,得到最优的分类阈值 三、实验原理 Bayes分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定 朴素贝叶斯的一个基本假设是所有特征在类别已知的条件下是相互独立的,即 p(x│w_i )=p(x_1,x_2,...,x_d│w_i )=∏_(j=1)^d?〖p(x_j│w_i ) 〗 在构建分类器时,只需要逐个估计出每个类别的训练样本在每一维上的分布形式,就可以得到每个类别的条件概率密度,大大减少了需要估计的参数的数量。朴素贝叶斯分类器可以根据具体问题确定样本在每一维特征上的分布形式,最常用的一种假设是每一个类别的样本都服从各维特征之间相互独立的高斯分布,即 p(x│w_i )=∏_(j=1)^d?〖p(x_j│w_i )=∏_(j=1)^d?{1/(√2πσ_ij ) exp[-(x_j-μ_ij )^2/(2σ_ij )] } 〗 式中u_ij--第i类样本在第j维特征上的均值 σ_ij--相应的方差 可以得到对数判别函数: 〖g〗_i (x)=ln?〖p(x│w_i )〗+ln?P(w_i ) =∑_(j=1)^d?[-1/2 ln?2π-ln?〖σ_ij 〗-(x_j-μ_ij )^2/(2σ_ij )] +ln?P(w_i )=-d/2 ln?2π-∑_(j=1)^d?ln?〖σ_ij-∑_(j=1)^d?〖(x_j-μ_ij )^2/(2σ_ij )+〗〗ln?P(w_i ) 其中的第1项与类别无关,可以忽略,由此得到判别函数: 〖g〗_i (x)=ln?P(w_i )-∑_(j=1)^d?ln?〖σ_ij-∑_(j=1)^d?(x_j-μ_ij )^2/(2σ_ij )〗 四、实验步骤 1、用给定的两类样本集,各选取前400个作为训练样本,通过调用MATLAB工具箱的NaiveBayes类的fit函数训练分类器 2、通过1得到的训练器,选取样本集后100个样本作为测试样本,得到分类结果。 3、对测试集的分类结果进行统计,计算正确率。 4、绘制相应的ROC曲线 五、实验代码 function [Train,TrainLabel] = getTrain(c1,c2) %UNTITLED 得到训练样本 % 根据给定两类样本集各选取前400行样本作为训练样本 c1 = c1(1:400,:);

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

贝叶斯分类

朴素贝叶斯分类 先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数 据:sunny,cool,high,TRUE,判断一下会不会去打球。 这个问题可以用决策树的方法来求解,当然我们今天讲的是朴素贝叶斯法。这个一”打球“还是“不打球”是个两类分类问题,实际上朴素贝叶斯可以没有任何改变地解决多类分类问题。决策树也一样,它们都是有导师的分类方法。 朴素贝叶斯模型有两个假设:所有变量对分类均是有用的,即输出依赖于所有的属性;这些变量是相互独立的,即不相关的。之所以称为“朴素”,就是因为这些假设从未被证实过。 注意上面每项属性(或称指标)的取值都是离散的,称为“标称变量”。 step1.对每项指标分别统计:在不同的取值下打球和不打球的次数。

step2.分别计算在给定“证据”下打球和不打球的概率。 这里我们的“证据”就是sunny,cool,high,TRUE,记为E, E1=sunny,E2=cool,E3=high,E4=TRUE。 A、B相互独立时,由: 得贝叶斯定理: 得: 又因为4个指标是相互独立的,所以 我们只需要比较P(yes|E)和P(no|E)的大小,就可以决定打不打球了。所以分母P(E)实际上是不需要计算的。 P(yes|E)*P(E)=2/9×3/9×3/9×3/9×9/14=0.0053 P(no|E)*P(E)=3/5×1/5×4/5×3/5×5/14=0.0206 所以不打球的概率更大。 零频问题 注意table 2中有一个数据为0,这意味着在outlook为overcast的情况下,不打球和概率为0,即只要为overcast就一定打球,这违背了朴素贝叶斯的基本假设:输出依赖于所有的属性。 数据平滑的方法很多,最简单最古老的是拉普拉斯估计(Laplace estimator)--即为table2中的每个计数都加1。它的一种演变是每个计数都u(0

朴素贝叶斯python代码实现

朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯准则: 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程 (1)收集数据:可以使用任何方法。本文使用RSS源 (2)准备数据:需要数值型或者布尔型数据 (3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好 (4)训练算法:计算不同的独立特征的条件概率 (5)测试算法:计算错误率 (6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。 准备数据:从文本中构建词向量 摘自机器学习实战。 [['my','dog','has','flea','problems','help','please'], 0 ['maybe','not','take','him','to','dog','park','stupid'], 1 ['my','dalmation','is','so','cute','I','love','him'], 0

['stop','posting','stupid','worthless','garbage'], 1 ['mr','licks','ate','my','steak','how','to','stop','him'], 0 ['quit','buying','worthless','dog','food','stupid']] 1 以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。 在bayes.py文件中添加如下代码: [python]view plaincopy 1.# coding=utf-8 2. 3.def loadDataSet(): 4. postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please' ], 5. ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6. ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7. ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8. ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9. ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 10. classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论 11.return postingList, classVec 12. 13.def createVocabList(dataSet): 14. vocabSet = set([]) 15.for document in dataSet: 16. vocabSet = vocabSet | set(document) 17.return list(vocabSet) 18. 19.def setOfWords2Vec(vocabList, inputSet): 20. returnVec = [0] * len(vocabList) 21.for word in inputSet: 22.if word in vocabList: 23. returnVec[vocabList.index(word)] = 1 24.else: 25.print"the word: %s is not in my Vocabulary!" % word 26.return returnVec

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.doczj.com/doc/804961096.html, Blog:https://www.doczj.com/doc/804961096.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

朴素贝叶斯多项式模型

朴素贝叶斯分类--多项式模型 1.多项式模型简介 朴素贝叶斯分类器是一种有监督学习,针对文本分类常见有两种模型,多项式模型(词频型)和伯努利模型(文档型)。多项式模型以单词为粒度,伯努利模型以文件为粒度。对于一个文档A,多项式模型中,只有在A中出现过的单词,才会参与后验概率计算。 2.多项式模型基本原理及实例 2.1基本原理 已知类别C={C1,C2,C3,?,C k}与文档集合 D={D1,D2,?,D n} 设某一文档D j的词向量为D j={d j1,d j2,?d j l j }(可重复)设训练文档中出现的单词(单词出现多次,只算一次)即语料库为V 对于待分类文档A={A1,A2,?A m},则有: 1)计算文档类别的先验概率 P C i= D j D j∈C i D j n j=1 P(C i)则可以认为是类别C i在整体上占多大比例(有多大可能性)。

2)某单词d j l j 在类别C i下的条件概率 P d j l j C i= d j l j +1 D j+V D j∈C i P d j l j C i可以看作是单词d j l j 在证明D j属于类C i上提供了 多大的证据。 3)对于待分类文档A被判为类C i的概率 假设文档A中的词即A1,A2,?A m相互独立,则有 P C i A=P C i∩A = P C i P A C i =P C i P A1,A2,?A m C i P A =P C i P A1C i P A2C i?P A m C i P A 对于同一文档P A一定,因此只需计算分子的值。 多项式模型基于以上三步,最终以第三步中计算出的后验概率最大者为文档A所属类别。 2.2 实例 给定一组分好类的文本训练数据,如下:

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

朴素贝叶斯分类模型

两种最广泛的分类模型——决策树模型和朴素贝叶斯模型。该模型是由贝叶斯公式延伸而来。讲到贝叶斯公式先要看条件概率公式 该公式说明了如何计算已知B发生的前提下A还要发生的概率。A和B是随机事件,是否独立事件都适合这个公式。举个例子比喻就是你宿舍哥们在北师找了个女朋友,之后分手了,那么在他已经在北师成功一次的条件下再次去北师找女朋友成功的概率。如果是独立事件呢,那就是问在他分手之后,你去北师找女朋友成功的概率(在他不参与指导的前提下)跟他找女朋友是两码子事。 回正题,之后出场了贝叶斯公式 公式很简单,但是该公式真的超级有用,它揭示了在某种未发生条件下和已发生条件下概率的计算关系,即根据B发生条件下A发生的概率可以推理出A发生下B发生的概率。在真实生活中我们很难获得P(B|A)的概率,但是根据我们已知的P(A|B)就可以获得它,所以该定理的用途十分广大,可以用作数据的预测分类等。 贝叶斯分类算法有很多如朴素贝叶斯算法,TAN算法等 朴素贝叶斯是一种很简单的分类思想,对于给出的带分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大就认为该待分类项属于哪个类别。简单点说,就是你在学院路上发现一个学生摸样的美女,让你猜这美女是哪的。大家十有八九会猜是北师的,因为北师有美女的概率更高,在没有其他更多信息的条件下,我们就将这个美女分类到了北师里。这就是朴素贝叶斯的思想。 朴素贝叶斯分类的正式定义如下: 1、设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合。 3、计算。 4、如果,则。 对于贝叶斯的分类步骤说明如下,那病毒检测分类,对于一个病毒的定义可能会是包含多个向量的一个病毒的特征就是一个X,它包含N个特征向量,而对于学习集即N++个各种病

数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

统计学习_朴素贝叶斯分类器实验报告

作业6 编程题实验报告 (一)实验内容: 编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。用讲义提供的训练数据进行试验,观察分类器在 121.x x m ==时,输出如何。如果在分类器中加入Laplace 平滑(取?=1) ,结果是否改变。 (二)实验原理: 1)朴素贝叶斯分类器: 对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计。 在实验中,朴素贝叶斯分类器问题可以表示为下面的式子: ~1*arg max ()()D i y i y p y p x y ==∏ 其中,~ ()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。 2)Laplace 平滑: 在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。 解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数?。依然采用最大后验概率准则。 (三)实验数据及程序: 1)实验数据处理: 在实验中,所用数据中变量2x 的取值,对应1,2,3s m I === 讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果。 2)实验程序: 比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取?=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是?=0时,特定的Laplace 平滑情况。 实现函数:[kind] =N_Bayes_Lap(X1,X2,y,x1,x2,a) 输入参数:X1,X2,y 为已知的训练数据; x1,x2为测试样本值; a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑。 输出结果:kind ,输出的分类结果。

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

(2)判别模型、生成模型与朴素贝叶斯方法

判别模型、生成模型与朴素贝叶斯方法 JerryLead csxulijie@https://www.doczj.com/doc/804961096.html, 2011年3月5日星期六1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为p(y|x;θ),在参数θ确定的情况下,求解条件概率p(y|x)。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。换一种思路,我们可以根据山羊的特征首先学习出一个山羊模型,然后根据绵羊的特征学习出一个绵羊模型。然后从这只羊中提取特征,放到山羊模型中看概率是多少,再放到绵羊模型中看概率是多少,哪个大就是哪个。形式化表示为求p(x|y)(也包括p(y)),y是模型结果,x是特征。 利用贝叶斯公式发现两个模型的统一性: 由于我们关注的是y的离散值结果中哪个概率大(比如山羊概率和绵羊概率哪个大),而并不是关心具体的概率,因此上式改写为: 其中p(x|y)称为后验概率,p(y)称为先验概率。 由p(x|y)? p(y)=p(x,y),因此有时称判别模型求的是条件概率,生成模型求的是联合概率。 常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。 常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、Restricted Boltzmann Machine等。 这篇博客较为详细地介绍了两个模型: https://www.doczj.com/doc/804961096.html,/home.php?mod=space&uid=248173&do=blog&id=227964

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

相关主题
文本预览
相关文档 最新文档