当前位置:文档之家› 新型高压直流输电系统

新型高压直流输电系统

新型高压直流输电系统
新型高压直流输电系统

基于新型换流变压器的特高压直流输电系统的瞬态响应摘要:新型特高压直流输电系统采用了新型电力变换器和一致的感应滤波方法,它的拓扑结构完全不同于已经存在的高压直流输电系统。对于受控系统的变化,也就是说传统高压直流输电系统采用的是一种标准的控制模型,那么新型高压直流输电系统的瞬态响应特征将要相应的改变。参考国际大电网会议上关于高压直流输电的第一个基准模型的主电路参数。这篇论文设计了一个相似的高压直流输电标准模型,该模型是基于换流变压器和一致感应滤波方法的专门特征的,包括了换流变压器和一致感应滤波装置的参数。而且,高压直流输电系统的典型瞬态响应已经通过计算机辅助仿真和电磁暂态仿真,结果表明,采用了标准控制模型的新型高压直流输电系统,有一个很好的瞬态响应特征。而且在外界干扰较大时也能够平稳的运行。

索引词:感应滤波方法,新型换流变压器,新型高压直流输电系统。瞬态响应特征。

1.说明

高压直流输电系统有很高的可控制性。它的有效运行依靠于它的可控制特征的合理运用,给电力系统的期望运行指明了一个方向。总之,新型高压直流输电系统采用了多种等级模型,这种模型为电力系统的控制提供了高效,稳定运行,灵活操作的方法。

新型高压直流输电系统采用了新的电气连接结构,以感应滤波方法取代了传统的被动式反应方法,他可以有效地提高传统高压直流输电中谐波抑制和无功补偿问题的普适性。文章研究了新型换流变压器和感应滤波方法的线路模型和技术特点,工作机制,最终引出了感应滤波的综合优化设计。同时研究了新型高压直流输电系统的稳定运行特征和无功补偿特点。基于以上这些,本篇论文将分析新型高压直流输电系统的典型瞬态响应。

2.新型高压直流输电系统的典型测试系统

新型换流变压器的参数设计:

图一,新型换流变压器的接线图和电压相位图。

在传统的12脉冲高压直流输电系统中,传统的换流变压器经常采用接线方法。它可以为12脉冲的直流系统提供12个相位源。而对与新型的换流变换器,为了达到与传统的换流器的相同效果,它将采用图一所示的接线图。在这种情况下,它不仅能够满足相位变换的要求,而且能够满足感应滤波方法的必要先决条件。他应当满足初次级线圈延长线和公共绕组的限制关系。为了简单讨论,我们选择了新型换流变压器的单相线圈来讨论。依据图

一a中所示,他满足次级线圈线电压和次级延长线圈、公共线圈的VA1-a1, Vb1-a1, and VB1-b1电压关系的向量关系。

其中,VA1-a1, Vb1-a1and VB1-b1分别是A相次级延长线圈的电压,B相公共线圈电压,B相延长线圈电压。VB1A1是AB两相的线电压。

如果它满足初级线电压VBA和次级线电压VB1A1的下列关系:

那么,对于移相的要求的匝数比可以被推出:

在实际的高压直流输电工程中,传统的换流变压器经常采用单向双线圈或者单相三线圈类型的结构,次级线圈经常采用Y/Δ方式的接线图,这就人为地制造了单相短路阻抗的不相等,从而引起桥式换流引发的非特征谐波。然而,由于新型换流变压器的两个次级线圈都采用了延长式的接线图,它可以很好地保证新型高压直流输电系统的电气连接结构的对称性。进而高效的阻止桥式换流产生的非对称谐波,客服了换流变压器隔离设计的困难。

B.新型感应滤波全调谐电路的参数设计。

图2,感应滤波的全调谐装置的接线图。

图二中次级延长线圈和公共线圈的节点电压Va1o, Vb1o和Vc1o可以用次级公共线圈

电压Ub1a1, Uc1b1 和Ua1c1表示如下:

在已知无功补偿的大小QS(1),电路支路电压V和基频ω1的先决条件下,全桥感应滤波装置串联电路支路基本参数(电容C1和电感L1)可以通过下面的方程得到。

在上面的方程中,hr,Wr,分别是中心频率的阶数和中心频率大小。

此外,全桥感应滤波装置并联电路支路基本参数(电容C2和电感L2)可以通过下面的方程得到。

,

C.基于新型换流变压器和新感应滤波技术的典型高压直流输电系统。

国际大电网会议关于高压直流输电在整流桥一方拓扑结构的第一基准模型如下图三所示。限于篇幅的原因,本论文中关于换流器一方的主要拓扑结构并没有附上。本文的目的是用新型的换流变压器和感应滤波装置取代传统的变换器。因此完成了一个典型的新型高压直流输电模型,与国际大电网会议的标准模型相比,该模型可被用于研究高压直流输电的瞬态响应特征。

图3.国际大电网会议关于高压直流输电在整流桥一方拓扑结构的第一基准模型。

图4.基于新型变换器的高压直流输电的测试系统。

表一

和传统变换器额定参数的比较(单相结构)

依据上面建立的(1)~(6)方程和传统变换器的基本参数以及图三中的交流无缘滤波,我们可以很容易得到图四中新型变换器和感应滤波装置的基本参数,上图中表一列出了新型和传统变换器的额定参数。根据表一以及方程(4),我们可以看到全谐桥滤波器次级延长线圈

和公共线圈的节点电压是,与交流网络的199.1858KV电压相比,减少了3.1224倍。这个对于节约无源滤波的制造成本和提高滤波的可操作性是非常有利的。

瞬态仿真测试和结果分析

为了确认新型高压直流输电系统在标准控制模型下的运行性能,揭示它在不同典型干扰下的瞬态响应,与国际大电网会议关于高压直流输电系统的第一基准模型(传统高压直流输电系统)相比,我们通过计算机辅助仿真和电磁暂态仿真仿真出了下面典型瞬态响应:

a.整流器测试

b.逆变器测试

c.逆变器换向失败测试

如图五中的仿真结果,我们可以得到新型高压直流输电系统在直流侧的瞬态响应特征和国际大电网会议的第一标准模型很相似。这说明普通的高压直流输电系统的控制器可以被应用到新型传输系统中,而且控制性能也很优越。甚至比国际电网会议的第一基准模型还要好,我们可以结合图六分析它的瞬态响应触发角。在下面的仿真结果中,我们可以看到新型高压直流输电系统整流方的触发角高于国际电玩会议关于高压直流输电系统的第一标准模型。这也意味着在达到同样直流功率的情况下,与国际大电网会议的第一基准模型相比,新型高压直流输电系统有更宽的功率调节范围。

图六国际大电网会议新型直流输电系统在不同典型干扰下整流触发角的瞬态响应特征

结论:

基于新型变换器和感应滤波,参考国际大电网会议关于高压直流输电系统的第一基准模型,这篇论文设计了新型高压直流输电系统的主电路拓扑结构,包含了新型变换器的以及全谐桥装置基本参数,分析了它的潜在工程价值。除此之外,也对新型高压直流输电系统进行了瞬态响应特征的仿真,采用了普通的高压直流输电系统控制器,这种控制器和传统的控制器很相似。仿真结果表明了新型高压直流输电系统有更宽的功率调剂范围,而且可以在不同干扰下平稳可靠的运行。

注意(文章中的次级延长线圈不知道学术名,你可以问下导师)

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

±800KV+特高压直流输电系统全电压启动过电压研究(已看)

±800KV特高压直流输电系统全电压启动过电压研究 黄源辉,王钢,李海锋,汪隆君 (华南理工大学电力学院,广东广州510640) 摘要:全电压启动过电压是直流输电中直流侧最严重的过电压情况。本文以PSCAD/EMTDC为工具,以正在建设的云广±800kV特高压直流输电系统参数为依据,建立全电压启动过电压仿真计算模型。对各种全电压启动情况进行了仿真计算,讨论了各种因素对全电压启动的影响,并与±500KV HVDC系统的全电压启动过电压作了比较,获得了一些具有实用价值的结论。 关键词:±800KV;特高压直流输电;全电压启动;过电压 0引言 为满足未来持续增长的电力需求,实现更大范围的资源优化配置,中国南方电网公司和国家电网公司提出了加快建设特高压电网的战略方针[1]。随着输电系统电压等级的升高,绝缘费用在整个系统建设投资中所占比重越来越大。对于±800KV特高压直流输电系统,确定直流线路和换流站设备的绝缘水平成为建设时遇到的基本问题之一。在种类繁多的直流系统内部过电压中,全电压误启动多因为的过电压是其中最严重和最重要的一种。它的幅值最大,造成的危害最大,在选择直流设备绝缘水平和制订过电压保护方案时往往以此为条件[2]。因此,对特高压直流系统的全电压启动过电压进行研究和分析具有很大的实际意义。 为降低启动过程的过电压及减小启动时对两端交流系统的冲击,直流输电的正常启动应严格按照一定的顺序进行[3]。正常情况下,在回路完好、交直流开关设备全部投入且交流滤波器投入适量等条件满足后(α≥90°),先解锁逆变器,后解锁整流器,按照逆变侧定电压调节或定息弧角调节规律的要求,由调节器逐步升高直流电压至额定值,即所谓的“软启动”。然而由于某些原因(如控制系统异常),两端解锁过程紊乱,逆变侧换流器尚未解锁而整流侧却全部解锁,此时若以较小的触发角启动,全电压突然对直流线路充电,由此直流侧会产生非常严重的过电压。 1云广直流系统简介 南方电网正在建设的云南-广东特高压直流系统双极输送功率5000MW,电压等级为±800kV,直流线路长度约1438km,导线截面为6×630mm2,两极线路同杆并架。送端楚雄换流站通过2回500kV 线路与云南主网的昆西北变电站相连,西部的小湾水电站(装机容量4200MW,计划2009年9月首台机组投产,2011年全部建成)和西北部的金安桥水电站(总装机2400MW,计划2009年12月首台机组投产,2011年全部建成)均以2回500kV线路接入楚雄换流站。受端穗东换流站位于广东省增城东部,500kV交流出线6回,分别以2回500kV线路接入增城、横沥和水乡站[4]。楚雄换流站接入系统如图1所示。 图1 楚雄换流站接入系统 云南-广东特高压直流系统交流母线额定电压为525kV,整流侧无功补偿总容量为3000MV Ar,逆变侧无功补偿总容量为3040MV Ar。平波电抗器电感值为300mH,平波电抗器按极母线和中性母线平衡布置,各为150mH。直流滤波器采用12/24双调谐方式。避雷器使用金属氧化物模型。每极换流单元采用2个12脉动换流器串联组成。 2云广直流系统模型 本文以PSCAD/EMTDC为工具,以南方电网建设中的云南-广东±800kV特高压直流系统参数为依据,建立了全电压启动过电压仿真计算模型。换流站内的单极配置如图1所示。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

特高压交流和高压直流输电系统运行损耗及经济性分析

特高压交流和高压直流输电系统运行损耗及经济性分析 发表时间:2018-04-12T10:36:46.213Z 来源:《电力设备》2017年第32期作者:常彦 [导读] 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 (国网山西省电力公司检修分公司山西省太原市 030031) 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 关键词:特高压交流;高压直流;输电系统;运行损耗分析;经济分析 在我国覆盖全国电网的整体输电系统中,输电系统运行损耗都是不可避免的重要问题,运行损耗的大小直接影响到输电系统的经济效益和经济性。其中,关于特高压交流和高压直流输电系统,这一在整个电网中占有重要比重的输电系统的运行损耗和相关经济性分析研究具有十分重要的意义。 1特高压交流和高压直流输电系统及其经济性概述 中国是世界上国土面积第四大的国家,幅员辽阔,人口众多,地形复杂多样,并且由于地形地势气候等多方面的原因,中国的人口规模、经济发展状况以及资源能源需求量呈现西低东高的阶梯式分布。与其相反的是,我国的能源资源分布却是西高东低,具体到与电力相关的资源能源来说,我国目前有超过百分之七十的水力资源在西南,有大约百分之七十五的煤炭资源储存西北,风电和太阳能等能够用于发电的可再生能源也主要分布在西部、北部。因此,这种电力资源能源分布和电力资源需求的极不平衡性,决定着我国能源分配面对的巨大压力,以及通过多种方式优化电力资源配置的迫切性和重要性,其中,特高压交流和高压直流输电系统就是当前技术成熟,应用较为普及的两种主流输电方式,它们为我国电力资源的合理配置的大好局面,提供了重要的助力。所以,不断地分析和研究特高压交流和高压直流输电系统,也是提高电力资源配置效率和质量的必然要求。 分析输电系统经济性的重要内容,就是分析输电系统的运行损耗。对于本文的研究对象来说,特高压交流和直流输电系统经济性分析主要集中在前期建设投资、中期的输电网络运性维修、输电运行中不可避免的输电损耗和以及停电造成的损失费用四个方面。 2特高压交流和直流输电系统经济性分析 本文主要运用对比法分析特高压交流和直流系统的经济性,其中涉及二者经济性比较,主要从投资、运维、输电损耗和停电损失费用四个方面来进行比较,最后再进行综合汇总。 在对比分析法中,我们需要设定一个恒量,为了便于比较和计算,设置特高压交流和高压直流两种输电系统中,输电距离相同,在500-2000千米范围内,分为500千米、1000千米、1500千米和2000千米四个固定值。然后在此基础上,根据输电能力的大小、额定输送量和负载率对两种输电系统的影响大小。 采用的研究对象中,两种输电系统的具体参数分别为:特高压交流输电系统2个1000千伏变电站和多个中间开关站以及1回输电线路组成,线路规格为8×500平方毫米,并且每400千米一个间距设置一个开关站。高压直流输电系统无变电站及中间开关,但需架设1台换流站,同时采用的是6×900平方毫米的线路。 2.1投资费用分析 特高压交流输电系统中,需要建设变电站,变电站的建设费用为430元/千伏,8×500平方毫米规格的线路为425万元/千米。所以,变电站的建设费用为86亿元,线路的费用为500千米21.25亿元,1000千米42.5亿元,1500千米6 3.75亿元、2000千米85亿元。 高压直流输电系统中,不需要建设变电站,但是需要投资建设换流站,一台换流站单价为65亿元,6×900平方毫米规格的线路单价为397万元/ 千米,因此,线路的费用为500千米19.85亿元,1000千米39.7亿元,1500千米59.55亿元、2000千米79.4亿元。 因此,经过对比,在不考虑其他任何因素的情况下,在特高压交流电输电网络的前期站设投资要远远大于高压直流电的输电网络。直到输电距离达到6000千米,高压直流输电网络才更加具有经济价值。 2.2运维费用分析 输电网络的运维就是指输电网络硬件设备的元件耗损率和故障维修的费用。通过对比,我们不难发现,高压直流换流站设备和阀组众多,系统的运行状态比交流系统多,类似换流变压器和阀组这部分元件故障频率较多,维修更新的时间较长,特高压交流变电站的元件较少且故障持续时间短。因此,可以说在各个距离高压直流输电网络的运维费用都要大于特高压交流输电网络,在运维费用方面,特高压交流输电网络更具经济性。 2.3输电损耗费用分析 特高压和超高压交流输电系统的运行损耗主要包括变电站损耗和输电线路损耗两部分。一方面变电站损耗包括变压器、电抗器、电容器等设备损耗等硬件和变电站日常运行用电造成的损耗,这种损耗鱼输电系统的随输送容量基本成正比,随着输送容量的变化成比例调整。另一方面,输电线路损耗主要包括电阻损耗、电晕损耗和泄漏损耗,其中电阻损耗属于硬件损耗的一种,电阻损耗量同样随输送容量的变化成比例变化,电晕损耗的变化则基本受电压等级、导线结构和天气情况等因素影响,泄漏损耗通常并不计入记录分析中。 2.3.1电阻损耗 通常情况下,电路损耗是理论意义上的损耗,是指线路在满负荷运行时造成的功率损耗。然而在实际电力输送中,输电系统不可能不间断地满负荷运行。 计算公式如下:线路电阻损耗值=线路电阻×额定电流×损耗小时数 计算结果可由两种输电系统的具体参数估算到。 2.3.2电晕损耗 交流线路电晕损耗很容易受到线路电压、导线结构和气候条件的影响,经过研究发现,在雨雪天起电晕平均损耗可以达到为晴朗天气平均损耗的37-50倍。电晕损耗年平均值计算公式为 电晕损耗年平均值=(好天气小时数损耗+雪天小时数损耗+雨天小时数损耗)/全年日历小时数” 2.4停电损失费用分析

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

相关主题
文本预览
相关文档 最新文档