当前位置:文档之家› 最新杨辉三角的规律以及推导公式

最新杨辉三角的规律以及推导公式

最新杨辉三角的规律以及推导公式
最新杨辉三角的规律以及推导公式

杨辉三角的规律以及定理

李博洋

摘要杨辉三角中的一些规律

关键词杨辉三角幂二项式

引言

杨辉是我国南宋末年的一位杰出的数学家。在他所著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的规律进行探讨和研究。内容

1二项式定理与杨辉三角

杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1

则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系

数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:

1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:

1 (110)

1 1 (111)

1 2 1 (112)

1 3 3 1 (113)

1 4 6 4 1 (114)

1 5 10 10 5 1 (115)

1 6 15 20 15 6 1 (116)

因此可得出二项式定理的公式为:

(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+ C(n,n)a^0*b^n

因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

2杨辉三角的幂的关系

首先我们把杨辉三角的每一行分别相加,如下:

1 ( 1 )

1 1 ( 1+1=

2 )

1 2 1 (1+2+1=4 )

1 3 3 1 (1+3+3+1=8 )

1 4 6 4 1 (1+4+6+4+1=16 )

1 5 10 10 5 1 (1+5+10+10+5+1=3

2 )

1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )

……

相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂

3 杨辉三角中斜行和水平行之间的关系

(1)

1 (2) n=1

1 1 (3) n=2

1 2 1 (4) n=3

1 3 3 1 (5) n=4

1 4 6 4 1 (6) n=5

1 5 10 10 5 1 n=6

1 6 15 20 15 6 1

把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15

把斜行(3)中第7行之前的数字相加得1+3+6+10=20

把斜行(4)中第7行之前的数字相加得1+4+10=15

把斜行(5)中第7行之前的数字相加得1+5=6

把斜行(6)中第7行之前的数字相加得1

将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书 中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现 在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的 规律进行探讨和研究。 内容 1二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数 为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 14641似乎发现了一些规律,就可以发现以下呈三角形的数列: 1(110) 11(111) 121(112) 1331(113)

14641(114) 15101051(115) 1615201561(116) 因此可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂 3杨辉三角中斜行和水平行之间的关系 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

三角函数公式推导过程

三角函数公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)) (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

杨辉三角形的生活运用和规律

杨辉三角形规律 每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 第n行的数字个数为n个。 第n行数字和为2^(n-1)。(2的(n-1)次方) 每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。 第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。 两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行

杨辉三角在弹球游戏中的应用 如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。根据具体地区获的相应的奖品(。 图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。小球要落入D 区的情况有两种,有概率知识得: D 1 D 2 就是说,小球落入D 区的概率是等于它肩上两区域概率之和的 2 1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121 1 8381 3213232323232 1 64646641564206415646641 A B C D E F G 图2

三角函数公式知识点及应用

三角函数公式 ? 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 基本信息 ?中文名称 三角函数 ?外文名称

相关概念

余切:cotangent(简写cot)['k?u't?nd??nt] 正割:secant(简写sec)['si:k?nt] 余割:cosecant(简写csc)['kau'si:k?nt] 正矢:versine(简写versin)['v?:sain] 余矢:versed cosine(简写vercos)['v?:s?:d][k?usain] 直角三角函数 直角三角函数(∠α是锐角) 三角关系 倒数关系:cotα*tanα=1 商的关系:sinα/cosα=tanα 平方关系:sin2α+cos2α=1 三角规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 三角函数本质: 根据三角函数定义推导公式根据下图,有sinθ=y/ r;cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来, 比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

三角函数的和差公式推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数的和差公式推导过程。 三角函数的和差公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cossinb cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 三角函数的和差公式推导过程 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb 两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1) 两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2) cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb 两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3) 两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4) 用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为: sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。 三角函数积化和差公式 sinasinb=-[cos(a+b)-cos(a-b)]/2 cosacosb=[cos(a+b)+cos(a-b)]/2

三角形面积公式5种推导方法

三角形面积公式的五种推导方法 三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。 关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。 第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。 前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

杨辉三角的规律以及推导公式

精心整理 杨辉三角的规律以及定理 二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 2的展开式来探讨。杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121 由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1 ) 1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1) (1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233 (a+b)=ab+7ab+21a+bb+35a+7abb+35a。b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2) 方。系数是杨辉三角里的系数。、、升,01 杨辉三角的幂的关系2 精心整理.

精心整理 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) … 相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次 杨辉三角中斜行和水平行之间的关 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4 14641(6)n=5 15101051n=6 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

三角函数公式推导过程

三角函数公式推导过程 万能公式推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得 sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a- b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

三角函数公式大全及推导过程

一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan(-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2 π-α)= sinα sin (2π+α)= cosα cos(2 π+α)= -sinα

sin ( 23π-α)= -cosα cos(2 3π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαsin sin cos cos )cos(?+?=- β αβαβαtan tan 1tan tan )tan(?-+=+ βαβαβαtan tan 1tan tan )tan(?+-= - 四、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式: )sin(cos sin 22?++=+x b a x b x a (其中a b =?tan ) 其中:角?的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z) 六、其它公式: 1、正弦定理: R C c B b A a 2sin sin sin ===(R 为ABC ?外接圆半径) 2、余弦定理 A bc c b a cos 2222?-+=

三角函数公式总结与推导--很全很实用

三角函数公式总结与推导 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180 | ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角形面积公式的五种推导方法数学论文

六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标; 二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下:第一步没什么问题,每个教师都有自己的导入新课的方式。第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。教材中还有一点缺失:学生在教师的引导下用两个“全等”三角形进行拼接时,是一个尝试的过程。教材举例说:小华拼出了一个长方形一个平行四边形。小林拼出了两个三角形——一个人拼的全是能利用的,一个人拼的全是不能用的,两个人的对比太大。我们想这不是教材的疏漏,是为了突出教学任务和目标。另外,教材举的例子是两个三角形能拼成一个长方形和一个平行四边形。但实际上能拼成两个平行四边形,加上长方形就是有三个图形是已经学习过的,都能用来推算三角形面积。教材忽略这个没有列出的平行四边形,我们猜可能是因为它的倾斜度过大,在视觉上有一种要“倒”的感觉。如果学生受视觉效果的影响,注意力分散,会影响到他们分析两种图形的底、高和面积的关系。也可能是基于简单化原则,有两个就够了,何必要三个。但是按这个说法,要一个就够了,何必两个。按照教材设定的思路,我们可以设想:学生手拿三角形,听老师布置完任务。怎么拼,能拼出什么都不太清楚,只能先随便的拼一下试试。如果运气好或者预想能力较强,可能直接拼出平行四边形和长方形。学生在试验时,会发现不等边拼接没有后续效果,因为这些组合图形都不规则,不能把握。然后,学生会把注意力放在那些特殊图形上。一类是那些中心对称的平行四边形,这是学习过的内容;一类是那些左右对称的凸多边形,这是好奇心驱使,随后即会放弃。学生的试验,开始可能是无序状态,随着注意的集中,目标一个一个的出现,学生的意识中必定会对自己刚才的所有拼接进行回顾(很多时候这个回顾是无意识的),找到拼出所有图形的方法得出两个全

三角函数公式总结与推导(全)

三角函数公式总结与推导(全) 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211 ||22 s lr r α= =?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x = α cos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域

三角形的面积计算公式的推导

“三角形的面积计算公式的推导”教学活动设计 一、活动主题的提出 数学实践活动是教师结合学生相关数学方面的生活经验和知识背景,引导学生以自主探索或合作交流的方式,展开形式多样、丰富多彩的学习活动。“三角形面积计算公式的推导”教材是通过拼的方法探究计算方法的,从表面上看,学生动手操作了,也探究了公式的形成过程,但实际上学生仅仅机械地拼了一拼,做了一次“操作工”,他们并没有自己的猜想和创造,没有真正参与知识的产生和形成,教材所提供的学习材料缺乏思维含量,缺少挑战性,学生体会不到思考的乐趣,思维得不到充分发展,为了培养学生的探究意识和探究水平,促动学生探究的有效性,特安排主题活动“三角形面积计算公式的推导”。 二、活动目标 1.探索并掌握三角形的面积计算公式,培养学生应用已有知识解决新问题的水平。 2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观点和初步的推理水平。 3.在探索活动中使学生获得积极地情感体验,感受数学的乐趣,体会成功的喜悦,进一步培养学生学习数学的兴趣。 三、课前准备 1.分组:每4人为一小组。 2.每人准备3张正方形纸片。 3.每位同学准备尺子、剪刀、铅笔。 四、时间:一课时(不包括活动前的准备) 五、活动过程 1.检查学生课前的准备情况。 2.揭示课题 师:三角形的面积能够怎样计算呢?这就是我们这节课要研究的问题。 板书课题:三角形面积的计算公式 3.探究操作 师:(先每4人一小组分好小组)每人拿出一张正方形纸片,在上面剪一刀,要求剪下一个三角形。当然你用笔和尺子把想剪的三角形在正方形上画出来,不剪也能够。(学生剪、画) 汇报展示。(选择如下三种图) ①②③ 师:这三种剪法中哪种剪法剪下的三角形面积你能计算?你是怎么知道的? 学生观察、思考、分析、推理、小组讨论、汇报。 第三种(图③)剪法剪下的三角形面积能计算,三角形面积正好是这个正方形面积的一半,只要把剪下的两个三角形重叠在一起,就能够发现他们完全一样(形状

三角函数公式大全及推导过程

三角函数公式大全及推导过程 一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos (2 π-α)= sinα sin (2π+α)= cosα cos (2 π+α)= -sinα sin (23π-α)= -cosα cos (2 3π-α)= -sinα sin (23π+α)= -cosα cos (2 3π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=-

三角形面积公式的五种推导方法

三角形面积公式的五种 推导方法 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

两个三角函数公式的推导

学习好资料欢迎下载 湖北浠水县巴驿中学(436208)陈铿 初中我们学习了简单的三角函数,并应 用它解直角三角形。在实际生活中,利用三 角函数解三角形,应用广泛,因此我们必须 掌握三角函数的基础知识,正确理解三角函 数定义,灵活运用它解决实际问题。下面利 用三角函数定义,推导出两个重要三角函数 公式,供数学爱好者参考。 例题△ABC中,AB=AC,∠BAC=2α。 求证:(1)sin2α=2sinα·cosα; (2)sin2 α =2cos 1α - 。 证明(1)当0 0<2α 90 0时,作△ABC的高 AD、BE(如图)。设AB= AC=1(单位长度)。 由条件知:BD= 2 1 BC,∠BAD=2 1 ∠BAC =α,∠EBC=∠DAC=α, 在Rt△ABD中, BD=ABsin∠BAD=sinα, AD=ABcos∠BAD=cosα, ∴BC=2 sinα,∵ 在Rt△AEB中, BE= ABsin∠BAC= sin2α, 由三角形面积公式可得 2 1 B C·AD=2 1 AC·BE, ∴2 1 ·2 sinα·cosα=2 1 ·1 ∴sin2α=2 sinα·cosα 又由AE=ABcos∠BAC= cos2 得EC=AC—AE=1—cos2α 在Rt△BEC中, EC=BCsin∠EBC=2 sinα· =2 sin2α, ∴sin2α=2 2 cos 1α - 。 由于0<cos2α<1 ,sinα> ∴sinα=2 2 cos 1α - 。 令α=2 β ,则sin2 β =2 cos 1β - (半 角公式)。 (2)当90 0≤2α<1800时,同理可证 明原命题成立。 类似上面的证明过程,还可以推导出其 它的的三角公式,例如:sin2α+cos2α=1。 已知sinα(或sin2α)的值,利用上面 公式可以求出sin2α(或sinα)的值。 当α=150时,sin150 =2 30 cos 10 - =4 2 6- , 已知sin180 = 1 5- ,求sin360的值。

相关主题
文本预览
相关文档 最新文档