当前位置:文档之家› 衰减及阻抗匹配网络的设计

衰减及阻抗匹配网络的设计

衰减及阻抗匹配网络的设计
衰减及阻抗匹配网络的设计

实验二衰减及阻抗匹配网络的设计

一、实验目的

⒈了解衰减器和网络匹配的特点。

⒉学习常用衰减器和匹配网络的设计方法。

⒊学习精确阻值电阻的制作。

二、原理与说明

⒈衰减器的主要用途

在信号源与负载之间插入衰减器,使信号通过它产生一定大小或可以调节的衰减,以满足负载或下一级网络在正常工作时对输入信号幅度的要求。常用的衰减网络结构有倒L型、T型、П型和桥T型等几种。

⒉常用衰减器的衰减量有连续可调和按步级衰减两种

衰减器的衰减量,即衰减倍数可直接用输入、输出电压比表示,也可以用它的dB数表示。图2-1和图2-2所示为两种按分压器原理工作的衰减器,其中图2-1所示是一个

电位器,它的分压比连续可调;图2-2

律衰减的步级衰减器,这两种衰减器都可等效成倒L型网络,

输入特性阻抗和输出特性阻抗不等,且随衰减量的不同而变

化。此类衰减器常用在对匹配要求不高的场合,并且要求负

载电阻越大越好。图2-1

图2-2

⒊对称网络衰减器

当要求衰减器的插入不改变前后级匹配状况时,常采用如图2-3所示T型或П型对称网络衰减器。这类对称网络的特点是输入、输出特性阻抗一致且不随衰减档级而变化。

(a)

(b)

图2-3

若衰减器的电压衰减倍数12U N U ??

???

和特性阻抗C Z 给定,则元件参数可由(2-1)式或(2-2)式决定。

对П型衰减器有

2112C N R Z N

-=

21

1

C

N R Z N +=- (2-1) 对T 型衰减器有

11

1C

N R Z N -=+ 2221

C N

R Z N =- (2-2)

图2-4

用多个相同的衰减器级联可构成一个步级衰减器,如图2-4所示。由于其中两个2

R 并联可用一个2R /2来等效,因此还可以用图2-5所示梯形电路构成衰减器。由于是对称

网络,级联后输入输出特性阻抗不变,而总衰减量为各级衰减量相乘或dB 数之和。

图2-5

⒋ 倒L 型网络衰减器

当前后级或信号源与负载网络不匹配时,可以插入一倒L 型网络,使之成为匹配传输网络(倒L 型网络本身是衰减器,因此在匹配的同时也产生衰减)。如图2-6所示,设信号源内阻为S R ,负载电阻为L R ,而倒L 型网络特性阻抗1()r C Z Z 和2()C Z Z ∏与1R 、2R 之间的关系,由(2-3)式和(2-4)式决定。

u

L

R

图2-6

r Z = (2-3) Z ∏=由于r Z Z ∏>,故如果S L R R >,应将r Z 一端与S R 相接,Z ∏一端与L R 相接。因此,

由r S Z R =和L Z R ∏=,解得

1

2R = (2-5)

22R =

(2-6) 三、预习要求

⒈ 用倒L 型网络设计一匹配器。如图2-6所示,其中600S R =Ω,150L R =Ω ,计算各元件值。

⒉ 设计一衰减器,它由两级П型对称网络级联而成,特性阻抗50C Z =Ω,如图2-7所示。一级衰减量为5dB,另一级衰减量为10dB,确定各元件值。

⒊ 自拟表格,将测量数据记录在表中。

C Z 图2-7

四、设计任务

⒈ 按预习时设计的结果,制作各种阻值的电阻(阻值必须准确,取四位有效数字):可选用比计算的电阻值略低的标称值系列碳模电阻,用刀刮电阻的碳模层,同时用电桥测量其阻值,直至达到要求为止。按图2-6、图2-7完成制作匹配器、衰减器的电路连接。

⒉ 将按图2-6制作的匹配网络插入5(600)S S u V R ==Ω、150f kHz =的信号源和150L R =Ω的负载之间,测量其衰减量以及信号源S u 发出和负载L R 吸收的功率。

⒊ 将按图2-7制作的衰减器插入10(50)S s u V R ==Ω、150f kHz =的信号源和负载电阻L R 之间,分别测试50L R =Ω和150L R =Ω时各级衰减量、输入阻抗。

五、设计报告要求

⒈整理设计过程和测试结果。

⒉计算插入匹配网络后,负载吸收的最大功率,并与实验值进行比较。计算插入

匹配网络后电路的效率。

⒊将测量的各级衰减量、输入阻抗与理论值进行比较,计算其误差。

⒋得出结论,并写出设计与测试报告。

六、实验设备

⒈ YB1693型函数发生器一台;

⒉ AS2294D型双通道交流毫伏表一台;

⒊ DT9205型数字万用表一块;

⒋ D26型功率表一块;

⒌碳膜电阻一组;

⒍导线若干。

(完整版)ADS仿真作业用LC元件设计L型的阻抗匹配网络

用LC 元件设计L 型的阻抗匹配网络 一 设计要求: 用分立LC 设计一个L 型阻抗匹配网络,使阻抗为Z s =25-j*15 Ohm 的信号源与阻抗为Z L =100-j*25 Ohm 的负载匹配,频率为50Mhz 。(L 节匹配网络) 二 阻抗匹配的原理 用两个电抗元件设计L 型的匹配网络,应该是匹配网络设计中最简单的一种, 但仅适用于较小的频率和电路尺寸的范围,即L 型的匹配网络有其局限性 在RF 理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching )问题。阻抗匹配网络是设计微波电路和系统时采用最多的电路元件。其根本原因是微波电路传输的是电磁波,不匹配会引起严重的反射,致使严重损耗。所以在设计时,设计一个好的阻抗匹配网络是非常重要的。阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 根据最大功率传输定理,要获得信号源端到负载端的最大传输功率,需要满足信号源阻抗与负载阻抗互为共轭的条件,即L L S S iX R iX R +=+。若电路为纯电阻电路则0==L S X X , 即L S R R =。而此定理表现在高频电路上,则是表示无反射波,即反射系数为0.值得注意的是,要得到最佳效率的能量传输并不需要负载匹配,此条件只是避免能量从负载端到信号源端形成反射的必要条件。当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小. 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。 为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输人、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路。 L 型匹配网络通常不用于高频电路中,以及如果在窄带射频中选用了L 型匹配网络,也应该注意他的匹配禁区,在这个禁区中,无法在任意负载阻抗中和源阻抗之间实现预期的匹配,即应选择恰当的L 型匹配网络以避开其匹配禁区。 三 设计过程 1新建ADS 工程,新建原理图,在元件面板列表中选择“simulation S--param ”在原理图中

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

阻抗匹配网络的计算

附件1: 基础训练 题目阻抗匹配网络的计算 学院自动化学院 专业电气工程及其自动化 班级1004班 姓名南杨 指导教师朱国荣 2012 年7 月 4 日

基础强化训练的目的 1.较全面的了解常用的数据分析与处理原理及方法 2.能够运用相关软件进行模拟分析 3.掌握基本的文献检索和文献阅读的方法 4.提高正确的撰写论文的基本能力 训练内容与要求 阻抗匹配网络的计算 使信号源(其内阻Rs=12Ω)与负载(RL=3Ω)相匹配 插入一阻抗匹配网络 求负载吸收的功率 初始条件 Matlab软件基本操作及其使用方法 指导老师签名﹍﹍﹍﹍日期:﹍﹍年﹍﹍月﹍﹍日

目录 1.摘要 (4) 2.MATLAB简介 (5) 3.阻抗及阻抗匹配的概念 (6) 3.1阻抗的概念 (6) 3.2阻抗匹配的概念 (6) 4.阻抗匹配网络的计算 (6) 4.1对阻抗匹配网络进行原理分析 (7) 4.2 建模: (7) 4.3应用MATLAB对上面的题目编程 (8) 4.4 结果 (9) 5.结果对比与分析 (10) 6.心得体会. (11) 7.参考文献. (12)

1. 摘要 本文主要是通过训练使学生掌握相关的理论知识及实际处理方法,熟练使用MATLAB语言编写所需应用程序,上机调试,输出实验结果,并对实验结果进行分析。MATLAB 的名称源自 Matrix Laboratory ,它是一种科学计算软件,专门以矩阵的形式处理数据。 MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。 本文运用了MATLAB的M程序编程的方法对于一个电路进行了分析。体现了MATLAB的强大功能。 关键字:MATLAB,M文件,矩阵,计算 Abstract This paper is mainly to ask students to master relevant theoretical knowledge and practical operating methods by training. We should use MATLAB to write applications, computer debugging, then output results and analysis it. The full name of MATLAB is Matrix Laboratory. It is a kind of special scientific calculation software with the matrix form data processing. Because MATLAB not only combines the high-performance numerical calculation and visualization, but also provided a lot of built-in functions, it widely used in scientific calculations, the control system, information processing, simulation and design work. This paper is based on the M programming and design methods of module simulink. We use these two methods to analyzes the circuit.We can see the strong function of MATLAB. keyword: MATLAB, M files, simulation module, Matrix, calculating

匹配网络习题解

习题1:求1uH 电感与5欧电阻串联电路在10MHz 、100MHz 、1GHz 下的并联等效电路(分别计算出相应的元件值)。 解: 222s s p s 22s s p 2s p s s p (1)1(1)s s R X R Q R R R X X X X Q R X Q R X ?+==+???+?==+?? ==

习题2:某接收机输入回路的简化电路如图所示。 已知C 1=5pF ,C 2=15pF ,Rs =75 Ω,RL =300 Ω。为了使电路匹配,即负载RL 等效到LC回路输入端的电阻R′L =Rs , 线圈初、次级匝数比N1/N2应该是多少? 解:电容接入系数p1为: 480025.0300/'25 .015 55 2112 2 11====+=+= p RL RL c c c p 电感接入系数p2为: 1429.0)21/(22/112/12 /1211125.04800/7522=-=+= +===p p N N N N N N N N N p p 习题3:试设计一个г型匹配网络,使100Ω的电阻性负载在100MHz 时转换为50Ω。 (1)画出匹配网络的电路结构; (2)计算匹配网络的元件值; 解:(1) 因须将阻抗从大变为小,故电路结构如 X1 R=100 Rin=50

图。其中X1、X2为性质相反的电抗元件。 将X2和R 变为串联结构,则: 22 '50 100(1)5012 21002 2'50(11/) 12'50 R Q R Q X X X X Q X X ==+== == =+== ● 若X1=50,则X2=-100,有: 150/(2)50/(21006)7.968()79.6() 1 2 1.5911()15.9() (2)100 L f e e H nH C e F pF f πππ===-===-= ● 若X1=-50,则X2=100,有: 1 1 3.1811()31.8() (2)50 2100/(2)100/(21006) 1.597()159()C e F pF f L f e e H nH πππ= =-====-= X1 X2' R ’ =50 Rin=50

T型网络衰减电路

T型电阻衰减电路 一.性能指标: 《1》设计一个T型电阻衰减电路 要求衰减倍数-40db 在0-50MHZ频率范围内衰减倍数基本不变 《2 用电阻并联后分压的方式,也可以避免使用大电阻分压对衰减网络的性能 产生影响;另外,T型电阻衰减网络设计简单,易于计算,所以在电阻分 压时经常被使用。 方案一高频T型电阻衰减网络 题目要求设置衰减增益为-40dB,输入输出阻抗为与外部仪器阻抗匹配,因为要测试比较高的频率(0--50MHZ),用普通的示波器和信号发生器与电路的连接

线会对测试结果产生很大影响(如普通的信号源连接线会等效为几十pf 的电容,与电路中的电阻构成一个频率较高的低通滤波,会在频率高时对 电路产生衰减作用),因此要用到射频头和射频线。因为射频线的特性阻 抗是50Ω,所以射频线特两端的电阻阻值必须为50Ω,所以限制了T 型 网络的输入输出阻抗,从而限制了衰减倍数。所以说要实现更高频率的衰 三.<1>R ’=RI 示 由阻抗关系可得 )o 2//(31R R R R RI ++=-------------------------------------------(1) )I 1//(32o R R R R R ++=--------------------------------------------(2) 又根据电路输入电压和输出电压关系可得 RI R1RI UI -2)31(+?=?+?+Uo R RI UI R UI RI R RI ----------------------(3) 由(1)(2)(3)关系式可推出

RI UI Uo Ro RI UI Uo RI UI Uo Ro RI R --??-?=12)1(122-------------------------------(4) o 12)1(22 2 R UI Uo Ro RI UI Uo RI UI Uo R --???-=------------------------------------(5) 2322??=Uo RI UI Uo RI R -----------------------------------------------------(6) <2>图1(7) 1o 222 -?=UI Uo UI R R ) <3>高频T 型电阻衰减网络设计 由上可以知道,要设置输入阻抗RI=R ’=50Ω,(R ’为信号源内部固定阻抗,与输入阻抗匹配),要设置Ro//RL+R4=50Ω,(实现与射频线匹配)为了方便计算,这里我们取Ro=50,则RL=Ro=50Ω(负载与输出阻抗匹配),可推出R4=25Ω

超宽带系统中ADC前端匹配网络设计

超宽带系统中ADC 前端匹配网络设计 1、引言 传统的窄带无线接收机,DVGA+抗混叠滤波器+ADC 链路的设计中,我们默认ADC 为高阻态,在仿真抗混叠滤波器的时候忽略ADC 内阻带来的影响。但随着无线技术的日新月异,所需支持的信号带宽越来越宽,相应的信号频率也越来越高,在这样的情况下ADC 随频率变化的内阻将无法被忽视。为了取得较好的信号带内平坦度,引入了ADC 前端匹配电路的设计,特别是对于non-input buffer的ADC在高负载抗混叠滤波器应用场景下,前端匹配电路的设计在超宽带的应用中就更显得尤为重要。本文将以ADS58H40为例介绍ADC前端匹配电路的设计。 2、Non-input buffer ADC 内阻特性及其等效模型 理想ADC 的输入内阻应该是高阻态,即在前端抗混叠滤波器的设计中无需考虑ADC 内阻带来的影响,但是实际ADC内阻并非无穷大并且会随着频率而发生改变。从输入内阻的角度而言,ADC又可以被分为两类,一个是有输入buffer的ADC,输入特性更趋向于理想ADC,内阻往往比较大;另一类就是没有输入buffer的ADC,它们的内阻在高频不可忽略且随频率发生改变,但它们的功耗比前者要小。图1为non-input buffer ADS58H40模拟输入等效内阻模型。ADC模拟输入端采样保持电路本身所等效的阻抗网络随频率的改变而变化;再加上ADC 采样噪声的吸收电路(glitch absorbing circuit)RCR 电路,它的存在改善了ADC 的SNR 和SFDR,但也使得ADC的内阻随着频率而越发变化。两者效应叠加使ADC 的等效负载整体呈现容性。 图1 ADS58H40 模拟输入等效内阻模型 图2以ADS58H40为例给出了内阻随频率变化的曲线图。A串联模型,串联模型中的串联等效电阻值在Ohm量级。B并联模型,并联模型中的并联等效电阻值在低频(< 100MHz)的时候kOhm量级,但随着输入频率不断升高(>200MHz),并联等效电阻值会急剧下降到百

电路板关于阻抗匹配

一.阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

功率衰减器参数及检测

1 / 5 功率衰减器参数与检测 TP-LINK 内销PE 李悦 一、概述 在无线系统测试中常常需要对从一个设备到另一个设备的信号进行衰减。例如,射频发射机测试中,涉及的功率等级常常从几瓦到几百瓦甚至上千瓦,这么大功率的信号必须得经过衰减以后才可以连接到大部分的测试设备中,否则会对测试设备有损害。一种叫做衰减器的简单电路常常能用来减少信号幅度,而且衰减器不但可以把信号电压衰减到一定值还可以对阻抗值进行变换。 衰减器的技术指标包括衰减器的工作频带、衰减量、功率容量、回波损耗等。工作频带是指在给定频率范围内使用衰减器,衰减量才能达到指标值;衰减量是指输入信号与输出信号功率的对数值之差;功率容量就是衰减器正常工作时能够承受的最大功率损耗,衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了;回波损耗指的是传输信号被反射到发射端的比例,可以用驻波比来形容,对于功率衰减器,要求其两端的输入输出驻波比应尽可能小;衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。 二、两个重要指标 进行衰减器设计时,最基础的两个指标要求如下: 2.1衰减量 无论构成功率衰减的机理和具体结构如何,总是可以用下图所示的二端口网络来描述衰减器。 图中,信号输入端的功率为P 1,而输出端的功率为P 2,衰减器的功率衰减量为A(dB)。若P 1、P 2以分贝毫瓦(dBm)表示,则两端功率间的关系为: 即:  可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。  2.2阻抗匹配 利用电阻构成的T 型或П型网络实现集总参数衰减器,通常情况下,衰减量是固定的,且由三个电阻值决定。两种电路拓扑下图所示。图中Z 1、 Z 2是电路输入端、 输出端的特性阻抗。 T 型功率衰减器; π型功率衰减器 1 2() ()10lg () P mW A dB P mW = (a )(b )Port ‐2 P2 Port ‐1 P1 ()()()21P dBm =P dBm -A dB

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

(完整版)ADS软件学习及阻抗匹配电路的仿真设计

ADS软件学习及阻抗匹配电路的仿真设计 专业班级:电子信息科学与技术3班 姓名: 学号: 一、实验内容 用分立LC设计一个L型阻抗匹配网络,实现负载阻抗(30+j*40)(欧姆) 到50(欧姆)的匹配,频率为1GHz。 二、设计原理 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。 要实现最大的功率传输,必须使负载阻抗与源阻抗匹配,这不仅仅是为了减小功率损耗,还具有其他功能,如减小噪声干扰、提高功率容量和提高频率响应的线性度等。通常认为,匹配网络的用途就是实现阻抗变换,就是将给定的阻抗值变换成其他更合适的阻抗值。 基本阻抗匹配理论: ——(1) ——(2),由(1)与(2)可得:——(3)

当RL=Rs时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。 广义阻抗匹配: 阻抗匹配概念可以推广到交流电路,当负载阻抗ZL与信号源阻抗Zs共轭时,即ZL=Zs,能够实现功率的最大传输,称作共轭匹配或广义阻抗匹配。 如果负载阻抗不满足共轭匹配条件,就要在负载和信号源之间加一个阻抗变换网络N,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 三设计过程 1、新建ADS工程,新建原理图。在元件面板列表中选择“Simulation S--param”,在原理图中放两个Term和一个S-Parameters控件,分别把Term1设置成Z=5Oohm,Term2 设置成Z=30+j*40ohm,双击S-Parameters控件,弹出设置对话框,分别把Start设置成10MHz,Stop设置成2GHz,Step-size设置成1MHz。 2、在原理图里加入Smith Chart Matching 控件,并设置相关的频率和输入输出阻抗等参数。 3、连接电路。 4、在原理图设计窗口,执行菜单命令tools->Smith Chart,弹出Smart Component,选择“Update SmartComponent from Smith Chart Utility”,单击“OK”。 5、设置Freq=0.05GHz,Z0=50ohm。单击DefineSource /load Network terminations 按钮,弹出“Network Terminations”对话框,设置源和负载阻抗,然后依次单击“Apply”和“OK”。 6、采用LC分立器件匹配。 7、单击“Build ADS Circuit”按钮,即可以生成相应的电路。 8、进行仿真,要求其显示S(1,1)和S(2,1)单位为dB的曲线。

制动电阻计算书

驱动技术常见问题

Item-ID: 7800906 担保、责任与支持 我们对本文档内包含的信息不承担任何责任。 不论基于何种法律原因,对由于使用本应用示例中的示例、信息、程序、工程组态和性能数据等引起的后果概不承担任何索赔责任。一旦发生故意损伤、重大过失、人身/健康伤害、产品质保、欺诈隐瞒缺陷或违反合同基本原则等情况(“wesentliche Vertragspflichten”),那么这类免责声明将不适用于强制性责任,如德国产品责任法(German Product Liability Act, “Produkthaftungsgesetz”)。然而,因违反合同基本原则而造成的索赔应限于合同规定的可预见损坏,除非是由故意、重大过失或基于人身/健康伤害的强制性责任引起的。上述条款并没有暗示对提供损坏证明的责任有所修改。 Copyright? Copyright-2006 Siemens A&D。未经Siemens A&D 书面授权,不得转让、复制或摘录这些应用示例。 C o p y r i g h t ? S i e m e n s A G 2008 A l l r i g h t s r e s e r v e d 7800906_P D F _B r a k i n g _r e s i s t o r _c a l c u l a t i o n _c n .d o c 如果您有关于该文档的任何建议,请发送至下列电子邮箱: mailto:sdsupport.aud@https://www.doczj.com/doc/803772254.html,

Item-ID: 7800906 目录 目录………......................................................................................................................3 1 概括..................................................................................................................4 1.1 MM4和SINAMICS G120变频器选择制动电阻范例.........................................4 表格:供电电压为230VAC 的变频器............................................................5 表格:供电电压为400VAC 的变频器............................................................6 表格:供电电压为575VAC 的变频器............................................................7 1.2 范例..................................................................................................................8 1.2.1 范例1:..............................................................................................................8 1.2.2 范例 2:..............................................................................................................8 1.2.3 范例 3: (9) 注释 (9) :C o p y r i g h t ? S i e m e n s A G 2008 A l l r i g h t s r e s e r v e d 7800906_P D F _B r a k i n g _r e s i s t o r _c a l c u l a t i o n _c n .d o c 2 附录................................................................................................................10 2.1 网络链接........................................................................................................10 2.2 历史记录 (10) 请参考自动化与驱动技术支持与服务 本文出自自动化与驱动集团技术支持的应用部分,可以通过以下链接下载该文档: https://www.doczj.com/doc/803772254.html,/WW/view/en/7800906

电路阻抗匹配设计

何為"阻抗匹配"? 更多相关:https://www.doczj.com/doc/803772254.html, 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载 时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说 ,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 . 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1

matlab在阻抗匹配网络的应用

目录 摘要 (1) 1 理论知识 (2) 1.1基尔霍夫定律 (2) 1.2结点电压法 (2) 2 阻抗匹配网络的计算 (3) 2.1原理分析 (3) 2.2 建模 (4) 2.3应用MATLAB对上面的题目编程 (5) 2.4 绘图 (6) 3 simulink程序仿真 (8) 3.1电路图及仿真效果 (8) 3.2仿真过程中发现的问题 (9) 4 结果对比分析 (10) 5 心得体会 (11) 参考文献 (12)

摘要 做为一名自动化专业的学生,掌握基本的电路知识是非常重要的。但是在掌握基本的知识点的时候,我们也需要掌握一些解决电路方面的“诀窍”,比如某些软件。本文就以电路中的一些基本知识点引入这些软件在解决电路问题中的一些具体应用。而且本文是以Matlab为例,说明如何运用Matlab来进行电路的求解和仿真。 在求解和仿真的过程中,我们可以发现应用这些软件可以让非常复杂的电路的分析、计算编的非常简单,是一个非常实用、有效的工具。 关键词:电路;Matlab;仿真;

1 理论知识 1.1基尔霍夫定律 基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 基尔霍夫电流定律(KCL):在集总电路中,任何时候,对任意结点,所有流出结点的支路电流的代数和恒为零。电流的“代数和”是根据电流是流出结点还是流入结点判断的。若流出节点的电流前面取“+”号,则流入结点的电流前面取“-”号;电流是流出结点还是流入结点,均根据电流的参考方向判断。所以对任一结点都有 Σi=0; 基尔霍夫电压定律(KVL): 在集总电路中,任何时候,对任意回路,所有支路电压的代数和恒为零。在应用时,需要任意指定一个回路的绕行方向,凡是支路电压的参考方向与回路的绕行方向一致者,该电压前面取“+”号;支路电压参考方向与回路绕行方向相反者,前面取“-”。最后,对任一回路都有 Σu=0; 1.2结点电压法 定义:结点电压是在为电路任选一个结点作为参考点(此点通常编号为“0”),并令其电位为零后,其余结点对该参考点的电位。并根据KCL写出方程,求出每个结点的电压。 在电路中任意选择某一结点为参考结点,其他结点为独立结点,这些结点与次参考结点之间的电压称为结点电压,结点电压的参考极性是以参考结点为负,其余独立结点为正。由于任意支路都连接在两个节点上,根据KVL,不难断定支路电压就是两个结点电压表示。在具有n个结点电压的共(n-1)个独立结点的KCL方程,就得到变量为(n-1)个独立方程,称为结点电压方程,最后由这些方程解出结点电压,从而求出所需的电压、电流。这就是结点电压法。

PCB设计中的阻抗匹配与0欧电阻

谈谈嵌入式系统PCB设计中的阻抗匹配与0欧电阻 1、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。 (1)高频信号一般使用串行阻抗匹配。串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与 PCB走线宽度和长度成反比。在嵌入式系统中,一般频率大于20M的信号PCB走线长度大于5cm时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。串行匹配电阻的作用有两个: ◆减少高频噪声以及边沿过冲。如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。串联电阻与信号线的分布电容以及负载输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。 ◆减少高频反射以及自激振荡。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。 (2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要指与传输电缆的阻抗匹配。例如,LVDS与RS422/485 使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。并行匹配电阻的阻值与传输电缆的介质有关,与长度无关,其主要作用也是防止信号反射、减少自激振荡。值得一提的是,阻抗匹配可以提高系统的EMI性能。此外,解决阻抗匹配除了使用串/并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、CAN总线等。 2、0欧电阻的作用 (1)最简单的是做跳线用,如果某段线路不用,直接不焊接该电阻即可(不影响外观)。 (2)在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件

相关主题
文本预览
相关文档 最新文档