当前位置:文档之家› 正四面体蕴藏正方形中

正四面体蕴藏正方形中

正四面体蕴藏正方形中
正四面体蕴藏正方形中

正四面体蕴藏正方体中

我们在立体几何的学习中,探讨得最多的空间图形是正方体。例如,我们考虑两直线之间的相交(垂直)、平行、异面关系;两平面之间的相交(垂直)、平行关系;两异面直线之间的距离;两平行平面之间的距离;两相交平面之间的二面角等等,都可以借助正方体形象、直观、简洁地引入、刻画、研究。而正方体本身所具有的简洁美、对称美、和谐美也留给我们深刻的印象。因而,我们最熟悉的空间图形是正方体,我们最容易把握的空间图形也是正方体。正四面体是另一个我们探讨得很多的空间图形,正四面体同样体现了数学的简洁美、对称美、和谐美。但相比较而言,正四面体中的直线之间的平行关系;平面之间的垂直、平行关系;两平行平面之间的距离等等,都不很直观、典型。正四面体中几何元素之间尽管和谐,但有时候也不容易把握。

我们说我们对正方体比对正四面体更熟悉、更容易把握的一个更重要的理由是,正方体中蕴藏着正四面体。例如,如图3的正方体EBFA-CGDH 中,蕴藏着两个典型的正四面体,正四面体D-ABC 和正四面体H-EFG 。从而就为我们利用较熟悉的正方体认识较不熟悉的正四面体带来了可能。一般而言,单纯地利用正四面体本身的点、线、面、体这些几何量之间的某些关系进行研究,技巧性更强,推导更繁杂,更容易出错。而借助正方体来研究正四面体,计算量更少,几何量之间的关系更加简明、直观,做完后我们的把握更大。下面我们举一些例子进行说明。

例1 (2003年高考理科数学新课程卷选择题最后一题):一个四面体的所有棱长都为2,四个顶点在同一个球面上,则此球的表面积为 ( )

A.3π

B.4π

C.33π

D.6π

B

A

B

Q

E C

图1 图2 图3

分析1:如图1所示,正四面体D-ABC 的棱长为a ,中心为O 点,D 在底面ABC 上的射影为P 点,连接OA 、OB 、OC,显然,O 到平面ABC 、BCD 、ABD 、ACD 的距离

都等于OP ,且ABC D V -=4ABC O V -,即3

1

?ABC S ??DP=4?ABC S ??OP ,即DP=4 OP 。

如图2所示,P 为边长为a 的等边ΔABC 的重心,延长CP 与AB 相交与Q 点,则CQ=

23a ,CP=33a ,在Rt ΔDPC 中,利用勾股定理得,DP=22CP CD -= 2

23

3)(

a a -=

a 36,则OP=41DP=a 126 在Rt ΔOPC 中,利用勾股定理得,OC=22CP OP +=2

233126)()(

a a +=a 46,则此球的半径为a 46=23,从而此球的表面积为4π2

2

3)(

=3π。 分析2:如图3所示,棱长为a 的正方形EBFA-CGDH 中,蕴藏着若干正四面体,如正四面体ABCD ,它的棱长为2a ,由题目已知,正四面体的棱长为2,从而a =1。它的中心为正方形的中心即CF 与DE 的交点O ,OC 长方体对角线的一半,即

2

3

,从而此球的表面积为4π223)(=3π。

例2 (2005年高考理科数学全国卷Ⅱ选择题最后一题):将半径为1的4个

钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( )

A.

3623+ B.2+362 C.4+362 D. 3

6

234+ 分析1:如图4所示,正四面体的高最小时,即四个小钢球与正四面体的各个面相切。首先求出一个小球的球心1O 到另三个小球球心所在平面2O 3O 4O 的距离。

1O 2O =2O 3O =3O 4O =2O 4O =2,2O E =3,2O O =

3

3

2。 ∴O 1O =3

44-

=36

2。

然后在求出最上面的小球球心1O ,到正四面体顶点A 的距离A 1O (如图5),设A B =x 。

则B /O =2332?x =33x ∴/O A =36x ∴1O A =3

6x -1=1O B

A /O ⊥/O

B ∴21B O =2

1/O O +2/B O

∴222

3

11136x x +=-)(

∴0632312=-

x x x ≠0 ∴x =62 ∴/O A =

3

6

?62=4 ∴1O A =3 由题意可知三个球到正四面体底面的距离为1

∴正四面体的高最短为3+1+362=4+3

6

2

O

43

D

C

E

图4 图5 图6

分析2:如图6所示,棱长为a 的正方形EBFA-CGDH 中,蕴藏着正四面体ABCD 。O 点为体对角线CF 与DE 的交点,容易知道,O 点为正四面体D-ABC 和四个小钢

球的球心构成的正四面体1O 2O 3O 4O 的共同中心。Q 点为面对角线AB 与EF 的交点,CQ 与DE 相交与P 点。在矩形CEFD 中,ΔCEQ ∽ΔEFD ,DE ⊥CQ ,DE ⊥AB ,从而OP 为正四面体D-ABC 的中心O 到它的一面ABC 的距离,DP 为它的高。 AB=2a OP=

63a DP=3

32a ∴正四面体的棱长、中心到它的一面的距离、它的高之比为2:

63:3

3

2。 由题意可知正四面体1O 2O 3O 4O 棱长为2,根据上述比例关系可知它的中心O 到它的一面的距离为

66。而O 到正四面体D-ABC 的一面的距离即OP 为6

6

+1。再根据上述比例关系

63:332=1:4,可知DP=4+3

62。

例3 (2000年全国高中数学联赛):试求边长为a 的正四面体的棱切球(与所有的棱都相切的球)的体积。

分析1:如图7所示,设O 为正四面体ABCD 的中心。在Rt ΔOBF 中,利用勾股定理得此正四面体的外接球半径AO=BO=

46a 。故知棱切球半径r=OP=4

2

a (内切球OF=

12

6

a ,中心O 为高线AF 的四等分点)

。从而棱切球的体积π34=

V 3r =π24

23a 。

B

D

D

C

E

F

图7 图8

分析2:如图8所示,边长为

2

2

a 的正方形EBFA-CGDH 中,蕴藏着边长为a 正四面体ABCD 。面对角线CD 与GH 相交于P ,显然棱切球半径r=OP=

4

2

a 。从而棱切球的体积π34=V 3r =π24

2

3a 。

参考文献:

[1]北京点知教育研究院高考命题研究中心编.2005-2001年全国各省市高考试卷总汇及详解.北京:中国致公出版社,2005,6.

[2]薛党鹏.数学竞赛中的体积问题[J].中等数学,2005(5).

高考数学必背经典结论-正四面体性质

必背经典结论---提高数学做题速度! 立体几何(必背经典结论) 之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2 (正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离, 若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 3 6 (正方体体对角线l 32=) (3) 正四面体的体积为3 12 2a (正方体小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61=)

(6)外接球的半径为 a 4 6 (是正方体的外接球,则半径正方体体对角线l 2 1 =) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线l 6 1 =) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 16a b c ; (4)底面面积S △ABC (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 22221111 OH a b c =++; (8)外接球半径 (9)内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++

三棱锥的一个体积公式及其两条推论

三棱锥的一个体积公式及其两条推论 (李明 中国医科大学数学教研室 110001) 摘要:本文利用空间向量这个强有力的数学工具推导出了三棱锥的一个体积公 式 1 6 V =a b c 、、为三条侧楞的 长度,αβγ、、为它们的相互夹角,即三个侧面顶角),并由该公式推演出了两条推论. 关键词: 三棱锥 体积公式 等夹角三棱锥 最大体积 0引言 我们知道,如果 OAB ?的两条边OA a OB b ==、,其夹角AOB α∠=(显然 (0,)απ∈),则OAB ?的面积1 sin 2 S ab α=(如图1).将此结论类比到空间(如图2),我们 便有如下问题:如果三棱锥O ABC -的三条侧棱OA a OB b OC c ===、、,其夹角 AOB BOC COA αβγ∠=∠=∠=、、(显然(0,),(0,2)αβγπαβγπ∈++∈、、),则 三棱锥O ABC -的体积V 如何用这些已知的棱长a b c 、、及已知的夹角αβγ、、来表示呢?即体积V 的公式是什么呢? 1 推导体积V 的公式 首先,在图2的基础上,以三棱锥O ABC -的顶点O 为坐标原点,以OA 为x 轴正向,以垂直于OAB ?所在的平面的方向为z 轴建立右手空间直角坐标系Oxyz (如图3). 图3 x

在图3中,(,0,0),(cos ,sin ,0),(,,)OA a OB b b OC x y z αα=== (其中x y z 、、为未知 数),将这些向量带入如下向量方程组: cos cos OC c OB OC OB OC OA OC OA OC βγ ?=???=???=?? 我们便得到如下关于x y z 、、的代数方程组: 2222cos sin cos cos x y z c x y c x c ααβγ?++=? +=??=? 由此方程组我们可以求得 : z 于是三棱锥的体积为 111 sin 3321 (1) 6 AOB V S z z ab α ?==?= 2 两条推论 由体积公式(1),我们可以推演出如下两条推论.其中推论2的证明略微复杂,下文将详细给出证明步骤,而推论1的证明显而易见,不予赘述. 推论1(等夹角三棱锥体积公式)如图4,在三棱锥O ABC -中,如果三条侧棱 OA a OB b OC c ===、、,其夹角AOB BOC COA θ∠=∠=∠=(显然2 (0,)3 θπ∈),则 三棱锥O ABC -的体积为 1 (1cos (2)6 V abc θ=- B b O a c 图5 C B b A O a c θ θ θ 图4 C

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的 (1)全面积S全 = 2a; (2)体积 V=3 12 a; (3)对棱中点连线段的长 d= a;(此线段为对棱的距离,若一个 球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角α= 1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β= 1 arccos 3 (7)外接球半径 R= 4 a; (8)切球半径 r= 12 a. (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c.则 ①不含直角的底面ABC是锐角三角形; ②直角顶点O在底面上的射影H是△ABC的垂心; ③体积V= 1 6 a b c; ④底面面积S△ABC ⑤S2△BOC=S△BHC·S△ABC; A B C D O H

⑥S 2 △BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 22 221111 OH a b c =++; ⑧外接球半径 R= ⑨切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全= 2a ; (2)体积 3 ; (3)对棱中点连线段的长 d= a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 R= 4 a ; (8)切球半径 r= a . (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; A O H

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

正四面体的性质 (2)

正四面体的性质及应用 设正四面体ABCD 的棱长为a ,则存在以下性质: 【性质1】正四面体的3对相对棱互相垂直,任意一对相对棱之间的距离为 a 22 【性质2】正四面体的高=h a 3 6 【性质3】正四面体的表面积为23a .体积为 3122a 【性质4】正四面体的内切球半径为=r a 126.外接球半径为=R a 4 6且4:3:1::=h R r 【性质5】正四面体底面内任一点O 到三个侧面的距离之和为 a 36 【性质6】正四面体内任一点到四个侧面的距离之和为a 3 6 【性质7】正四面体的侧棱与底面所成的二面角大小为: 36arccos 【性质8】正四面体相邻侧面所成的二面角的大小为: 3 1arccos 【性质9】设正四面体侧棱与底面所成的角为α,相邻两侧面所成的二面角的大小为β,则有βαtan 2tan = 【性质10】正四面体的外接球的球心与内切球的球心O 重合且为正四面体的中心 【性质11】中心与各个顶点的四条连线中两两夹角相等为3 1arccos -π

【性质12】正四面体内接于正方体,且它们共同内接于同一个球.球的直径等于正 方体的体对角线.( V 正四面体: V 正方体 : V 球 = 2 : 6 : 3 3) 二.正四面体性质的应用 【例1】一个球与正四面体的6条棱都相切,若正四面体的棱长为a.求此球的体积.【例2】在正四面体ABCD.E,F分别为棱AD,BC的中点,连结AF,CE.①异面直线AF 和CE所成的角_______②CE与平面BCD所成的角_______ 【例3,四个顶点在同一球面上,则此球的表面积为________ 【例4】四面体的ABCD的表面积为S , 其四个面的中心分别为E , F , G , H .设四面体EFGH的表面积为T , 则 S : T = _______

三棱锥的体积

锥体的体积 教学重点和难点 三棱锥体积公式及其探求. 教学设计过程 (一)复习三个问题(学生口答) 1.锥体平行于底面的截面的性质 2.祖暅原理 3.柱体的体积公式及探求思路 (二)学生探求锥体体积公式 1.底面积是S,高是h的柱体体积公式的探求思路? 构造一个与所给柱体等底面积等高的长方体,由祖暅原理知,它们的体积相等,所以V 柱体 =Sh. 2.等底面积等高的两个锥体的体积之间有什么关系呢? 用祖暅原理.设有任意两个锥体,不妨选取一个三棱锥,一个四棱锥,并设它们的底面积都是S,高都是h(如图1).①把这两个锥体的底面放在同一个平面α上,由于它们的高相等,故它们的顶点必在与α平行的同一个平面β上,即这两个锥体可夹在两个平行平面α,β 之间;②用平行于平面α的任意平面去截这两个锥体,设截面面积分别为S 1,S 2 ,截面和顶点 的距离是h 1 ,体积分别 由祖暅原理知:V 1=V 2 .(生叙述师板书) 可以叙述为:等底面积等高的两个锥体的体积相等. 3.如何求出锥体的体积? 怎样研究三棱锥的体积呢?(板书:三棱锥的体积,并作出一个底面积为S的,高为h 的三棱锥A'-ABC,(如图2) 图1

(1)补成三棱柱,把三棱锥A'-ABC以底面△ABC为底面,AA'为侧棱补成个三棱柱ABC -A'B'C'. (2)分割成三个三棱锥.(补形过程及分割过程由学生完成) 怎样证明这三个三棱锥1,2,3等体积呢? (学生思考两个锥体等体积的依据——前面定理的条件:(1)等底面积,(2)等高) 在三棱锥1,2中,S△ ABA'=S △B'A'B ,又由于它们有相同顶点C,故高也相等,所以V 1 =V 2 .又 在三棱锥2,3中,S △BCB'=S △B'C'C ,它们有相同顶点A',故高也相等.所以V 2 =V 3 ,所以V 1 =V 2 =V 3 . 一般锥体的体积又如何呢?(设一般锥体的底面积为S,高为h) 构造一个三棱锥,使其底面积为S,高为h,由于等底面积 (三)锥体体积公式的简单应用 例1、如图7,在正方体ABCD-A'B'C'D'中,已知棱长为a,求:(1)三棱锥B'-ABC的体积; (2)这个三棱锥的体积是正方形体积的几分之几; (3)B到平面AB'C的距离? 分析(3):注意到三棱锥B-AB'C与三棱锥B'-ABC是同一个三棱锥. S △AB'C 也易求,这样h即可求出. 巧用了三棱锥的体积,使问题的求解变得十分简捷.这种方法称作顶点转换法,有时也称作等积转换法.

正四面体的性质

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; 2 2 2 2 & ⑥S △Bo +S △Ao +S △ AO =S △ABC 1 1 + -- ? 2 2 J b c R= 1 J a 2 + b 2 +c 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos ⑤ S △ BO =S BHC ? & ABC ⑧外接球半径 C

2 ⑨内切球半径r= S^OB +S^OC +S^OC~S m c a + b +c

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos C

正四面体性质及其应用

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3 a ; (3) 体积V = 2 12 a 3 ; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2 a ; (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=a rctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4 a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球 心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3 ,则AB=BC=CA =1 所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3 ,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8 a 解析:直接运用正四面体的性质,内切球的半径r = 6 12 a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12 a ,因此选 例3:(06年陕西卷)将半径为R 心到桌面的距离为 。 解析

第一节 正方体与正四面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-…… 它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE (如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交 BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找 出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度的。先把该题放下,来看一题初中化学竞赛题: 【例题 2】CH 4分子在空间呈四面体形状,1个C 原子与4 个H 原子各共用一对电子对形成4条共价键,如图 1-3所示为一 个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正 方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适 位置和3条共价键,任意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因 为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上, 正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面 对角线的对侧,一个为体对角线的对侧。显然三个在面对角线对 侧上的顶点为另三个氢原子的位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不 相邻的四个顶点(不共棱)可构成一个正四面体,正四面体的棱 长即为正方体的棱长的2倍,它们的中心是互相重合的。 【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2, 图1-1 图1-2 图1-3 图1-4

空间几何体的表面积体积公式(大全)

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S ) (2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

正四面体性质及其应用

正四面体性质及其应用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 球的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则 ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3 R ,则上面一个球的球心A 到桌面的距离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60 ○ ,E 为AC 的中点,将△ADE 与△BEC 分别沿重合于点 P ,则三棱锥P -DCE 的外接球的体积为( )A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DCE 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球球心的一个截面如图1

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

正四面体

正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 化学中CH4,CCl4等分子也呈正四面体状。 相关数据 当正四面体的棱长为a时,一些数据如下: 高:√6a/3。中心把高分为1:3两部分。 表面积:√3a^2 体积:√2a^3/12 对棱中点的连线段的长:√2a/2 外接球半径:√6a/4,正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球半径:√6a/12,内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 棱切球半径:√2a/4. 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 两邻面夹角:2ArcSin(√3/3)=ArcCos(1/3)≈1.23095 94173 4077(弧度)或70°31′43″60571 58335 111,与两条高夹角在数值上互补。 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。

正四面体蕴藏正方形中

正四面体蕴藏正方体中 我们在立体几何的学习中,探讨得最多的空间图形是正方体。例如,我们考虑两直线之间的相交(垂直)、平行、异面关系;两平面之间的相交(垂直)、平行关系;两异面直线之间的距离;两平行平面之间的距离;两相交平面之间的二面角等等,都可以借助正方体形象、直观、简洁地引入、刻画、研究。而正方体本身所具有的简洁美、对称美、和谐美也留给我们深刻的印象。因而,我们最熟悉的空间图形是正方体,我们最容易把握的空间图形也是正方体。正四面体是另一个我们探讨得很多的空间图形,正四面体同样体现了数学的简洁美、对称美、和谐美。但相比较而言,正四面体中的直线之间的平行关系;平面之间的垂直、平行关系;两平行平面之间的距离等等,都不很直观、典型。正四面体中几何元素之间尽管和谐,但有时候也不容易把握。 我们说我们对正方体比对正四面体更熟悉、更容易把握的一个更重要的理由是,正方体中蕴藏着正四面体。例如,如图3的正方体EBFA-CGDH 中,蕴藏着两个典型的正四面体,正四面体D-ABC 和正四面体H-EFG 。从而就为我们利用较熟悉的正方体认识较不熟悉的正四面体带来了可能。一般而言,单纯地利用正四面体本身的点、线、面、体这些几何量之间的某些关系进行研究,技巧性更强,推导更繁杂,更容易出错。而借助正方体来研究正四面体,计算量更少,几何量之间的关系更加简明、直观,做完后我们的把握更大。下面我们举一些例子进行说明。 例1 (2003年高考理科数学新课程卷选择题最后一题):一个四面体的所有棱长都为2,四个顶点在同一个球面上,则此球的表面积为 ( ) A.3π B.4π C.33π D.6π B A B Q E C 图1 图2 图3 分析1:如图1所示,正四面体D-ABC 的棱长为a ,中心为O 点,D 在底面ABC 上的射影为P 点,连接OA 、OB 、OC,显然,O 到平面ABC 、BCD 、ABD 、ACD 的距离 都等于OP ,且ABC D V -=4ABC O V -,即3 1 ?ABC S ??DP=4?ABC S ??OP ,即DP=4 OP 。

解析几何课程中求四面体体积新方法探究

解析几何课程中求四面体体积新方法探究 孙 欣, 马思佳, 李铭辉 【摘 要】对数学类专业开设的解析几何课程教材中求以不共面的4个点为顶点组成的四面体体积问题进行了研究。教材只给出了从四面体一个顶点出发的3个不共面向量求其混合积求体积的方法。事实上,只要从4个顶点中任取3个不共面向量,求其混合积就可以求四面体体积,并利用2种方法证明了所得结论。最后,以一个数值算例说明所用方法的正确性与有效性,对教材内容进行了深化与拓展。 【期刊名称】沈阳师范大学学报(自然科学版) 【年(卷),期】2016(034)003 【总页数】5 【关键词】关 键 词:四面体体积; 《解析几何》课程; 向量混合积 0 引 言 求四面体体积问题,一直是数学类问题研究的热点。文献[1-4]利用6条棱长给出四面体体积计算公式;文献[5-6]利用四面体由一个顶点出发的3条棱长及其中每2条棱的夹角求体积;文献[7-8]利用4个顶点坐标,形成由1个顶点出发的3条不共面向量,以行列式的形式给出四面体体积计算公式。文献[9]计算从1个顶点出发的3个向量混合积,求其绝对值再除以6,这样的3个向量共点却不共面,取法共有4种。事实上,不共面的3个向量除了这4种外,还有12种,即2个向量共点而第3个向量与2个向量既不共点也不共面,只要计算出3个向量混合积的绝对值再除以6就等于四面体体积。本文将用2种方法证明这16种不共面3个向量的混合积的绝对值都相等,等于已知四面体体积的6倍,由此给出求四面体体积的新方法。 1 问题的形成 现在来考虑,给出不共面4点A,B,C,D坐标,求其构成的四面体体积的问题。如图1,若不考虑向量的正反方向,4个点构成6个向量,从6个向量任取3个向量的方式共有=20种,其中3个向量共面的有4种,其余16种3个向量均不共面。其中,从1个顶点出发的3个向量共有4种,即情况Ⅱ;而从1个顶点出发2个向量,第3个向量与这两向量既不共点又不共面共有12种即情况Ⅲ。综述,如下所示: 情况Ⅰ 情况Ⅱ 情况Ⅲ 下面用2种方法证明这16种不共面的3个向量的混合积的绝对值都相等,等于以这3个向量为棱组成的四面体体积的6倍。

正四面体性质及其应用审批稿

正四面体性质及其应用 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高 的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3R ,则上面一个球的球心A 到桌面的距 离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60○,E 为AC 的中点,将△ADE 与△BEC 分别沿ED P ,则三棱锥P -DCE 的外接球的体积为( ) A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DC E 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球心的一个截面如图1

正方体和正四面体

第 1 页 共 4 页 高中化学竞赛辅导专题讲座——三维化学 近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取 CD 中点E ,截取面ABE (如图1-2所示),过A 、 B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度 的。先把该题放下,来看一题初中化学竞赛题: 【例题2 】CH 4分子在空间呈四面体形状,1个C 原 子与4个H 原子各共用一对电子对形成4条共价键,如 图1-3所示为一个正方体,已画出1个C 原子(在正方体 中心)、1个H 原子(在正方体顶点)和1条共价键(实线表 示),请画出另3个H 原子的合适位置和3条共价键,任 意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方 体的顶点上,正方体余下的七个顶点可分成三类,三个为 棱的对侧,三个为面对角线的对侧,一个为体对角线的对 侧。显然三个在面对角线对侧上的顶点为另三个氢原子的 位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

相关主题
文本预览
相关文档 最新文档