当前位置:文档之家› 8.假设检验和方差分析

8.假设检验和方差分析

8.假设检验和方差分析
8.假设检验和方差分析

假设检验和方差分析

目录

一.正态总体均值的检验 (1)

1.单个总体 (1)

2.两个总体 (2)

3.成对数据的t 检验 (3)

二.正态总体方差的检验——方差齐次检验 (3)

三.方差分析 (4)

1.单因素方差分析 (4)

2.均值的多重比较 (6)

3.方差分析前提的三个条件: (8)

4.双因素方差分析 (9)

一.正态总体均值的检验

R 中函数为:t.test() ,使用格式为:

t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, var.equal = FALSE,

conf.level = 0.95, ...)

其中,x 、y 是由数据构成的向量(如果只提供x ,则作单个正态总体的均值检验;提供x 和y 做两个总体的均值检验)。alternative 表示备择假设,two.sided (缺省)表示双边检验(10:H μμ≠),less 表示单边检验(10:H μμ<),greater 表示单边检验(10:H μμ>)。mu 表示原假设0μ,conf.level 是置信水平,即1α-,通常是0.95。var.equal 是逻辑变量,若var.equal=T 表示认为两样本方差相同,若var.equal=F 表示认为两样本。paired 是逻辑变量,表示是否进行配对样本t 检验,默认为不配对。

注意:假设检验的基本思想是:为了检验一个“假设”是否成立,就现假定这个“假设”是成立的。从这个假定也看产生的后果,如果导致一个不合理的现象出现,那么就表明原先的假定不成立,如果没有导出不合理的现象发生,则不能拒绝原来的假设,称原假设是相容的。这里的“不合理”,并不是形式逻辑中的绝对矛盾,而是基于人们实践中广泛采用的一个原则:小概率事件在一次观察中可以认为基本不会发生。

选择备择假设的原则:事先有一定信任度或者出于某种考虑是否要加以“保护”。

1.单个总体

例1:某种元件的寿命x (小时),服从正态分布2

(,)N μσ,其中μ,2σ均未知,16只原件的寿命(单位:小时)如下,问是否有理由认为元件的平均寿命大于225小时。

检验:0010:225,:225H H μμμμ≤=>=

命令:

> X<-c(159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170)

> t.test(X,alternative="greater",mu=225)

One Sample t -test

data: X

t = 0.6685, df = 15, p -value = 0.257

alternative hypothesis: true mean is greater than 225

95 percent confidence interval:

198.2321 Inf

sample estimates:

mean of x

241.5

可以看到,所计算的T 值为0.6685,p 值0.257,均值241.5,置信下限为198.2321。 由于p 值=0.257>0.05,不能拒绝原假设,接受0H ,即认为平均寿命小于等于225。或者从置信下限198.2321<225,接受原假设。

2.两个总体

例2:X 为旧炼钢炉出炉率,Y 为新炼钢炉出炉率。假设两样本相互独立,且分别来自正态

总体21(,)N μσ和22(,)N μσ,其中1μ、2μ、2σ未知。问新的操作能否提高出炉率?

根据问题,需要假设:012112:,:H H μμμμ≥<。(方差相同)。

命令:

> X<-c(78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7,77.3)

> Y<-c(79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1)

> t.test(X, Y , var.equal=TRUE, alternative = "less")

Two Sample t -test

data: X and Y

t = -4.2957, df = 18, p -value = 0.0002176

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -1.908255

sample estimates:

mean of x mean of y

76.23 79.43

计算出p 值为0.0002176<0.05,故拒绝原假设,认为新的操作方法能提高出炉率。

3.成对数据的t 检验

例3:x 、y 为病人服药前后的血压数据,问该药是否有显著降压效果。

命令:

> x=c(117,127,141,107,110,114,115,138,127,122)

> y=c(113,108,120,107,104,98,102,132,120,114)

> t.test(x,y,paired=TRUE,alternative="greater")

Paired t -test

data: x and y

t = 4.6, df = 9, p -value = 7e -04

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

6.002 Inf

sample estimates:

mean of the differences

10

p 远小于a=0.05 ,拒绝原假设,说明药物组均值明显降低,该药物有降压作用。

二.正态总体方差的检验——方差齐次检验

在R 中用var.test(),使用格式为:

var.test(x, y, ratio = 1,

alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, ...)

其中,x 、y 是由数据构成的向量。ratio 是方差比的原假设,缺省值为1。alternative 表示备

择假设,two.sided (缺省)表示双边检验(22112:/H ratio σσ≠),less 表示单边检验

(22112:/H ratio σσ<),greater 表示单边检验(22112:/H ratio σσ>)。mu 表示原假设0μ,conf.level 是置信水平,即1α-,通常是0.95。

例4:X 为旧炼钢炉出炉率,Y 为新炼钢炉出炉率。假设两样本相互独立,且分别来自正态

总体211(,)N μσ和222(,)N μσ,其中1μ、2μ、21σ、22σ未知。检验两样本的方差是否相

同。

根据问题,需要假设:2222012112:,:H H σσσσ=≠。

命令:

> X<-c(78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7,77.3)

> Y<-c(79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1)

> var.test(X,Y)

F test to compare two variances

data: X and Y

F = 1.4945, num df = 9, denom df = 9, p-value = 0.559

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.3712079 6.0167710

sample estimates:

ratio of variances

1.494481

p值0.559>0.05,因此,无法拒绝原假设,认为两总体的方差是相同的。

三.方差分析

1.单因素方差分析

方差分析的原理:认为不同处理组的均值间的差别基本来源有两个:随机误差(组内差异)和组间差异。总偏差平方和=组间偏差平方和+组内偏差平方和。

方差分析中的假设检验:

假设有k个样本,原假设H0:样本均数都相等,H1:样本均数不全相等。

如果经过计算,p<0.05.推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计学意义。否则,承认原假设,样本来自相同总体,处理间无差异。

R中的aov()函数用来做方差分析,使用方法为:

aov(formula, data = NULL ...)

其中,formula是方差分析额公式,data是数据框。

例5:利用四种不同配方的材料A1、A2、A3、A4生产出来的元件,测得寿命如下:

问:四种不同配方下元件的使用寿命有无显著性差异。

>lamp<-data.frame(

X=c(1600, 1610, 1650, 1680, 1700, 1700, 1780, 1500, 1640,

1400, 1700, 1750, 1640, 1550, 1600, 1620, 1640, 1600,

1740, 1800, 1510, 1520, 1530, 1570, 1640, 1600),

A=factor(c(rep(1,7),rep(2,5), rep(3,8), rep(4,6)))

)

> lamp

X A

1 1600 1

2 1610 1

3 1650 1

4 1680 1

5 1700 1

6 1700 1

7 1780 1

8 1500 2

9 1640 2

10 1400 2

11 1700 2

12 1750 2

13 1640 3

14 1550 3

15 1600 3

16 1620 3

17 1640 3

18 1600 3

19 1740 3

20 1800 3

21 1510 4

22 1520 4

23 1530 4

24 1570 4

25 1640 4

26 1600 4

> lamp.aov<-aov(X ~ A, data=lamp)

> summary(lamp.aov)

Df Sum Sq Mean Sq F value Pr(>F)

A 3 49212 16404 2.166 0.121

Residuals 22 166622 7574

df表示自由度,Sum Sq是平方和,Mean Sq表示均方,F value为F值,Pr(>F)为p值。

A是因素,Residuals是残差即误差。

从p值来看,0.121>0.05,没有充分理由说明H0不正确,接受原假设,说明四种材料生产出的元件的平均寿命无显著性差异。

可以用过plot()函数来描述各因素的差异,命令为:

> plot(lamp$X~lamp$A)

从图形上也可以看出,四种材料省生产出的元件的平均寿命是无显著差异的。

例6:小白鼠在接种了3种不同类型的伤寒杆菌后的存活天数如下所示,判断小白鼠被注射三种菌型后的平均存活天数有无显著差异。

>mouse<-data.frame(

X=c( 2, 4, 3, 2, 4, 7, 7, 2, 2, 5, 4, 5, 6, 8, 5, 10, 7,

12, 12, 6, 6, 7, 11, 6, 6, 7, 9, 5, 5, 10, 6, 3, 10),

A=factor(c(rep(1,11),rep(2,10), rep(3,12)))

)

>mouse.aov<-aov(X ~ A, data=mouse)

> summary(mouse.aov)

Df Sum Sq Mean Sq F value Pr(>F)

A 2 94.26 47.13 8.484 0.0012 **

Residuals 30 166.65 5.56

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

p值远小于0.05,拒绝原假设,认为小白鼠在接种三种不同菌型的伤寒杆菌后的存活天数有显著差异。

2.均值的多重比较

如果之前检验的结论是拒绝原假设,即几个水平间有显著性差异,但并不意味着所有均值间

都存在差异,这时我们对每一对均值做一对一的比较,即多重比较。R中的TukeyHSD ()可以做多重比较,使用方法如下:

TukeyHSD(x, ...)

其中,x是单因素方差分析的对象。

例5:

> lamp.mulaov<-TukeyHSD(lamp.aov)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = X ~ A, data = lamp)

$A

diff lwr upr p adj

2-1 -76.28571 -217.78751 65.21608 0.4560825

3-1 -25.53571 -150.60682 99.53539 0.9408352

4-1 -112.61905 -247.06644 21.82835 0.1225428

3-2 50.75000 -87.01758 188.51758 0.7380144

4-2 -36.33333 -182.66593 109.99926 0.9000108

4-3 -87.08333 -217.59483 43.42816 0.2766262

从p值可以看出,四个水平两两之间均无显著性差异。

> plot(lamp.mulaov)

例6:

> mouse.mulaov<-TukeyHSD(mouse.aov)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = X ~ A, data = mouse)

diff lwr upr p adj

2-1 3.8818182 1.3430444 6.420592 0.0020129

3-1 3.2651515 0.8397276 5.690575 0.0065348

3-2 -0.6166667 -3.1045580 1.871225 0.8152215

从p值来看,2-1、3-1之间有显著差异,3-2之间无显著性差异。

>plot(mouse.mulaov)

3.方差分析前提的三个条件:

A可加性:假设模型是线性可加模型,每个处理效应与随机误差是可以叠加的。

B独立正态性:试验误差应该服从正态分布而且相互独立。

C方差齐性:不同处理间的方差是一致的。

对于常用的试验,大都能满足以上三个条件,对于有些不满足条件的试验,可以先进行数据变换再进行方差分析。

面对试验结果,如果对误差的正态性和方差齐性没有把握,则应进行检验。

(1)误差的正态性检验

本质上就是数据的正态性检验。可以使用之前介绍过的W检验(shapiro.test()函数)对数据做正态性检验。

(2)方差齐性检验

方差齐性检验最常用的方法是bartlett检验,R中bartlett.test()函数提供了bartlett检验,使用格式为:

bartlett.test(x, g, ...)

bartlett.test(formula, data, subset, na.action, ...)

其中,x是数据构成的向量或列表,g是由因子构成的向量,当x是列表时,此项无效。Formula 是方差分析的公式,data是数据框。

例5:

> attach(lamp)

> shapiro.test(X[A==1])

Shapiro-Wilk normality test

data: X[A == 1]

W = 0.9423, p-value = 0.6599

> shapiro.test(X[A==2])

Shapiro-Wilk normality test

data: X[A == 2]

W = 0.9384, p-value = 0.6548

> shapiro.test(X[A==3])

Shapiro-Wilk normality test

data: X[A == 3]

W = 0.8886, p-value = 0.2271

> shapiro.test(X[A==4])

Shapiro-Wilk normality test

data: X[A == 4]

W = 0.9177, p-value = 0.4888

从p值来看,数据在四种水平下均为正态。

> bartlett.test(X~A,data=lamp)

Bartlett test of homogeneity of variances

data: X by A

Bartlett's K-squared = 5.8056, df = 3,

p-value = 0.1215

从p值0.1215>0.05可得:接受原假设,认为各处理组的数据是等方差的。

4.双因素方差分析

例:在一个农业试验中,考虑四种不同的种子品种A1、A2、A3、A4和三种不同的施肥方法B1、B2、B3,得到产出数据如下:

试分析种子与施肥对产出有无显著影响。

仍使用aov()函数进行双因素方法分析。

不考虑交互作用:

>agriculture<-data.frame(

Y=c(325, 292, 316, 317, 310, 318,

310, 320, 318, 330, 370, 365),

A=gl(4,3),

B=gl(3,1,12)

)

> agriculture

Y A B

1 325 1 1

2 292 1 2

3 316 1 3

4 317 2 1

5 310 2 2

6 318 2 3

7 310 3 1

8 320 3 2

9 318 3 3

10 330 4 1

11 370 4 2

12 365 4 3

> agriculture.aov <- aov(Y ~ A+B, data=agriculture)

> summary(agriculture.aov)

Df Sum Sq Mean Sq F value Pr(>F)

A 3 3824 1274.7 5.226 0.0413 *

B 2 162 81.2 0.333 0.7291

Residuals 6 1464 243.9

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

从p值来看,A因素(不同品种)对产量有显著影响,而没有充分理由说明B因素(施肥方法)对产量有显著影响。

考虑交互作用:

> agriculture.aov2 <- aov(Y ~ A*B, data=agriculture)

> summary(agriculture.aov2)

Df Sum Sq Mean Sq

A 3 3824 1274.7

B 2 162 81.2 A:B 6 1464 243.9

(整理)sas第九章 t检验和方差分析.

第九章 t 检验和方差分析 在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。 第一节 t 检验 9.1.1 简介 t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验 检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。 SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。 2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。 SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。 3.两样本均值差异的显著性检验 作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。 设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为: (1)方差齐(相等)时: ) /1/1(212 21n n s x x t +-= )2/(])1()1[(212 222112-+-+-=n n s n s n s

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说: t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。 简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。 在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象随机分配到一个处理因

最新多元统计分析第三章 假设检验与方差分析

多元统计分析第三章假设检验与方差分析

第3章 多元正态总体的假设检验与方差分析 从本章开始,我们开始转入多元统计方法和统计模型的学习。统计学分析处理的对象是带有随机性的数据。按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。 所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。 统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。参数估计问题回答诸如“未知参数θ的值有多大?”之类的问题,而假设检验回答诸如“未知参数θ的值是0θ吗?”之类的问题。本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断, 两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。 3.1一元正态总体情形的回顾 一、 假设检验 在假设检验问题中通常有两个统计假设(简称假设),一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为0H 和1H 。 1、显著性检验 为便于表述,假定考虑假设检验问题:设1X ,2X ,…,n X 来自总体),(2 σμN 的样本,我们要检验假设 100:,:μμμμ≠=H H (3.1) 原假设0H 与备择假设1H 应相互排斥,两者有且只有一个正确。备择假设的意思是,一旦否定原假设0H ,我们就选择已准备的假设1H 。 当2 σ已知时,用统计量n X z σ μ -=

t检验与方差分析

第六章数值变量资料的统计分析 数值变量资料又称计量资料,通常是指每个观察单位某项指标量的大小,一般具有计量单位。这类资料按分析的内容一般可分为两种:一种是比较几种处理之间的效应,简单地讲就是比较各处理组观察值均数、方差的大小;另一种是寻找指标间的关系,即某个(或某些)指标的取值是否受其它指标的影响。本章主要介绍不同设计类型的数值变量资料的比较。 §6.1 样本均数与总体均数比较的 t 检验 t检验亦称 student's t 检验,主要用于下列三种情况:(1)样本均数与总体均数比较;(2)配对数值变量资料的比较;(3)两样本均数的比较。 Stata用于样本均数与总体均数比较的 t 检验的命令是: ttest 变量名= #val 这里,#val 表示总体均数。 命令中可以选用 if 语句和 in 语句对要分析的内容加一些条件限制。 对已知样本含量、均数和标准差的资料,欲将其与某总体均数进行比较,Stata 还提供了更为简洁的命令是: ttesti #obs #mean #sd #val 这里,#obs 表示样本含量,#mean 表示样本均数,#sd 表示样本标准差, #val 表示总体均数。 §6.2 两样本均数比较的t检验 一、配对设计t检验 医学研究中常将受试对象配成对子,对每对中的两个受试对象分别给予两种不同的处理,观察两种处理的结果是否一致,称为配对(设计)研究。有时以同一个受试对象先后给予两种不同的处理,观察两种处理的结果是否相同,这种配对称为自身配对。配对设计的优点是能消除或部分消除个体间的差异,使比较的结果更能真实地反映处理的效应。 配对t检验首先计算每对结果之差值,再将差值均数与0作比较。如两种处理的效应相同,则差值与0没有显著性差异。 检验假设 H0为:两种处理的效应是相同,或总体差值均数为 0。 stata用于配对样本t检验的命令是: Ttest变量1=变量2 这里,这里“变量 1”和“变量 2”是成对输入的配对样本。 ttest 命令容许使用[if 表达式]和[in范围]条件限制。 或者: gen d=0 ttest d=0 二、成组设计t检验

假设检验与方差分析

实验四 假设检验 实验目的:通过此实验熟练掌握如何利用假设检验工具根据不同条件 选择相应检验工具进行检验,有助于学习者理解假设检验的过程及结果 实验要求:能够运用Excel 对总体均值进行假设检验,学会针对实际 背景提出原假设和备择假设来检验实际问题,并根据检验结果作出符合统计学原理和实际情况的判断和结论,加深对统计学方法的广泛应用背景的理解 假设检验与区间估计两者之间存在密切的关系,二者用的是同一个样本、同一个统计量、同一种分布,所以也可以用区间估计进行假设检验,两者结论是一致的。在Excel 中进行假设检验,除可按区间估计过程用公式和逆函数计算外,还备有专用的假设检验工具,包括Z —检验工具、T —检验工具和F —检验工具。使用这些工具,可以直接根据样本数据进行计算,一次给出检验统计量、单尾和双尾临界值以及小于或等于临界值的概率等所需要的数值。实验四主要介绍假设检验工具的使用。 一、假设检验的一般过程 假设检验主要是根据计算出的检验统计量与相应临界值比较,作出拒绝或接受原假设的决定。 根据全国汽车经销商协会报道,旧车的平均销售价格是10192美元。堪萨斯城某旧车经销处的一名经理检查了近期在该经销处销售的100辆旧车。结果样本平均价格是9300美元,样本标准差是4500美元。在0.05的显著性水平下,检验H 0:10192≥μ H 1:10192<μ。问:假设检验的结论是什么?这名经理接下来可能会采取什么行动? 本例由于样本容量比较大,其均值近似服从正态分布,总体方差未知,需要用样本标准差来代替,选择T 统计量进行检验。T 统计量的计算公式如下:

)1(~1 0--= -n t n s x t n μ 单击任一空单元格,输入“=(9300-10192)/(4500/SQRT(100))”,回车确认,得出t 统计量为-1.982。单击另一空单元格,输入“=TINV(0.025,99)”,回车确认,得出t 分布的右临界值为2.276。因为276.2982.1<-,所以不拒绝原假设,认为此旧车经销处旧汽车平均销售价格不小于10192美元。那么接下来这名经理会采取什么相应行动?(请读者思考)。 本例主要介绍了假设检验的一般过程,利用Excel 的公式和函数求出相应的统计量值和临界值,最后作出结论。 二、假设检验工具的使用 接下来介绍如何使用Excel 的假设检验工具。使用这一工具应该注意二点:第一,由于现实世界和生活中大量的数据服从正态分布,Excel 的假设检验工具是按正态总体设计的(以下各例未特殊说明,认为其服从或近似服从正态分布);第二,Excel 的假设检验工具主要用于检验两总体之间有无显著差异。具体来讲,Z —检验工具是对方差或标准差已知的两总体均值进行差异性检验;T —检验工具是对方差和标准差未知的两总体均值进行差异性检验,其中包括等方差假设检验、异方差假设检验和成对双样本检验;F —检验工具是对总体的标准差进行检验。 (一)Z —检验工具的使用 国际航空运输协会对商务旅行者进行调查以确定大西洋两岸过关机场的等级分数。假定:要求50名商务旅行者组成的随机样本给迈阿密机场打分,另50名商务旅行者组成的随机样本给洛杉机机场打分,最高等级为10分。两个样本数据如下: 迈阿密机场得分数据: 6 4 6 8 7 7 6 3 3 8 10 4 8 7 8 7 5 9 5 8 4 3 8 5 5 4 4 4 8 4 5 6 2 5 9 9 8 4 8 9 9 5 9 7 8 3 10 8 9 6 洛杉机机场得分数据: 10 9 6 7 8 7 9 8 10 7 6 5 7 3 5 6 8 7 10 8 4 7 8 6 9 9 5 3 1 8 9 6 8 5 4 6 10 9 8 3 2 7 9 5 3 10 3 5 10 8 假定两总体的等级标准差已知(这里用样本标准差代替总体标准差),

案例库 项目八假设检验 回归分析与方差分析

项目八假设检验、回归分析与方差分析 实验3 方差分析 实验目的学习利用Mathematica求单因素方差分析的方法. 基本命令 1.调用线性回归软件包的命令<

中,向量Y是因变量,也称作响应变量.矩阵X称作设计矩阵, ?是参数向量??是误差向量? ????????DesignedRegress也是作一元和多元线性回归的命令, 它的应用范围更广些. 其格式与命令Regress的格式略有不同: DesignedRegress[设计矩阵X,因变量Y的值集合, RegressionReport ->{选项1, 选项2, 选项3,…}] RegressionReport(回归报告)可以包含:ParameterCITable(参数?的置信区间表???? ?PredictedResponse (因变量的预测值), MeanPredictionCITable(均值的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等, 但不含BestFit. 实验准备—将方差分析问题纳入线性回归问题 在线性回归中, 把总的平方和分解为回归平方和与误差平方和之和, 并在输出中给出了方差分析表. 而在方差分析问题

中, 也把总的平方和分解为模型平方和与误差平方和之和, 其方法与线性回归中的方法相同. 因此只要把方差分析问题转化为线性模型的问题, 就可以利用线性回归中的设计回归命令DesignedRegress 做方差分析. 单因素试验方差分析的模型是 ?? ? ??==+=. ,,2,1;,,2,1,),,0(~,2s j n i N Y j ij ij ij j ij ΛΛ独立各εσεεμ (3.1) 上式也可改写成 ?? ? ??===+-+==+=.,,2,1;,,2,1,),,0(~; ,,3,2,)(, ,,2,1,2111111s j n i N s j Y n i Y j ij ij ij j ij i i ΛΛΛΛ独立各εσεεμμμεμ (3.2) 给定具体数据后, 还可(2.2)式写成线性模型的形式:

t检验和方差分析的前提条件及应用误区精编版

t检验和方差分析的前提条件及应用误区 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t 检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

T检验及其与方差分析的区别

T检验及其与方差分析的 区别 Last revision on 21 December 2020

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差 别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总

数理统计--参数估计、假设检验、方差分析(李志强) (3)

教学单元案例: 参数估计与假设检验 北京化工大学 李志强 教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用 (1)理解总体、样本和统计量等基本概念;了解常用的抽样分布; (2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法; (6)了解求区间估计、假设检验和方差分析的MA TLAB 命令 。 教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟 教学对象:大一各专业皆可用 一、统计问题 引例 例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为: 775,816,834,836,858,863,873,877,885,901 问:新产品亩产是否超过了800斤? 例2 设有一组来自正态总体),(2 σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2 σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii) 求2σ的95%置信区间。 例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5 只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~ 2σμi i N X . (1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.

假设检验及方差分析

实验四 假设检验 实验目的:通过此实验熟练掌握如何利用假设检验工具根据不同条件 选择相应检验工具进行检验,有助于学习者理解假设检验的过程及结果 实验要求:能够运用Excel 对总体均值进行假设检验,学会针对实际 背景提出原假设和备择假设来检验实际问题,并根据检验结果作出符合统计学原理和实际情况的判断和结论,加深对统计学方法的广泛应用背景的理解 假设检验与区间估计两者之间存在密切的关系,二者用的是同一个样本、同一个统计量、同一种分布,所以也可以用区间估计进行假设检验,两者结论是一致的。在Excel 中进行假设检验,除可按区间估计过程用公式和逆函数计算外,还备有专用的假设检验工具,包括Z —检验工具、T —检验工具和F —检验工具。使用这些工具,可以直接根据样本数据进行计算,一次给出检验统计量、单尾和双尾临界值以及小于或等于临界值的概率等所需要的数值。实验四主要介绍假设检验工具的使用。 一、假设检验的一般过程 假设检验主要是根据计算出的检验统计量与相应临界值比较,作出拒绝或接受原假设的决定。 根据全国汽车经销商协会报道,旧车的平均销售价格是10192美元。堪萨斯城某旧车经销处的一名经理检查了近期在该经销处销售的100辆旧车。结果样本平均价格是9300美元,样本标准差是4500美元。在0.05的显著性水平下,检验H 0:10192≥μ H 1:10192<μ。问:假设检验的结论是什么?这名经理接下来可能会采取什么行动? 本例由于样本容量比较大,其均值近似服从正态分布,总体方差未知,需要用样本标准差来代替,选择T 统计量进行检验。T 统计量的计算公式如下: 单击任一空单元格,输入“=(9300-10192)/(4500/SQRT(100))”,回车确认,得出t 统计量为-1.982。单击另一空单元格,输入“=TINV(0.025,99)”,

方差分析与假设检验实验报告二

云南大学滇池学院 方差分析与假设检验实验报告二 学生姓名:方炜学号:20092123080专业:软件工程 一、实验目的和要求: 1、初步了解SPSS的基本命令; 2、掌握方差分析和假设检验。 二、实验内容: 1、为比较5中品牌的合成木板的耐久性,对每个品牌取4个样本作摩擦试验测量磨损量,得以下数据: (1)它们的耐久性有无明显差异? (2)有选择的作两品牌的比较,能得出什么结果?

2、将土质基本相同的一块耕地分成5块,每块又分成均等的4小块。在每块地内把4个品 种的小麦分钟在4小块内,每小块的播种量相同,测得收获量如下: 考察地块和品种对小麦的收获量有无显著影响?并在必要时作进一步比较。 3、为了研究合成纤维收缩率和拉伸倍数对纤维弹性的影响进行了一些试验。收缩率取0,4, 8,12四个水平;拉伸倍数取460,520,580,640四个水平,对二者的每个组合重复作两次试验,所得数据如下:

(1)收缩率,拉伸倍数及其交互作用对弹性有无显著影响? (2)使弹性达到最大的生产条件是什么? 三、实验结果与分析: 1、运行结果截图: 1、结果分析: (1)、Sig<0.05,耐久性有明显差异 (2)、由样本分析,品牌3分为一类;品牌1,2,5分为一类;品牌4分为一类。而品牌3和品牌4差距最大,品牌3的耐久性最差,品牌4的耐久性最好。 2、运行结果截图:

2、结果分析: (1)、地块(A组)Sig>0.05对小麦的收获量无显著影响,品种(B组)Sig<0.05对小麦的收获量有显著影响。 (2)、由图得,地块4最适合种小麦,地块1最不适合种小麦;而品种2的小麦收获量最大,品种4的小麦收获量最小。 3、运行结果截图:

8.假设检验和方差分析

假设检验和方差分析 目录 一.正态总体均值的检验 (1) 1.单个总体 (1) 2.两个总体 (2) 3.成对数据的t 检验 (3) 二.正态总体方差的检验——方差齐次检验 (3) 三.方差分析 (4) 1.单因素方差分析 (4) 2.均值的多重比较 (6) 3.方差分析前提的三个条件: (8) 4.双因素方差分析 (9) 一.正态总体均值的检验 R 中函数为:t.test() ,使用格式为: t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...) 其中,x 、y 是由数据构成的向量(如果只提供x ,则作单个正态总体的均值检验;提供x 和y 做两个总体的均值检验)。alternative 表示备择假设,two.sided (缺省)表示双边检验(10:H μμ≠),less 表示单边检验(10:H μμ<),greater 表示单边检验(10:H μμ>)。mu 表示原假设0μ,conf.level 是置信水平,即1α-,通常是0.95。var.equal 是逻辑变量,若var.equal=T 表示认为两样本方差相同,若var.equal=F 表示认为两样本。paired 是逻辑变量,表示是否进行配对样本t 检验,默认为不配对。 注意:假设检验的基本思想是:为了检验一个“假设”是否成立,就现假定这个“假设”是成立的。从这个假定也看产生的后果,如果导致一个不合理的现象出现,那么就表明原先的假定不成立,如果没有导出不合理的现象发生,则不能拒绝原来的假设,称原假设是相容的。这里的“不合理”,并不是形式逻辑中的绝对矛盾,而是基于人们实践中广泛采用的一个原则:小概率事件在一次观察中可以认为基本不会发生。 选择备择假设的原则:事先有一定信任度或者出于某种考虑是否要加以“保护”。 1.单个总体 例1:某种元件的寿命x (小时),服从正态分布2 (,)N μσ,其中μ,2σ均未知,16只原件的寿命(单位:小时)如下,问是否有理由认为元件的平均寿命大于225小时。

T检验及其与方差分析的区别.docx

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准 未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总体,同时各

07第七章 假设检验与方差分析 习题答案

第七章 假设检验与方差分析 习题答案 一、名词解释 用规范性的语言解释统计学中的名词。 1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。 2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。 3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。 4. 单侧检验:备择假设符号为大于或小于时的假设检验。 5. 显著性水平:原假设为真时,拒绝原假设的概率。 6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。 二、填空题 根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。 1. u ,n x σμ0 -,标准正态; ),(),(2/2/+∞--∞n z n z σ σ αα 2. 参数检验,非参数检验 3. 弃真,存伪 4. 方差 5. 卡方, F 6. 方差分析 7. t ,u 8. n s x 0 μ-,不拒绝 9. 单侧,双侧 10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异 12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r 18. 正态,独立,方差齐

三、单项选择 从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。 1.B 2.B 3. B 4.A 5. C 6. B 7. C 8. A 9. D 10. A 11. D 12. C 四、多项选择 从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。 1.AC 2.A 3.B 4.BD 5. AD 五、判断改错 对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。 1. 在任何情况下,假设检验中的两类错误都不可能同时降低。 ( × ) 样本量一定时 2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。 ( √ ) 3. 方差分析中,组间离差平方和总是大于组内离差平方和。( × ) 不一定 4. 在假设检验中,如果在显著性水平0.05下拒绝了 00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。( × ) 不一定 5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。( × ) 会增加 6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。( × ) 不完全相等 六、简答题 根据题意,用简明扼要的语言回答问题。 1. 假设检验与统计估计有何区别与联系? 【答题要点】 假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒

最新sas第九章 t检验和方差分析

s a s第九章t检验和 方差分析

第九章 t 检验和方差分析 在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。 第一节 t 检验 9.1.1 简介 t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验 检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。 SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。 2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。 SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。 3.两样本均值差异的显著性检验 作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。 设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为: (1)方差齐(相等)时: ) /1/1(212 21n n s x x t +-= )2/(])1()1[(212 222112-+-+-=n n s n s n s

假设检验项目假设检验回归分析与方差分析

项目八 假设检验、回归分析与方差分析 实验1 假设检验 实验目的 掌握用Mathematica 作单正态总体均值、方差的假设检验, 双正态总体的均值差、方差比的假设检验方法, 了解用Mathematica 作分布拟合函数检验的方法. 基本命令 1.调用假设检验软件包的命令<False(或True), Known Variance->None (或方差的已知值20σ), SignificanceLevel->检验的显著性水平α,FullReport->True] 该命令无论对总体的均值是已知还是未知的情形均适用. 命令MeanTest 有几个重要的选项. 选项Twosided->False 缺省时作单边检验. 选项 Known Variance->None 时为方差未知, 所作的检验为t 检验. 选项Known Variance->20σ时 为方差已知(20σ是已知方差的值), 所作的检验为u 检验. 选项Known Variance->None 缺省 时作方差未知的假设检验. 选项SignificanceLevel->0.05表示选定检验的水平为0.05. 选项FullReport->True 表示全面报告检验结果. 3.检验双正态总体均值差的命令MeanDifferenceTest 命令的基本格式为 MeanDifferenceTest[样本1的观察值,样本2的观察值, 0H 中的均值21μμ-,选项1,选项2,…] 其中选项TwoSided->False(或True), SignificanceLevel->检验的显著性水平α, FullReport->True 的用法同命令MeanTest 中的用法. 选项EqualVariances->False(或True)表示两个正态总体的方差不相等(或相等). 4.检验单正态总体方差的命令VarianceTest 命令的基本格式为 VarianceTest[样本观察值,0H 中的方差20σ的值,选项1,选项2,…] 该命令的选项与命令MeanTest 中的选项相同. 5.检验双正态总体方差比的命令VarianceRatioTest 命令的基本格式为

(完整word版)STATA第四章t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明 ·单因素方差分析 单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。 :各组总体均数相同。 原假设:H 在STATA中可用命令: oneway 观察变量分组变量[, means bonferroni] 其中子命令bonferroni是用于多组样本均数的两两比较检验。 例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性? 健康男子各年龄组淋巴细胞转化率(%)的测定结果: 11-20 岁组:58 61 61 62 63 68 70 70 74 78 41-50 岁组:54 57 57 58 60 60 63 64 66 61-75 岁组:43 52 55 56 60 用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示 则用 STATA 命令: oneway x group, mean bonferroni | Summary of x group | Mean ① -------------+------------ 1 | 66.5 2 | 59.888889 3 | 53.2 ------+------------ Total | 61.25 ②

Analysis of Variance Source SS df MS F Prob > F ------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴ ------------------------------------------------------------------------------- Total 1278.50 23 55.586956 (2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333 Comparison of x by group (Bonferroni) Row Mean- | Col Mean | 1 2 -------------- --|-------------------------------------- 2 | -6.61111 (4) | 0.054 (5) | 3 | -13.3 (6) -6.68889(8) | 0.001 (7) 0.134 (9) ①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本 均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即: ⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均 方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2) 为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋 巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和 第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著 性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴 细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。 由上述结果可知:三组方差无显著地齐性,因此若三组数据近似服从正态 分布,无效假设Ho检验所对应的p值<0.01,可以认为这三组均数有显著差异。 由 Bonferroni统计检验结果表明:第一组淋巴细胞转化率显著地高于第三组淋 巴细胞转化率(p<0.005),其它各组之间均数无显著性差异。

T检验及其与方差分析的区别

T 检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n <50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ? 根据研究设计t 检验可由三种形式: – 单个样本的t 检验 – 配对样本均数t 检验(非独立两样本均数t 检验) – 两个独立样本均数t 检验 (1)单个样本t 检验 ? 又称单样本均数t 检验(one sample t test),适用于样本均数与已知总体均数μ0的比较, 其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ? 已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ? 单样t 检验的应用条件是总体标准 未知的小样本资料( 如n <50),且服从正态分布。 (2)配对样本均数t 检验 ? 配对样本均数t 检验简称配对t 检验(paired t test),又称非独立两样本均数t 检验,适用 于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ? 配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中 的两个个体随机地给予两种处理。 ? 应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ? 配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t 检验 两独立样本t 检验(two independent samples t -test),又称成组 t 检验。 ? 适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数 是否相等。 ? 完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理, 分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ? 两独立样本t 检验要求两样本所代表的总体服从正态分布N (μ1,σ12)和N (μ2,σ 22),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, homoscedasticity)。 ? 若两总体方差不等,即方差不齐,可采用t ’检验,或进行变量变换,或用秩和检验方法 处理。 t 检验中的注意事项 1. 假设检验结论正确的前提 作假设检验用的样本资料,必须能代表相应的总体,同时各

相关主题
文本预览
相关文档 最新文档