当前位置:文档之家› (完整)高一物理:三力平衡

(完整)高一物理:三力平衡

(完整)高一物理:三力平衡
(完整)高一物理:三力平衡

高一物理:三力平衡

学校:___________姓名:___________班级:___________考号:___________

一、单选题

1.如图2-3-20所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比1

2m m 为 ( ) A .

33 B .32 C .23 D .2

2 2.如图所示,在细而轻的绳两端分别系有质量为A m 、的小球,质量为A m 的小球静止在光滑半球形表面上的P 点,已知P 点与圆心的连线OP 与水平面夹角为60°,则A m 和B m 的关系是( )

A . A

B m m = B . 3A B m m =

C . 2A B m m =

D . 3B A m m =

3.如图所示,用绳AC 和BC 吊起一重物,绳与竖直方向夹角分别为30°和60°,AC 绳能承受的最大的拉力为120N ,而BC 绳能承受的最大的拉力为80N ,物体最大重力不能超过( )

A . 1003N

B . 100N

C . 803N

D . 160N

4.如图所示,两个质量均为m 的物体分别挂在支架上的B 点(如图甲所示)和跨过滑轮的轻绳BC 上(如图乙所示),图甲中轻杆AB 可绕A 点转动,图乙中水平轻杆一端A 插在墙壁内,已知θ=30°,则图甲中轻杆AB 受到绳子的作用力F 1和图乙中滑轮受到绳子的作用力F 2分别为( )

A.、B.、

C.、D.、

5.如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中( )

A.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小

C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大6.如图所示,AC是上端带定滑轮的固定坚直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的物体,且B端系有一根轻绳并绕过定滑轮C,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC。此过程中( )

A.力F逐渐增大B.力F先逐渐减小后逐渐增大

C.轻杆AB对B端的弹力大小不变D.轻杆AB对B端的弹力先减小后增大

7.如图所示,左侧是倾角为60°的斜面、右侧是圆弧面的物体固定在水平地面上,圆弧面

底端的切线水平,一根两端分别系有质量为m1、m2小球的轻绳跨过其顶点上的小滑轮.当它们处于平衡状态时,连接m2小球的轻绳与水平线的夹角为60°,不计一切摩擦,两小球可视为质点.两小球的质量之比m1∶m2等于( )

A.1∶1B.3∶2C.2∶3D.3∶4

8.长为的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳在竖直方向夹30°角且绷紧,小球A处于静止,对小球施加的最小的力等于( )

A.B.C..D.

9.如图所示,A、B两物体的质量分别为m A和m B,且m A>m B,整个系统处于静止状态,滑轮的质量和一切摩擦均不计,如果绳一端由P点缓慢地向右移动到Q点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ如何变化()

A.物体A的高度升高,θ角变小B.物体A的高度降低,θ角不变

C.物体A的高度升高,θ角不变D.物体A的高度降低,θ角变大

10.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是( )

A.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大

11.如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔,质量为的小球套在圆环上,一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉力F和轨道对小球的弹力的大小变化情况是( )

A.不变,增大B.不变,减小C.增大,减小D.减小,不变

12.如图所示,将一定的物块P用两根轻绳悬在空中,其中绳OA方向固定不动,绳OB在竖直平面内由水平方向向上转动,则在绳OB由水平方向转至竖直方向的过程中,绳OB的张力的大小将()

A.一直变大B.一直变小C.先变大后变小D.先变小后变大

13.如图所示,有四块相同的坚固石块垒成弧形的石拱,每块石块的质量均为m,每块石块的两个面间所夹的圆心角均为30°,第3、第4块固定在地面上。假定石块间的摩擦力可以忽略不计,则第1与第3石块间的作用力大小为()

A.mg B.mg C.2mg D.mg

二、多选题

14.如图所示,小球A和B的质量均为m,用长度相同的四根细线分别连接在两球间、球与水平天花板上P点以及与竖直墙上的Q点之间,它们均被拉直,且P、B间的细线恰好处于竖直方向,两小球均处于静止状态,则下列说法正确的是()

A.P、B之间细线对球B的拉力大小为B.P、A之间细线对球A的拉力大小为2mg

C.Q、A之间细线对球A的拉力大小为D.A、B之间细线对球B的拉力大小为mg 15.如图所示,a、b两个小球穿在一根光滑的固定杆上,并且通过一条细绳跨过定滑轮连

接。已知b球质量为m,杆与水平面成角θ,不计所有摩擦,重力加速度为g。当两球静止时,Oa绳与杆的夹角也为θ,Ob绳沿竖直方向,则下列说法正确的是()

A.a可能受到2个力的作用B.b可能受到3个力的作用

C.绳子对a的拉力等于mg D.a的重力为

16.如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N。

初始时,OM竖直且MN被拉直,OM与MN之间的夹角为()。现将重物向右上方缓慢拉起,并保持夹角不变。在OM由竖直被拉到水平的过程中( )

A.MN上的张力先增大后减小B.MN上的张力逐渐增大

C.OM上的张力逐渐增大D.OM上的张力先增大后减小

三、解答题

17.被轻绳拉着的气球总质量为5kg,受到的浮力是80N,由于风力的作用,致使拉气球的绳子稳定在与水平方向成θ=600角的位置上,如图所示。求绳子对气球的拉力和风对气球的水平作用力各多大?(取g=10m/s2)

18.如图所示,质量为m1的物体甲通过三段轻绳悬挂,三段轻绳的结点为O。轻绳OB水平且B端与放置在水平面上的质量为m2的物体乙相连,轻绳OA与竖直方向的夹角θ=370,物体甲、乙均处于静止状态。(已知sin370=0.6,cos370=0.8,g取10m/s2。设最大静摩擦力等于滑动摩擦力)

(1)求轻绳OA、OB受到的拉力分别多大?

(2)若物体乙的质量m2=4kg,物体乙与水平面之间的动摩擦因数为μ=0.3,每段轻绳的最大承受拉力均为15N。欲使物体乙在水平面上不滑动且轻绳不断裂,物体甲的质量m1最大不能超过多少?

19.如图所示,用三根轻绳将质量均为m的A、B两小球以及水平天花板上的固定点O之间两两连接,然后用一水平方向的力F作用于A球上,此时三根轻绳均处于直线状态,且OB绳恰好处于竖直方向,两球均处于静止状态,轻绳OA与AB垂直且长度之比为3:4.试计算:

(1) OA绳拉力及F的大小?

(2)保持力F大小方向不变,剪断绳OA,稳定后重新平衡,求此时绳OB及绳AB拉力的大小和方向。(绳OB、AB拉力的方向用它们与竖直方向夹角的正切值表达)

(3)欲使绳OB重新竖直,需在球B上施加一个力,求这个力的最小值和方向。

20.绳OC 与竖直方向成 30°角,O为质量不计的光滑滑轮,已知物体B重1000N,物体A 重400N,物块A和B均静止.求:

(1)物体B所受地面的摩擦力和支持力分别为多大?

(2)OC绳的拉力为多大?

21.如图所示,为使重100N 的物体在粗糙竖直墙上保持静止,用一与竖直方向成θ=37o 的力F 向上推住物体。已知物体与墙间的动摩擦因数μ=0.5,物体所受最大静摩擦力与滑动摩擦力相等,(sin37o =0.6cos37o =0.8)求力F 的取值范围。

参考答案

1.A

【解析】由F N 与F T 水平方向合力为零可知,F N =F T ;竖直方向有2F T cos30°=m 1g ,又F T =m 2 g ,从而得2m 2 g ×23=m 1 g ,解得12m m =3

3

2.C

【解析】将质量为m A 的小球所受的重力沿圆的切向和法向分解,其中切向的分力大小与质量为m B 的小球的重力大小相等,即60A B m gcos m g =,C 正确。

3.C

【解析】试题分析:对结点受力分析后,应用平衡条件求解出AC 绳和BC 绳上的拉力关系,根据两绳所能承受的最大拉力判断谁先断,按照最小的求解即可.

以重物为研究对象,受力如图所示:

由平衡条件得: sin30sin600AC BC T T ?-?=①,cos30cos600AC BC T T G ?+?-=②,由式①可知3AC BC T T =,当80BC T N =时, 803138.6120AC T N N N =≈>,AC 将断.而当120AC T N =时, 40369.380BC T N N N =≈<,将120403AC BC T N T N ==,代入式②,解得803G N =,所以重物的最大重力不能超过803N ,C 正确.

4.D

【解析】甲图中,结点受BC 绳子的拉力、重力和AB 杆的支持力,

根据平衡条件,有:F 1=

mg ;乙图中,绳子对滑轮的作用力应是两股绳的合力,如图所

示: 故F 2=mg ,故D 正确,ABC 错误。

5.B

【解析】试题分析:以小球为研究对象,分析受力情况:重力G 、墙面的支持力N 1和木板的支持力N 2,如图所示:根据平衡条件得:N 1=Gcotθ,

;木板从图示位置开始缓慢地转到水平位置θ增大,则N 1始终减小,N 2始终减小;故选B .

6.C

【详解】以B 点为研究对象,分析受力情况:重物的拉力T (等于重物的重力G )、轻杆的支持力N 和绳子的拉力F ,作出力图如图,

由平衡条件得知,N和F的合力与T大小相等,方向相反,根据

三角形相似可得;又T=G,解得:N=G,F=G;使∠BAC缓慢变小时,

AC、AB保持不变,CB变小,则N保持不变,F变小。故C正确,ABD错误。故选C。7.C

【详解】先以m1球为研究对象,由平衡条件得知,绳的拉力大小为:T=m1gsin60°,再以

m2球为研究对象,分析受力情况,如图所示:由平衡条件可知,绳的拉力T与支持力N的合力与重力大小相等、方向相反,作出两个力的合力,由对称性可知,T=N,2Tcos30°=m2g,联立解得:m l:m2=2:3,故C正确,ABD错误。

8.C

【解析】以小球为研究对象,作出受力图如图所示:根据作图法分析得到,当小球施加的力F与细绳垂直时,所用的力最小.根据平衡条件得F的最小值为F min=Gsin30°=0.5mg所以对小球施加的最小力0.5mg,故C正确,ABD错误。

9.B

【详解】将绳一端的固定点P缓慢向右移到Q点时,绳子的拉力大小不变,分析动滑轮的受力情况,作出力图如图,

设绳子的拉力大小为F,两绳子的夹角为2α,由于动滑轮两侧绳子的拉力关于竖直方向有对称性,则有2Fcosα=m B g,由于F=m A g,保持不变,则得知,

α角保持不变,由几何知识得知,α+θ=90°,则θ保持不变,当绳一端的固定点P缓慢向右移到Q点,动滑轮将上升,则物体A的高度下降。故B正确,ACD错误。故选B。10.B

【详解】对小球受力分析,受重力、挡板向右的支持力和半球面的支持力,如图

根据平衡条件解得:F1=mgtanθ;;由于θ不断增加,故F1增大、F2增大故B正确。

11.D

【详解】小球沿圆环缓慢上移即处于平衡状态,对小球进行受力分析,小球受重力G,F,F N,

三个力。满足受力平衡。作出受力分析图如下由图可知,

即:,其中,当A点上移时,半径不变,AB长度减小,故F减小,F N不变,故ABC错误,D正确。

12.D

【详解】对O点受力分析,受重力和两个拉力,如图根据平衡条件,合力为零,将两个拉力合成,与重力平衡,如图,从图中可以看出,OB绳子的拉力先减小后增加,OA绳子的拉力逐渐减小;故选D。

13.C

【解析】第1石块受到重力、第2石块对它的弹力和第三石块对它的弹力,受力如图.根据

平衡知,,解得,C正确.

14.BC

【解析】A、PB间细线恰好处于竖直方向,两小球均处于静止状态,若AB绳有拉力则球B 会偏离竖直方向,与已知矛盾.则知A、B间细线的拉力为零,B竖直方向上受力平衡得:

故A错误;B、对A球,受力分析如图所示:由平衡条件

得:,故B正确;C、由平衡得:故C正确;

D、PB间细线恰好处于竖直方向,两小球均处于静止状态,若AB绳有拉力则球B会偏离竖直方向,与已知矛盾.则知A、B间细线的拉力为零,故D错误;综上所述本题答案是:BC 15.CD

【详解】B、对b球受力分析可知,b受到重力,绳子的拉力,两个力合力为零,杆子对b 球没有弹力,否则b不能平衡,故B错误;

A、对a球受力分析可知,a受到重力,绳子的拉力以及杆对a球的弹力,三个力的合力为零,故A错误;

C、由于b受到重力和绳子拉力处于平衡状态,则绳子拉力T=mg,同一根绳子上的拉力相等,故绳子对a的拉力等于mg,故C正确;

D、分别对AB两球分析,运用合成法,如图,根据正弦定理列式得:,解

得:,故D正确;故选CD。

16.BD

【详解】由题意可知,重物在运动过程中受重力,MN绳拉力,OM绳拉力,与夹角保持不变,在某一时刻三个力受力分析示意图如图(a)所示,将此三个力平移为矢量三角形如图(b)所示,因为mg大小方向不变,与的夹角不变,故可将三个力平移入圆中,mg为一条固定的弦(固定的弦所对应的圆周角为定值),由图(c)可得从0逐渐变为直径,故逐渐增大,故A错误B正确;先从弦变为直径再变为弦,故先变大

后变小,故C错误D正确;故选BD。17.拉力,

【解析】对氢气球受力分析如图所示,

将绳子的拉力正交分解,由平衡条件得,

水平方向:F2=F3cos60°...(1);竖直方向:F1=F3sin60°+mg (2)

联立解得:F3=N,F2=N;

18.(1)(2)1.2kg

【解析】(1)受力分析如图所示:

由平衡条件有:

(2)当乙物体刚要滑动时,静摩擦力达到最大值:时

所以当,

解得:;即物体甲的质量m1最大不能超过1.2kg

19.(1)(2),tanθ1=;,tanθ2=(3),水平向左

【详解】(1)OB竖直,则AB拉力为0,小球A三力平衡,设OB拉力为T,与竖直方向

夹角为θ,则T=mg/cosθ=mg,F=mgtanθ=mg

(2)剪断OA绳,保持F不变,最后稳定后,设OB的拉力为T1,与竖直方向夹角为θ1,AB 拉力为T2,与竖直方向夹角为θ2,以球A、球B为整体,可得T1x=F=mg;T1y=2mg;

解得:T1=mg;tanθ1=;

单独研究球A,T2x=F=mg;T2y=mg;解得:T2=mg,tanθ2=

(3)对球B施加一个力F B使OB重新竖直,当F B水平向左且等于力F时是最小值,即

F B=F=mg,水平向左

20.(1)N=800N,f=346.2N;(2)698.2N

解:(1) 由于物体A保持静止,故:T=G A=400N;

对物体B受力分析,受重力、拉力、支持力和静摩擦力,如图所示:

根据平衡条件,有:N+Tsin30°=G B;Tcos30°=f

求得:N=800N,;

(2) 对滑轮受力分析,受三个拉力,如图所示:

根据平衡条件,有:T OC=2Tcos30°=

21.

【详解】(1)当F较小时,物体有下滑趋势,此时物体受力分析如图,

为使物体不下滑,应有Fsinθ=N ①;Fcosθ+f≥mg ②

f=f max时,F最小,F=F min.;而f max=μN ③

由①②③得F min cosθ+μF min sinθ=mg ④

解得F min==N=91N

(2)当F较大时,物体有上滑趋势,此时物体受力分析如图,

为使物体不上滑,应有Fsinθ=N ⑤;Fcosθ≤mg +f ⑥

f=f max时,F最大,F=F max.而f max=μN ⑦

由⑤⑥⑦得F max cosθ=mg+μF min sinθ ⑧

解得F max==N=200N

所以力F的取值范围为91N≤F≤200N

动态平衡中的三力平衡

动态平衡中的三力问题 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 例如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β 缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化 解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持α 图 图 G F G F 图1-3

力F1、挡板支持力F2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F1的方向不变,但方向不变,始终与斜面垂直。F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F2。由此可知,F2先减小后增大,F1随 增大而始终减小。 同种类型:例所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况(答案:绳上张力减小,斜面对小球的支持力增大) 方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的

高中物理平衡问题练习题

平衡奥义种下希望就会收获 1. 如图所示,两个完全相同的光滑球的质量均为m,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中() A.A、B两球间的弹力逐渐增大 B.B球对挡板的压力逐渐减小 C.B球对斜面的压力逐渐增大 D.A球对斜面的压力逐渐增大 2. 如图所示,质量为2m的物体A经一轻 质弹簧与地面上的质量为3m的物体B相 连,弹簧的劲度系数为k,一条不可伸长 的轻绳绕过定滑轮,一端连物体A,另一 端连一质量为m的物体C,物体A、B、C 都处于静止状态.已知重力加速度为g, 忽略一切摩擦.(1)求物体B对地面的压 力;(2)把物体C的质量改为5m,这时C缓慢下降,经过一段时间系统达到新的平衡状态,这时B仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A上升的高度. 3. 如图所示,一根匀质绳质量为 M,其两端固定在天花板上的A、B 两点,在绳的中点悬挂一重物,质 量为m,悬挂重物的绳PQ质量不 计。设、β分别为绳子端点 和中点处绳子的切线方向与竖直 方向的夹角,试求的大 小。 4. 如图所示,倾角为θ的斜面 体C置于水平面上,B置于斜面 上,通过细绳跨过光滑的定滑轮 与A相连接,连接B的一段细绳 与斜面平行,A、B、C都处于静 止状态.则() A.B受到C的摩擦力一定不为零 B.C受到水平面的摩擦力一定为零 C.水平面对C的摩擦力方向一定向左 D.水平面对C的支持力与B、C的总重力大小相等 5. 如图所示半圆柱体P固定在水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P 和MN之间放有一个光滑均匀的小圆 柱体Q,整个装置处于平衡状态.现 使MN保持竖直并且缓慢地向右平 移,在Q滑落到地面之前的此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.MN对Q的弹力保持不变 C.P对Q的作用力逐渐增大D.P对Q的作用力先增后减小 6. 如图所示,质量为M、半径为R、 内壁光滑的半球形容器静止放在粗 糙水平地面上,O为球心。有一劲度 系数为k的轻弹簧一端固定在半球 底部处,另一端与质量为m的小球相连,小球静止于P 点。已知地面与半球形容器间的动摩擦因数为, OP与水平方向夹角为。则 A.小球受到轻弹簧的弹力大小为 B.小球受到容器的支持力大小为 C.半球形容器受到地面的摩擦力大小为 D.半球形容器受到地面的支持力大小为 7. 一光滑圆环固定在竖直平面内, 环上套着两个小球A和B(中央有 孔),A、B间由细绳连接着,它们处 于如图所示位置时恰好都能保持静 止状态.此情况下,B球与环中心O 处于同一水平面上,A、B间的细绳 呈伸直状态,且与水平线成30°角. 已知B球的质量为2 kg,求细绳对B 球的拉力和A球的质量. (g取10 m/s2) 8. 如图所示,两楔形物块A、B部分靠 在一起,接触面光滑,物块B放置在地 面上,物块A上端用绳子拴在天花板上, 绳子处于竖直伸直状态,A、B两物块均 保持静止。下列说法中正确的是() A;绳子的拉力可能小于A的重力 B;地面受的压力大于物块B的重力 C;物块B受到地面的摩擦力方向水平向左 D;物块B与地面间不存在摩擦力 9. 如图所示,一质量为M的楔形 木块放在水平桌面上,它的顶角 为90°,两底角为α和β;a、 b为两个位于斜面上质量均为m的小木块,已知所有接触面都是光滑的.现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于() A.Mg+mg B.Mg+2mg C.Mg+mg(sinα+sinβ) D. Mg+mg(cosα+cosβ)

高一物理动态平衡问题处理方法及答案

动态平衡分析 一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 正确答案为选项B 跟踪练习: 如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。 (A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 图2-1 图2-2 图2-3 图1-1 图1-2 F 1 G F 2 图1-3

例3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 解析:取绳子c 点为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。设角∠OAD 为θ;根据三个力平衡可得:θ sin 21G F = ;在三角形AOD 中可 知,AD OD = θsin 。如果A 端左移,AD 变为如图3-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。如果B 端下移,BC 变为如图3-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。 二 物体受四个力及以上 例 4 .如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是: A .地面对人的摩擦力减小 B .地面对人的摩擦力增加 C .人对地面压力增大 D .绳对人的拉力变小 跟踪练习: 如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中 A 、绳子的拉力不断增大B 、绳子的拉力保持不变 C 、船受的浮力减小 D 、船受的浮力不变 三 连接体问题 例5 有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 图3-1 A B C G O A B C G D F 1 F 2 F 3 O θ 图3-2 A B C G D F 1 F 2 F 3 O θ A ′ D ′ 图3-3 A B C G D F 1 F 2 F 3 O θ C ′ B ′ 图3-4 F

高一物理教案:平衡条件的应用

高一物理教案:平衡条件的应用【】鉴于大家对查字典物理网十分关注,小编在此为大家搜集整理了此文高一物理教案:平衡条件的应用,供大家参考! 本文题目:高一化学教案:平衡条件的应用 第4节平衡条件的应用之弹簧问题 在中学阶段,不考虑质量的轻弹簧,是一种常见的理想化物理模型,在弹性限度内其弹力遵从胡克定律.借助轻弹簧设置复杂的物理情景,来考查胡克定律的应用、物体的平衡. 例1:如图所示,一根轻弹簧上端固定在O点,下端拴一个钢球P,球处于静止状态,现对球施加一个水平向右的外力F,使球缓慢偏移,在移动中的每一个时刻,都可以认为钢球处于平衡状态.若外力F方向始终水平,移动中弹簧与竖直方向的夹角90,且弹簧的伸长量不超过弹性限度,则下面给出的弹簧的伸长量x与cos的函数关系图象中,最接近的是( ) [分析]思路一:通常采用解析法找出弹簧的伸长量x与cos 之间的函数关系来解题. 思路二:根据四个选项中各个图象的特点,结合本题动态平衡也可以用假设法来解题. [解答]解法一:弹簧与竖直方向的夹角为时,钢球P受到重力G、水平力F和弹簧拉力kx作用而平衡,如图所示,则

有kxcos= G,即x = Gkcos ,,可见x与cos之间的关系图象是一条双曲线. 解法二:假设趋近于90即弹簧趋近于水平位置,则cos趋近于0,在这种情况下,由平衡条件可知,弹簧的拉力应趋近于无穷大,弹簧的伸长量x也应趋近于无穷大,四个选项中只有D选项符合:当cos趋近于0时,x趋近于无穷大. 答案D. [规律小结]①用解析法来解动态平衡的图象问题时,通常是对研究对象进行受力分析,建立平衡方程,解出纵轴代表的因变量与横轴代表的自变参量之间的的函数关系,然后根据函数关系来确定其对应的具体图象. ②对于选择题中动态平衡的图象问题,尝试用假设法解,有时快捷有效. 注意:球缓慢偏移的过程中弹簧受到的拉力变大,本题极易受到弹簧的伸长量与受到的弹力成正比的影响而错选A。例2:如图所示,把重为20N的物体放在倾角= 30的粗糙斜面上,物体上端与固定在斜面上的轻弹簧相连接,弹簧与斜面平行.若整个系统处于静止状态,物体与斜面间的最大静摩擦力为12N,则弹簧对物体的弹力( ) A.可能为24N,方向沿斜面向上 B.可能为零 C.可能为4N,方向沿斜面向上

高一物理动态平衡专题习题和答案

高一物理动态平衡专题 习题和答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理动态平衡专题习题及答案 1. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A 向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .先减小后增大 2. 如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是: ( ) A .若 B 向左移,F T 将增大 B .若B 向右移,F T 将增大 C .无论B 向左、向右移,F T 都保持不变 D .无论B 向左、向右移,F T 都减小 3.如图所示,绳子的两端分别固定在天花板上的A 、B 两点,开始在绳的中点O 挂一重物G ,绳子OA 、OB 的拉力分别为F 1、F 2。若把重物右移到O '点悬挂 (B O A O '<'),绳A O '和B O '中的拉力分别为' 1F 和' 2F ,则力的大小关系正确的是: ( ) A.'>11F F ,'>22F F B. '<11F F ,' <22F F C. '>11F F ,'<22F F D. '<11F F ,' >22F F 4.重力为G 的重物D 处于静止状态。如图所示,AC 和BC 两段绳子与竖直方向的夹角分别为α和β。α+β<90°。现保持α角不变,改变β角,使β角缓慢增大到90°,在β角增大过程中,AC 的张力T 1,BC 的张力T 2的变化情况为 :( ) A B O A B O O '

高一物理动态平衡专题习题和答案

高中物理动态平衡专题习题及答案 1. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A 向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .先减小后增大 2. 如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是: ( ) A .若 B 向左移,F T 将增大 B .若B 向右移,F T 将增大 C .无论B 向左、向右移,F T 都保持不变 D .无论B 向左、向右移,F T 都减小 3.如图所示,绳子的两端分别固定在天花板上的A 、B 两点,开始在绳的中点O 挂一重物G ,绳子OA 、OB 的拉力分别为F 1、F 2。若把重物右移到O '点悬挂 (B O A O '<'),绳A O '和B O '中的拉力分别为'1F 和'2F ,则力的大小关系正确的 是: ( ) A.'>11F F ,'>22F F B. '<11F F ,'<22F F C. '>11F F ,'<22F F D. '<11F F ,' >22F F 4.重力为G 的重物D 处于静止状态。如图所示,AC 和BC 两 段绳子与竖直方向的夹角分别为α和β。α+β<90°。现保持α角不变,改变β角,使β角缓慢增大到90°,在β角增大过程中,AC 的张力T 1,BC 的张力T 2的变化情况为 :( ) A .T 1逐渐增大,T 2也逐渐增大 B .T 1逐渐增大,T 2逐渐减小 C .T 1逐渐增大,T 2先增大后减小 D .T 1逐渐增大,T 2先减小后增大 5.如图所示,均匀小球放在光滑竖直墙和光滑斜木板之间,木板上端用水平细绳固定,下端可以绕O 点转动,在放长细绳使板转至水平的过程中(包括水平): ( ) B

动态平衡问题常见解法

动态平衡问题 苗贺铭 动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。 所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。 一、图解法 方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。 例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始 缓慢地转到水平位置.不计摩擦,在此过切程中( ) A.F N1始终减小 B. F N2始终减小 C. F N1先增大后减小 D. F N2先减小后增大 解析:以小球为研究对象,分析受力情况:重力G、 墙面的支持力和木板的支持力,如图所示:由矢量三 角形可知:始终减小,始终减小。 归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 二、解析法 方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。 例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变 大,F f变大 B. F N变小,F f变小 C. F N变大,F f变小 D. F N变小,F f变大 解析:设木板倾角为θ 根据平衡条件:F N=mgcosθ F f=mgsinθ 可见θ减小,则F N变大,F f变小;

【精品】高一物理动态平衡问题

动态平衡问题 教学目标:学会解决各类平衡问题 教学重点:动态平衡问题 教学难点: 解决平衡问题常用方法 1、合成与分解法 合成法:讲三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡问题转化为二力平衡问题。 分解法:当物体受到三个共点力的作用处于平衡状态时,利用平行四边形对任意一个力沿另外两个力的作用线方向分解,则这两个分力分别与另外两个力等大反向。 三角函数:sin 斜边对边正弦= cos 斜边邻边余弦= tan 邻边 对边 正切= 正弦定理: C c B b A a sin sin sin = = 余弦定理:θcos 2222ab b a c -+= 2、矢量三角形法 物体在三个力作用下处于平衡状态时,这三个力必可构成一封闭三角形。通过受力分析,画出物体受力示意图,将力平移后组成三角形。然后直接利用上述的数学知识解三角形。 3、正交分解法 通常在解决多力平衡问题时非常方便。一般应遵循的原则为:不在坐标轴上的力越少越好,各力与坐标轴之间的夹角是特殊角为好。常见角度30 45 60 90 37 53 4、整体法和隔离法 整体法:当只研究系统而不涉及系统内部的相互作用时一般可采用整体法。 隔离法:一般在研究系统内物体间相互作用时采用隔离法。 ★动态平衡问题运用图解法 图解法通常使用在三力作用下或可等效为三力作用下的动态平衡问题。 (1)三个力的方向都不变 (2)三个力中有一个力恒定,有一个力方向恒定 如图,在此情况下可作出力的矢量三角形,确定三角形中不变的边与方位不变的边,由线段长度及另一边的方位变化来确定力的大小、方向变化情况。

一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 正确答案为选项B 跟踪练习: 如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮, 轻绳的一端系一小球,靠放在半球上的 A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点 B 的过程中,半球对小球的支持力 N 和绳对小球的拉力T 的大小变化情况是( )。 (A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 例3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 图2-1 图 2-2 图2-3 图1-1 图1-2 F 1 G F 2 图1-3 ′

高中物理动态平衡问题

;. 动态平衡专题 1、如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N,球对木板的压力1大小为N。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水2平 位置。不计摩擦,在此过程中( ) 始终增大A.始终减小,始终减小,B.始终减小先增大后减小,.C 始终减小 先增大后减小,先减小后增大D.AC,现将之间夹角为30°AB之间,AC与AB2、如图所示,把一个光滑圆球放在两块挡板AC和) ,则( 板固定而使AB板顺时针缓慢转动90° AB板的压力先减小后增大A.球对板的压力逐渐减小.球对ABB 板的压力逐渐增大.球对ACC 板的压力先减小后增大球对ACD. 、如图所示,3用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度增加一些,则球对

)和球对墙的压力绳的拉力FF的变化情况是(21 F减小A.F增大,21增大.F减小,FB21和FF都减小C.21和F都增大D.F21 、某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上4 ) 缓慢爬行(如图),他在向上爬过程中( B屋顶对他的支持力变小.A.屋顶对他的支持力变大 屋顶对他的摩擦力不变C.屋顶对他的摩擦力变大D. ;.. ;. 5、在上海世博会最佳实践区,江苏城市案例馆中穹形门窗充满了浓郁的地域风情和人文特色.如

图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则 绳中拉力大小变化的情况是( ) A.先变小后变大B.先变小后不变 C.先变大后不变D.先变大后变小 6、如图所示,用细线悬挂一个均质小球靠在光滑竖直墙上.如把线的长度缩短,则球对线的拉力T、对墙的压力N的变化情况正确的是() A.T、N都不变B.T减小,N增大 C.T增大,N减小D.T、N都增大 7、如图,在静止的电梯里放一桶水,将一个用弹簧固连在桶底的软木塞浸没在水中,当电梯以 加速度a(a

动态平衡中的三力问题宁波市鄞州中学

动态平衡中的三力问题 物理组 王高波 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F 1的方向不变,但方向不变,始终与斜面垂直。F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图 1-3中一画出的一系列虚线表示变化的F 2。由此可知,F 2先减小后增大,F 1随β增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢 方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三 个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 图1-1 图1-2 F 1 G F 2 图1-3 图2-1 图2-2 图1-4

高一物理-动态平衡专题

第十五讲动态平衡专题 知识点动态平衡问题 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。知识点动态平衡问题 【典例8】如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 【典例9】用绳AO、BO悬挂一个重物,BO水平,O为半圆形支架的圆心,悬点A和B在支架上。悬点A固定不动,结点O保持不动,将悬点B从图中所示位置逐渐移动到C点的过程中,分析绳OA和绳OB上的拉力的大小变化情况。

方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形 的问题。 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 方法三:作辅助圆法 特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况。 【典例10】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( ) A.F N先减小,后增大 B.F N始终不变C.F先减小,后增大 D.F始终不变 【典例11】如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变) 90 (0 > α,物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则()。 (A)F1先减小后增大 (B)F1先增大后减小 (C)F2逐渐减小 (D)F2最终变为零

人教版高一物理必修1第三单元动态平衡专题特训

高中物理必修一第二单元动态专题特训 一、单选题 1.如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F 的作用下,小球A、B处于静止状态。若要使两小球处于静止状态且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小不可能为() A. √3 3mg B. √5 2 mg C. √2mg D. mg 2.如图所示,电灯悬于两壁之间,保持O点及OB绳的位置不变,而将绳端A点向上移动,则() A. 绳OA所受的拉力逐渐增大 B. 绳OA所受的拉力不变 C. 绳OA所受的拉力先增大后减小 D. 绳OA所受的拉力先减小后增大 3.如图所示,轻绳一端系在物体A上,另一端与套在粗糙竖直杆MN上的轻圆环B相连接。用水平力F拉住绳子上的一点O,使物体A及轻圆环B静止在实线所示的位置。现保持力F 的方向不变,使物体A缓慢移到虚线所示的位置,这一过程中圆环B保持静止。若杆对环的弹力为F N,杆对环的摩檫力为F f,OB段绳子的张力为F T,则在上述过程中() A. F不变,F N减小 B. F f不变,F T增大 C. F f减小,F N不变 D. F N减小,F T减小 4.如图所示,小球放在光滑的墙与装有铰链的光滑薄板之间,薄板在F作用下逆时针缓慢转动,在墙与薄板之间的夹角θ缓慢地从90°逐渐减小的过程中()

A. 小球对薄板的压力可能小于小球的重力 B. 小球对薄板的正压力一直增大 C. 小球对墙的压力先减小,后增大 D. 小球对墙的正压力不可能大于小球的重力 5.如图所示,轻杆的一端固定一光滑球体,杆以另一端O为自由转动轴,而球又搁置在光滑斜面上,若杆与竖直墙面的夹角为β,斜面倾角为θ,开始时β<θ,且β+θ<90°,则为使斜面能在光滑水平面上缓慢向右运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小、轻杆受力T和地面对斜面的支持力N的大小变化情况是() A. F逐渐增大,T逐渐减小,N逐渐减小 B. F逐渐减小,T逐渐减小,N逐渐增大 C. F逐渐增大,T先减小后增大,N逐渐增大 D. F逐渐减小,T先减小后增大,N逐渐减小 6.如图,水平轻杆OB可绕过O点的水平光滑轴转动,B端挂一重物,用长度可变的细线挂于墙上的A点。若保持轻杆OB处于水平状态,改变细线AB的长度将A点沿墙上移的过程中,细线AB所受的力() A. 逐渐减小 B. 逐渐增大 C. 大小不变 D. 先减小后增大 7.如图,一光滑小球静置在半圆柱体上,被一垂直于圆柱面的挡板挡住,设挡板跟圆心连线与底面的夹角为q,小球的半径忽略不计。现缓慢减小q,则小球在移动过程中,挡板对小球的支持力F1、半圆柱体对小球的支持力F2的变化情况是() A. F1增大,F2减小 B. F1增大,F2增大 C. F1减小,F2减小 D. F1减小,F2增大

高一物理平衡条件应用说课稿

高一物理平衡条件应用说课稿 高一物理平衡条件应用说课稿范文 《平衡条件的应用》是司南版必修1第五章"力与平衡”第4节的内容,是本章的重点内容之一;力学是高中物理的基础,所以本章内容教学的好坏关系到高中物理教学的成败,因此本章的教学尤其重要。 本节教学的主要内容有: 1.物体的静态平衡, 2.物体在某方向的平衡。本节是复习课的性质,在学习了常见力、力的合成与分解、力的平衡后学习了平衡条件的应用。同时巩固:确定研究对象、分析物体受力情况、应用物理规律列方程的解题思路,这在今后学习过程中经常用到。结合教材的内容和特点,为提高全体学生的科学素养,从新课程的“三维目标”培养学生。按教学大纲要求,结合新课标提出以下教学目标: 知识与技能: 1.了解共点力作用下物体的平衡条件在生活、生产中的应用 2.了解静态平衡和动态平衡 过程与方法 巩固:确定研究对象、分析物体受力情况、应用物理规律列方程的解题思路 情感态度与价值观

培养学生利用物理知识解决实际问题 高一学生的思维具有单一性,定势性,并从感性认识向理性认识的转变,本节的重点是:物体的静态平衡与某一方向的平衡;教学的难点是:利用平衡条件解决实际问题。 说教法 物理教学重在启发思维,教会方法。学生已经学习了力的合成与分解、力的平衡条件,可以作为教学的起点。让学生在教师的指导下,了解静态平衡与动态平衡,并通过归纳总结出确定研究对象、分析物体受力情况、应用物理规律列方程的解题思路,再进一步联系生活,通过实例讲解来巩固力的平衡的应用。使学生全面的理解教材,把握重、难点;因此,本节课综合运用直观讲授法、归纳总结和并结合多媒体手段。在教学中,加强师生双向活动,合理提问、评价,引导学生主动复习知识,并解决实际问题。 说学法 学生是课堂教学的主体,现代教育以“学生为中心”,更加重视在教学过程中对学生的学法指导,引导学生掌握新知识,较深对平衡条件的`理解。本节课教学过程中,复习力的合成与分解,力的平衡条件;通过例题讲解来引导学生积极思考、理解平衡条件的应用。巧用提问、评价激活学生的积极性,调动起课堂气氛,让学生在在轻松、自主的学习环境下完成学习任务。 说教学过程 从以上分析,教学中掌握知识为中心,培养能力为方向;紧抓重

高一物理共点力平衡与动态分析精选练习题及答案

高一物理共点力平衡与动态分析练习题 1.倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是( ) A.F N变大,F f变大B.F N变小,F f变小 C.F N变大,F f变小D.F N变小,F f变大 2.如图所示,一均匀球放在倾角为α的光滑斜面和一光滑的挡板之间,挡板与斜面的夹角为θ设挡板对球的弹力为F l,斜面对球的弹力为F2,则当θ逐渐减小到θ=α的过程中,下列说法正确的是( ) A.F1先减小后增大B.F1先增大后减小 C.F2减小D.F2增大 3.如图所示,电灯悬于两壁之间,保持O点及OB绳的位置 不变,而将绳端A点向上移动,则( ) A.绳OA所受的拉力逐渐增大 B.绳OA所受的拉力逐渐减小 C.绳OA所受的拉力先增大后减小 D.绳OA所受的拉力逐渐先减小后增大 4.把球夹在竖直墙和木板BC之间,不计摩擦.球对墙的压力为F N1,球对板的压力为 F N2.在将板BC逐渐放至水平的过程中,说法正确的是( ) A.F N1,F N2,都增大B.F N1,F N2,都减小 C.F Nl增大,F N2减小D.F N1减小,F N2增大 5 .某一物体受到三个力作用,下列各组力中,能使的球挂在光滑的墙壁上,设绳的 ,当绳长增加时,下列说法正确的是( ) 拉力为F,球对墙的压力为F A.F,F N均不变B.F减小,F N增大 C.F增大,F N减小D.F减小,F N减小 6.半径为R的表面光滑的半球固定在水平面上。在距其最高点的正上方为h的悬点O,固定长L的轻绳一端,绳的另一端拴一个重为G的小球。小球静止在球面上,当绳长L逐渐变长时如图所示。则绳对小球的拉力T如何变化( );支持力N如何变化( ) A.变大B.变小C.不变D.无法确定

人教版高中物理必修一求解共点力平衡问题的八种方法专题专项检测.docx

高中物理学习材料 (鼎尚**整理制作) 求解共点力平衡问题的八种方法专题专项检测 一、单项选择题(共5小题,每小题3分,共15分。每小题只有一个选项正确) 1.如图1所示,滑轮本身的质量可忽略不计,滑轮轴O安在一根轻木杆B上,一根轻绳AC绕过滑轮,A端固定在墙上,且绳保持水平,C端下面挂一个重物。BO与竖直方向夹角θ=45°,系统保持平衡。若保持滑轮的位置不变,转动杆改变θ的大小,则滑轮受到木杆弹力大小的变化情况是(绳与滑轮的摩擦不计)() 图1 A.只有角θ变小,弹力才变大 B.只有角θ变大,弹力才变大 C.不论角θ变大或变小,弹力都变大 D.不论角θ变大或变小,弹力都不变 2.如图2所示,在水平地面上放着斜面体B,物体A置于斜面体B上,一水平向右的力F作用于物体A。在力F变大的过程中,两物体相对地面始终保持静止,则地面对斜面体B 的支持力N和摩擦力f的变化情况是() 图2 A.N变大,f不变B.N变大,f变小 C.N不变,f变大D.N不变,f不变 3. (天津高考)如图3所示,小球用细绳系住,绳的另一端固定于O点。现用水平力F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()

图3 A.F N保持不变,F T不断增大 B.F N不断增大,F T不断减小 C.F N保持不变,F T先增大后减小 D.F N不断增大,F T先减小后增大 4.如图4所示,不计滑轮质量与摩擦,重物挂在滑轮下,绳A端固定,将B端绳由B 移到C或D(绳长不变)其绳上张力分别为T B、T C、T D,绳与竖直方向夹角θ分别为θB、θC、θD,则() 图4 A.T B>T C>T DθB<θC<θD B.T B

物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 12C α β A B O

动态平衡中的三力问题宁波市鄞州中学

动态平衡中的三力问题---宁波市鄞州中学

————————————————————————————————作者: ————————————————————————————————日期: ?

动态平衡中的三力问题 物理组 王高波 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持力F 1 、挡板支持力F 2 。因为球始终处于 平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F 1的方向不变,但方向不变,始终与 斜面垂直。F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。由此可知,F 2先减小后增大,F 1随β增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大) β α 图 图 β α G F 1 F 2 F 1 G F 2 图θ F

相关主题
文本预览
相关文档 最新文档