当前位置:文档之家› 衰变及其有关计算

衰变及其有关计算

衰变及其有关计算
衰变及其有关计算

质子衰变

质子衰变与重子数起源 一、“质子衰变热”的由来 质子会衰变吗?如果质子是不稳定的,则木星上的质子衰变就会引起木星辐射。从而由木星的发射强度可以估算出质子平均寿命的下限,估算结果是1018年。1954年,莱因斯(F.Reines)、哥德哈伯(M.Goldharber)首次对质子衰变进行了实验探索,结果断定质子寿命至少大于1022年。随后,日本、印度、美国和欧洲的一些研究小组,先后投入质子衰变的实验探索,从公布的结果看,一般认为质子的寿命为τ=1×1032±2年。整整30年过去了,尽管至今仍然没有发现一个公认的质子衰变事例,质子衰变问题一直处于若明若暗的混沌状态之中。然而,人们对这一课题的兴趣与日俱增。从70年代末期以来,相继又有一些小组投入探测行列,实验规模越来越大,水平越来越高,广大粒子物理学家和宇宙学家都以急切的心情,关注实验的进展,人们希望能从新的实验事实中,迎来“混沌初开”的局面。 为什么在极大科学(宇宙学)和极小科学(粒子物理学)这两个不同领域中同时出现“质子衰变热”呢?宇宙学必须解释粒子的宇宙生成问题,即观测宇宙中的重子—反重子不对称的问题;而质子衰变是粒子物理“大统一模型”的自然结果。如果质子确实存在衰变,那么,大统一理论基本设想的正确性就有了实验基础,进而为大爆炸宇宙学中的粒子生成提供了理论基础。这样,人们可把大爆炸时的早期宇宙,作为大统一模型特殊的“实验室”,使极大与极小的两门学科紧密地联系起来。有理由期待,由于它们的相互渗透和汇合,将导致这两门学科有突破性的进展。另一方面,“重子数守恒”是粒子物理中的一条重要定律①。它的最强有力的证据之一是,质子是绝对稳定的。因此,重子数到底是绝对地、严格地守恒,还是有条件地近似地守恒?质子衰变的实验探测,将有最终的判决。总之,解决了质子衰变问题,就有可能解决重子数起源问题。人们一旦对重子数起源有了真理性的认识,人类对于过去、现在和未来将有更多的了解和更丰富的知识。这正是广大物理学、宇宙学和哲学工作者屏息以待地想弄清“质子衰变”问题的动因。 二、观测宇宙中重子—反重子的不对称性 1933年,狄拉克因他的正、负电子理论的成功而荣获诺贝尔物理学奖。长期以来,物理学家一直推崇狄拉克的杰出理论:“每个基本粒子都存在一个反粒子,它们具有相同的质量和自旋,而所有其他的量子数如电荷数、磁矩、重子数等等都有着相反的值。”狄拉克主张宇宙是对称的。从宇宙的尺度来看,应当有一半的 物质,一半的反物质,二者在数量上是相等的。他在诺贝尔演讲中认为,地球或整个太阳系中,电子及正质子在数量上占优势“实在是一种偶然”。他说:“十分可能,对某些星球来说,情况并非如此。即这些星球主要是由正电子及负质子构成的。事实上,可能每种星体各占一半。这两类星体有完全相同的光谱。用现有的天文学方法,无法辨别这两类星体。”的确,对称的宇宙显得自然、和谐,较为符合美学判据。

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

G-M特性及核衰变统计规律

G-M特性及核衰变统计规律 实验目的 1.了解G-M计数器的工作原理,有关特性及使用方法。 2.以G-M计数器为探测设备,验证核衰变的统计规律。 3.了解统计误差的意义,掌握计算统计误差的方法。 实验内容 1.在一定甄别阈值下,测量G-M计数管的坪曲线,确定坪曲线 的各个参量,并确定其工作电压。 2.用示波器测定计数装置的分辨时间。 3.观察G-M计数管的工作电压与输出脉冲幅度的关系。 4.在相同条件下,对某放射源进行重复测量,画出放射性计数 的频率直方图,并与理论正态分布曲线作比较。 5.在相同条件下,对本底进行重复测量,画出本底计数的频率 分布图,并与理论泊松分布作比较。 实验原理 1G-M计数管 1.1G-M管的结构和工作原理 G-M计数管是一种气体探测器,结构类型很多,最常见的有圆柱形和钟罩形两种,它们都是由同轴圆柱形电极构成。 图1是其结构示意图,中心的金属丝为阳极,管内壁圆筒状的金属套(或一层金属粉末)为阴极,管内充有一定量的混合气体(通常为惰性气体及少量的猝灭气体),钟罩形的入射窗在管底部,一般用

薄的云母片做成;圆柱形的入射窗就是玻璃管壁。测量时,根据射线的性质和测量环境来确定选择哪种 类型的管子。对于α和β等穿透力 弱的射线,用薄窗的管子来探测; 对于穿透力较强的γ射线,一般可 用圆柱型计数管。 G-M 管工作时,阳极上的直流 高压由高压电源供给,于是在计数 管内形成一个柱状对称电场。带电粒子进入计数管,与管内气体分子发生碰撞,使气体分子电离即初电离(γ粒子不能直接使气体分子电离,但它在阴极上打出的光电子可使气体分子发生电离)。初电离产生的电子在电场的加速下向阳极运动,同时获得能量,当能量增加到一定值时,又可使气体分子电离产生新的离子对,这些新离子对中的电子又在电场中被加速再次发生电离碰撞而产生更多的离子对。由于阳极附近很小区域内电场最强,则此区间内发生电离碰撞几率最大,从而倍增出大量的电子和正离子,这个现象称为雪崩。雪崩产生的大量电子很快被阳极收集,而正离子由于质量大、运动速度慢,便在阳极周围形成一层“正离子鞘”,阳极附近的电场随着正离子鞘的形成而逐渐减弱,使雪崩放电停止。此后,正离子鞘在电场作用下慢慢移向阴极,由于途中电场越来越弱,只能与低电离电位的猝灭气体交换电荷,之后被中和,使正离子在阴极上打不出电子,从而避免了再次雪崩。而且在雪崩过程中,由受激原子图1 G-M 计数管 图1 G-M 计数管

核反应堆热工分析复习

第一部分 名词解释 第二章 堆的热源及其分布 1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。 2、裂变能近似分布:总能200MCV 168是裂变产物的动能 5是裂变中子动能 7是瞬发R 射线能量 13是缓发B 和R 射线能量 同时还有过剩中子引起的辐射俘获反应。 3、堆芯功率分布和因素:径向贝塞尔函数 轴向余弦函数 1燃料布置 2控制棒 3水隙和空泡 第三章 堆的传热过程 4、积分热导率:把u κ对温度t 的积分()dt t u ? κ作为一个整体看待,称之为积分热导率。 5、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。 6、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。 7、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。 8、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。 9、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。 10、沸腾曲线:壁面过热度(s w sat t t t -=?)和热流密度q 的关系曲线通常称为沸腾曲线。 11、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。 12、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。Critical heat flux 13、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。Departure from nuclear boiling 14、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。达到沸腾临界时的热流密度称为临界热流密度。 15、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升; 16、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。 17、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。 18、膜态沸腾:指加热面上形成稳定的蒸汽膜层,q 随着t ?增加而增大。对流动沸腾来说,膜态沸腾又分为反环状流和弥散流。 19、“长大”:多发生在低于350°C 的环境下,它会使燃料芯块变形,表面粗糙化,强度降低,以至破坏。 20、“肿胀”:大于400℃时,由裂变气体氪和氙在晶格中形成小气泡引起的,随着燃耗的增加,气泡的压力增加,结果就是得金属铀块肿胀起来。肿胀是指材料因受辐照而发生体积增大的现象。 21、弥散体燃料:是用机械方法把燃料弥散在热导率高、高温稳定性好的基体金属中制成的

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

核衰变统计规律的验证

核衰变统计规律的验证 0830******* 崔璨 复旦大学材料科学系 【摘要】本实验利用G-M 计数管研究放射性测量数据分布规律, 用χ2检验法初步检验了核衰变的统计规律——泊松分布和高斯分布。并用频率直方图检验法定性说明核衰变时间间隔分布也符合正态分布。 【关键词】核衰变 统计规律 χ2检验法 频率直方图检验法 泊松分布 高斯分布 1. 引言 由于放射性衰变存在统计涨落,当我们作重复的放射性测量时,即使保持相同的实验条件,每次测量的结果也并不相同,而是围绕某一平均值上下涨落,有时甚至有很大的差别。因此就需要对于测量所得的数据进行某种检验,以确定测量数据的可靠性。用G-M 计数器来探测γ射线,运用放射性测量结果的统计误差的表示方法,通过χ2检验法和频率直方图检验法检验测量数据的分布类型,可以帮助检查测量仪器的工作是否正常和测量条件是否稳定,从而帮助分析和判断在测量中除放射性测量的统计误差外,是否还有其他的系统误差和偶然误差因素。 2. 实验原理 2.1 G-M 计数器 G-M 计数器由G-M 计数管、高压电源和定标器构成。G-M 计数器工作时,高压由高压电源经过电阻R 加到计数管的阳极上,于是在G-M 计数管内产生一柱状对称的电场。辐射粒子使电极间气体电离,生成的电子和正离子在电场作用下漂移,最后收集到电极上。G-M 计数管在射线作用下可以产生电脉冲,高压电源提供计数管的工作电压,而定标器则用来记录计数管输出的脉冲数。 2.2 放射性测量的统计误差 对大量的原子核而言,其衰变遵从统计规律,有衰变定律: -t 0N(t)=N e λ 其中,t 表示时间,N 0为t=0时刻的放射性核数,N(t)为t 时刻的放射性核数,λ称为衰变常数。 设N 为尚未衰变的放射性核数,n 为某时间t 内衰变的核数。假设该种放射性核的半衰期很长,则在测量过程中可以认为N 不变,可以推出t 时间内有n 个核衰变而其余的核不衰变的几率为: ()! n m m P n e n -= 其中,m 为衰变的平均值,n=1,2,3,…称它为泊松分布。 当平均值比较大时,泊松分布公式化为高斯分布公式: 22 ()2()x P x μσ-- =

反应堆热工思考题

反应堆热工分析思考题(仅供参考) 第二章堆的热源及其分布 1.试述堆的热源的由来及其分布? 答:堆的热源来自于核裂变过程种释放的能量;其分布与堆的类型,堆芯的形状,以及堆内燃料,控制棒,慢化剂,冷却剂,反射层等的布置有关,也与时间有关。裂变碎片的动能约占84%,还有裂变中子,裂变产物衰变的r射线,β射线能,过剩中子引起的非裂变反应加反应产物的衰变能。 2.影响堆功率分布的因素有哪些?试以压水堆为例,简述他们各自对功率分布的影响。答:a)燃料;采用均匀装载方案,中心区域会出现一个高的功率峰值,降低平均燃耗。采用分区装载的方案,即最高富集度在最外区,最低富集度燃料在中心区,中等富集度燃料位于外区和中心区之间,这样有利与功率展平。 b) 控制棒;合理的布置控制棒能够使堆的径向功率得到展平,但是会给轴向功率分布带来不利影响。寿期末,由于控制棒的提出,并且堆芯顶部的燃耗较低,中子通量分布就向顶部歪斜。 c) 水隙和空泡;水隙附加的慢化作用,使该处的中子通量上升,因而水隙周围元件的功率升高,从而增大了功率的不均匀程度。空泡的存在会使反应堆反应性下降,这种效应在事故工况下尤为显著,因而空泡的存在能减轻某些事故的严重性。 3.如何计算控制棒,慢化剂和机构材料种的释热率? 答:A)控制棒;控制棒中的总的释热率是两项的总和,即吸收堆芯γ辐射以及吸收控制棒本身因(n,α),或(n,γ)反应所产生的热量的全部或一部分。 B)慢化剂;慢化剂中的主要热量是裂变中子的慢化,吸收裂变产物放出的β粒子的一

部分能量,吸收各种γ射线的能量。 C)结构材料;热量来源几乎完全是由于吸收来自堆芯的各种γ辐射。 4.核反应在停堆后为什么还要继续进行冷却?停堆后的热源主要由哪几部分组成,他们各自的特点和规律是怎样的? 答:A)反应堆由于事故或正常停堆后,堆内自持的链式反应虽然随即中止,但还是有热量不断的从芯块通过包壳传入冷却剂中,因此必须采取一定的措施将这些热量到处,防止破坏燃料元件;B)这些热量一部分来源于燃料棒内储藏的显热,还有两个来源是剩余中子引起的裂变和裂变产物的衰变及中子俘获产物的衰变。铀棒内的显热和剩余中子的衰变热大约在半分钟内传出,其后的冷却完全取决与衰变热。 5. 试以压水堆为例,说明停堆后的功率约占停堆前的百分数。大约在停堆后多久剩余裂变可以忽略,这时裂变功率占总功率份额是多少? 答:衰变热一开始约为停堆前功率的6%,而后迅速衰减。大约半分钟后,裂变热传出,这时裂变功率占总功率的0.747%(轻水堆). 6. 如何计算停堆后的功率,以大亚湾核电站为例,试问仅通过自然循环能否带出剩余反应热功率? 答:剩余裂变功率加衰变功率(裂变产物的衰变功率加中子俘获产物衰变之和)之和。7.压水堆换料时,从堆中取出的乏燃料元件一般如何处置,该乏燃料元件在运输途中是否需要冷却,为什么? 一般将其防止在储存水池中长期冷却,使短寿命核素衰变。在运输过程中需要冷却,因为一些长寿期的核素依旧在衰变放热。 第三章堆的传热过程 1. 热量从堆内输出需要经过哪几个过程,他们的具体表达式是怎样的?

大体积混凝土水化热计算

球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取~ Q----水泥28d水化热(kJ/kg)见下表 C---混凝土比热,取(kJ/kg·K) ρ—混凝土密度,取2400(kg/m3) e----为常数,取 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 2、混凝土中心温度计算 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(*2400)=℃ 代入(2)得: T3=*=℃; T4=*=℃; T5=*=℃; T7=*=℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+*=℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

实验四 核衰变的统计规律与放射性测定的实验数据处理

实验四 核衰变的统计规律与放射性测定的实验数据处理 学生: 学号:同组: 一、实验目的 1. 验证核衰变所服从的统计规律 2. 熟悉放射性测量误差的表示方法 3. 了解测量时间对准确度的影响 4. 学会根据准确度的要求选择测量时间 二 、实验原理 实验证明,在对长寿命放射性物质活度进行多次重复测量时,即使周围条件相同,每次测量的结果仍不相同。然而,每次结果都围绕某一平均值上下涨落,并且,这种涨落是服从一定的统计规律的。假如在时间间隔t 内核衰变的平均数为n ,则在某一特定的时间间隔t 内,核衰变为n 的出现机率P(n)服从统计规律的泊松分布: ()()! n n n P n e n -= (2-4-1) 图一表示n =的泊松分布曲线。泊松分布在平均数n 较小的情况下比较适用;如果值相当大,计算起来十分复杂,实际应用对泊松分布利用斯蒂令近似公式: !2n n n n n e π-≈?? (2-4-2) 化为高斯分布,得: 2()2()2n n n P n e n π--= (2-4-3) 高斯分布说明,与平均值的偏差()n n -对于n 而言具有对称性,而绝对值大的偏差出现的几率小。 放射性衰变并不是均匀地进行,所以在相同的时间间隔内作重复的测量时测量的放射性粒子数并不严格保持一致,而是在某平均值附近起伏。通常把平均值n 看作是测量结果的几率值,并用它来表示放射性活度,而把起伏带来的误差叫做测量的统计误差,习惯用标准误差n ±来表描述。实验室都将一次测量的结果当作平均值,并作类似的处理而计为N N ±。 图 1泊松分布曲线 图 2 高斯分布曲线

计数的相对标准误差为: = (2-4-4) 它能说明测量的准确度。当N 大时,相对标准误差小,而准确度高。反之,则相对标准误差大,而准确度低。为了得到足够计数N 来保证准确度,就需要延长测量时间t 或增加相同测量的次数m 。根据计算可知,从时间t 内测的结果中算出的计数率的标准误差为: t ± == (2-4-5) 计数率的相对标准误差E 用下式表示: E == (2-4-6) 若实验重复进行m 次,则平均计数率的标准误差等于: (2-4-7) 考虑本底后,标准误差为: σ== (2-4-8) N c 为t c 时间内源加本底的计数,n b 为t b 时间内本底的计数,n c 为源加本底的计数率,n b 为本底的计数率。 放射性测量的相对标准误差: 12()c b c b c b n n t t E n n +=±- (2-4-9) 过长测量时间并不有利,因此可合理地分配测定源加本底和本底计数的时间,可利用下列关系式: c b t t = (2-4-10) 究竟需要选择多长的测量时间,要根据对测量准确度的要求而定,即: c a t = (2-4-11) 式中a c b n n n =-为放射源的计数率 当本底与放射率的计数率之比小于给定的准确度(b a n E n <)的情况下,上式可近似写为:

大体积混凝土水化热计算公式

九、基础混凝土浇筑专项施工方案 江苏广兴建设集团有限公司 基础混凝土浇筑专项施工方案 工程名称:镇江新区平昌新城配套公建工程 编制: 审核: 批准:

江苏广兴建设集团有限公司 镇江新区平昌新城配套公建工程项目部 2012年3月14日 基础混凝土浇筑专项施工方案 第一节、工程概况 一、工程概况 【本方案针对重要施工技术措施节点的分部分项工程的特点及要求进行编写】镇江新区平昌新城配套公建工程;工程建设地点:镇江新区平昌新城平昌路;属于框剪结构;地上12层;地下1层;建筑高度:44.65m;标准层层高:3.6m ;总建筑面积:25000平方米;总工期:450天。 本工程由镇江瑞城房地产开发有限公司投资建设,常州市规划设计院设计,镇江市勘察设计院地质勘察,镇江兴华工程建设监理有限责任公司监理,江苏广兴集团有限公司组织施工;由胡金祥担任项目经理,周道良担任技术负责人。 本工程地下室基础为带人防核6防6、二级防水等级要求的人防地下室,地下室主体结构混凝土强度等级:基础底板为C35,地下室顶板、梁为C30,地下室墙、柱均为C40,地下车道底板混凝土为C35,侧壁为C40。地下室底板、外墙、地下车道底板及侧板、单层车库顶板、覆土顶板及水池围护结构均需采用P6抗渗混凝土,地下室底板、外墙、顶板采用补偿收缩混凝土,后浇带采用膨胀混凝土,地下室混凝土在混凝土中掺入抗裂纤维。本工程地下室底板厚度600mm/800mm (主楼位置),地下室板墙厚度分别为200mm/250mm/300mm/450mm(详见地下

结施13墙定位及配筋图),板墙浇筑高度3.8m/4.4m(详见顶板施工图)。 【本工程地下室基础混凝土标号众多,抗渗、膨胀、纤维等外加剂的参数以及使用位置,不同型号混凝土浇筑节点处的处理要严格参照图纸结构总说明中4.1.3要求进行施工】 二、施工要求 1、确保混凝土施工在浇筑时期内安全、质量、进度都达到优质工程标准。 2、本工程混凝土浇筑施工质量技术措施控制重点:(1)、大体积混凝土水化热的处理;(2)、地下室后浇带防水措施。 第二节、编制依据 《混凝土结构工程施工质量验收规范》GB50204-2002 《混凝土外加剂应用技术规范》GB50119-2003 《地下工程防水做法》苏J02-2003 及江苏广兴集团有限公司以往类似工程的施工方案和本工程相关施工设计图纸等。 第三节、施工计划 材料与设备计划 本工程基础混凝土按后浇带划分三个区域:(1)以3#楼为主,2-F轴以北后浇带划分;(2)以2#楼为主,2-A轴以北后浇带划分;(3)以1#楼为主,2-A轴以南后浇带划分。 1、混凝土浇筑以商品混凝土泵送浇捣,投入4台振动棒,2台平板振动器,1台混凝土收光机,水泵4台,自吸泵2台等其他小型工具。机修人员必须在机械使用前对所有机械进行检查养护,在浇筑混凝土过程中,安排人员进行定时检修。 2、养护混凝土使用的塑料薄膜以及覆盖用的草袋,水管等养护材料。 3、对预拌混凝土的要求 与预拌混凝土搅拌站签订供应合同,对原材、外加剂、混凝土坍落度、初凝时间、混凝土罐车在路上运输等作出严格要求。 A、对预拌混凝土坍落度的要求 混凝土搅拌站根据气温条件、运输时间、运输道路的距离、混凝土原材料(水泥品种、外加剂品种等)变化、混凝土坍落度损失等情况来适当地调整原配合比,确保混凝土浇筑时的坍落度能够满足施工生产需要,确保混凝土供应质量。 当气候变化时,要求混凝土预拌站提供不同温度下、单位时间内坍落度损失值,以便现场能够掌握混凝土罐车在现场的停置时间。并且可以根据混凝土浇筑情况随时调整混凝土罐车的频率。浇筑混凝土时,搅拌站派一名调度现场调配车辆。同时鉴于现场处的特殊地理位置,项目安排人员协调现场内外的交通问题。 对到场的混凝土实行每车必测坍落度,实验员负责对当天施工的混凝土坍落度实行抽测,混凝土工长组织人员对每车坍落度进行测试,负责检查每车的坍落度是否符合预定预拌混凝土坍落度的要求,并做好坍落度测试记录。如遇不符合要求的,退回搅拌站,严禁使用。 B、对预拌混凝土的添加剂的要求

水化热参数化分析

一.概要 1. 水化热分析 浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。 温度裂缝发生类型 混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。 混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。此类拉应力裂缝主要发生在构件尺寸比较大的结构。 混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。此类应力主要发生在像墙这样约束度比较大的结构中。 利用温度裂缝指数预测温度裂缝 韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。 一般采用下面的值。 FEA 程序的水化热分析 水化热分析主要分为热传导分析和热应力分析。. 热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。将得到的节点温度作为荷载加载后,计算随时间变化的应力称为热应力分析。 因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。 2. 水化热参数化分析 水化热分析必须进行反复计算 大体积混凝土的温度裂缝可以利用温度裂缝指数(Crack Ratio, Icr) 来验 算。温度裂缝指数要满足结构的重要 性、功能、环境条件等因素的要求。 温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以需要对多种条件进行反复分析以找出最佳的浇筑方法。 参数化分析功能 为比较多种条件的分析结果需要建立 多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。 通过FEA 的水化热参数化分析功能,可以实现一个模型多种条件分析。可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。 参数化分析的使用方法 首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。下图是把材料作为变量条件的示例,“Case I ”为将混凝土C24变更为C30的工况,“Case II ”为将混凝土C35变更为C40的工况。 | 参数化分析的构成 | 参数化分析里可以考虑的变量 在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具体如下。 ? 施工阶段: 降低浇筑高度缩小各阶段的温度差。浇筑间距过小的话很难 达到分段浇筑的效果,但如果太大分界面会产生较大的温差。. ? 对流边界:对流系数较低时,热量不容易对外流失,可以减少内外温差。 ? 材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。 ? 发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。 ? 是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉应力,但效果不明显。 温度裂缝指数与裂缝发生几率 | 裂缝指数(i) = 混凝土抗拉强度 发生的温度应力 ? 防止裂缝发生时:1.5 以上 ? 限制裂缝发生时:1.2 ~ 1.5 ? 限制有害裂缝发生时:0.7 ~ 1.2 | 内部约束产生的裂缝(放热时)| | 外部约束产生的裂缝(冷却时)|

实验一核衰变与放射性计数的统计规律

实验一核衰变与放射性计数的统计规律 第一部分 G-M计数器 一.实验目的 1、了解G-M管的工作原理,掌握其基本性能及其测试方法。 2、学会正确使用G-M管计数装置的方法。 3、了解探测器输出信号与输出回路参数的关系,学会正确选择G-M管计数系统输出回路参 量。 二.实验内容 1、在一定的甄别阈下,测量卤素G-M管的坪曲线,确定这些坪曲线的各个参量并选择工作 电压。 2、用示波器观察法和双源法测定卤素G-M管计数装置的分辨时间。 3、观察并记录G-M计数管的输出电流、电压脉冲与工作电压及输出回路参数的关系。 三.实验原理 1、G-M管是一种气体探测器。当带电粒子射入其灵敏体积时,引起气体原子电离。电离产生的电子在阳极丝附近的强电场中又引起一系列碰撞电离,即触发“自持放电”。这一过程产生的电子和正离子向两极漂移时,在外回路产生脉冲信号。 2、从G-M管的工作机制可以看出,入射带电粒子仅仅起一个触发放电的作用,G-M管的输出电流、电压信号的幅度与形状和入射粒子种类与能量无关,只和计数管的几何参量、工作电压以及输出回路参量有关。 在G-M管的使用中,坪特性是其最重要的性能之一。坪特性是判断管子好坏的主要依据,也是选择管子工作电压的依据。坪特性曲线就是在一定的实验条件下当入射粒子的注量率不变时,计数管的计数率随工作电压变化的曲线,见图1-1。 图1-1 G-M计数管的坪曲线

表征坪特性的参量主要有: 起始电压(Vs):即计数管开始计数时的电压。 坪长: B A =V -V 坪长(单位:百伏) (1-1) 这是管子的工作区域,工作电压一般可选在坪区的 2 1 ~31的范围内。 坪斜:() 100% ()2 B A B A B A n n n n V V -= ?+-坪斜(单位:%/百伏) (1-2) 坪斜主要是由假计数引起的,当然它的值越小越好。 当工作电压高于B V 时,曲线急剧上升,表明管子内发生了持续放电,这会大大缩短管子的寿命,因此在使用中必须注意避免这种情况。 3、 计数装置的分辨时间就是它能区分连续入射的两个粒子之间的最小时间间隔。G-M 管的工作机制决定了它的分辨时间远大于其它探测器,使用时要特别注意。G-M 管在一次放电后,正离子鞘空间电荷使阳极附近气体放大区域内的电场减弱,一直要等到正离子鞘漂移了一段距离后,阳极表面电场才能恢复到可以引起自持放电的阈值以上,在这一段时间内即使有带电粒子射入也不能引起放电,这一段不起作用的时间称为失效时间(或称死时间),以t d 记之,一般为100 us 左右。此后,正离子鞘继续向阴极漂移,再经过t r 时间到达阴极,这时计数管才完全恢复到放电以前的状态,这一段时间t r 称为恢复时间,在此期间,计数管能工作,但输出脉冲幅度小于原来工作状态时的输出。实际上记录脉冲时,计数装置总有一定的甄别阈th V ,只有当入射粒子的输出脉冲幅度恢复到高于甄别阈时才能计数。τ称为计数装置的分辨时间,显然τ的大小与th V 有关,甄别阈越低τ越小,但总是大于计数管的失效时间t d ,见图1-2。 由于存在分辨时间τ,若相继进入计数管的两个粒子的时间间隔小于分辨时间,第二个 图1-2 当RC 较小,计数率较强时计数管的输出波形

发电厂电气部分教案资料

判断题 火力发电厂是利用煤等燃料的化学能来生产电能的工厂。对 抽水蓄能电站是利用江河水流的谁能生产电能的工厂。错 变电站的汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。对中间变电站处于电力系统的枢纽点,作用很大。对 二次设备是用在低电压、小电流回路的设备。对 电流互感器和电流表都是属于一次设备。错 二次设备是指接在变压器二次侧的电气设备。错 隔离开关在操作上应遵循母线侧隔离开关先合后断的原则。对 带旁路断路器的单母线分段接线在检修各出线断路器时会造成出线停电。错 内桥接线适用于线路长变压器需经常切换的场所。错 外桥接线适用于线路较长,变压器不需要经常进行切换操作的场合。错 将并联变压器分开运行的目的是限制短路电流。对 隔离开关与断路器在操作时应满足“隔离开关先通后断”原则。对 一台半断路器接线当任意一组母线发生短路故障时,均不影响各回路供电。对 单母线带旁路母线接线中旁路母线的作用是作为母线的备用。对 桥形接线与单母不分段接线相比节省了一台断路器。对 内桥接线适用于变压器需要经常切换的发电厂。错 外桥接线适用于线路有穿越功率的发电厂。对 发电厂和变电站的自身用电量很小,因此不重要。错 备用电源的运行方式有明备用和暗备用两种。对 所谓明备用是指两个电源互为备用。错 厂用电接线应尽量简单清楚,避免复杂的切换操作。对 应保证重要负荷供电的可靠性和连续性,供电的间断时间不超过允许值。对 厂用电负荷的分析统计,必须根据厂用设备的最大运行情况,进行分析统计。与厂用设备的实际运行情况无关。错 一般情况下,厂用电母线应该分段,使厂用电负荷均匀分布在两段母线上。对 若厂用变压器接在发电机电压母线上,应考虑当母线发生故障时,尽量保证大部分厂用机械能继续工作。对 电流互感器正常工作在接近于短路的状态。对 0.2级为电压互感器最高准确度等级错 电压互感器及电压表均为二次设备。错 短路时导体的热稳定条件是其坐高温度不超过长期发热的最高允许温度。错 开关在开断电路时,无需考虑电弧熄灭与否。错 断路器的开断能力是指断路器在切断电流时熄灭电弧的能力。对 电弧的产生和维持是触头间中性质点被游离的结果。对 电弧形成之初电子的来源是强电场发射及强电流发射。错 电弧稳定燃烧之后主要靠热游离来维持。对 电弧的熄灭依赖于去游离作用强于游离作用。对 去游离有两种形式:复合和扩散。对 交流电弧较直流电弧易于熄灭。对 熄灭交流电弧的主要问题是增加介质绝缘强度的回复。对 交流电流过零时,电弧自然熄灭。若电流过零后,出现电击穿现象,电弧则会重燃。对隔离开关没有专门的灭弧装置因此不能开断负荷电流。对

133Sm和 149Yb的β缓发质子衰变

第30卷第11期2006年11月 高能物理与核物理 HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS Vol.30,No.11 Nov.,2006 133Sm和149Yb的β缓发质子衰变* 徐树威1;1)谢元祥1李占奎1许甫荣2刘红亮2 1(中国科学院近代物理研究所兰州730000) 2(北京大学技术物理系北京100871) 摘要利用40Ca+96Ru融合蒸发反应产生了近质子滴线核133Sm,配合氦喷嘴带传输系统采用“质子-γ”符合方法观测了它们的β缓发质子衰变,其中包括半衰期、质子能谱、第二代子核低位态之间的γ跃迁,并估计出衰变到第二代子核不同低位态的分支比.通过统计理论拟合上述实验数据,指认了133Sm的自旋宇称的可能范围.并用Woods-Saxon Strutinsky方法计算了限制组态的133Sm的核势能面,通过对比发现133Sm的自旋宇称可能有两种成分:5/2+和1/2?.这一结果与2001年发表的133Sm(EC+β+)衰变的简单衰变纲图是相容的.此外用同一方法分析了2001年Eur.Phys.J.A12: 1—4中发表的有关149Yb的β缓发质子衰变实验数据,由此指认了149Yb的基态自旋宇称为1/2?. 关键词β缓发质子衰变核势能面自旋宇称 1977年前苏联Dubna实验室Bogdanov等人[1]曾发表过133Sm的β缓发质子(βp)衰变的实验数据,其半衰期为(3.2±0.4)s.他们仅仅通过统计理论计算拟合缓发质子能谱,建议133Sm的自旋宇称应为5/2+. 1985年美国LBL实验室的Wilmarth等人[2]利用在线同位素分离器研究和发表过133Sm的βp衰变的实验结果,133Sm的βp衰变的半衰期为(2.8±0.2)s.他们观测到了133Smβp衰变后所产生的能量为213keV的γ射线,这条γ射线对应于第二代子核132Nd的2+→0+的跃迁.Wilmarth等人指出:如果认为133Sm的自旋宇称为5/2+,那么根据统计模型计算布居到132Nd的4+的分支比为12%,但他们并没有观测到强度相当的132Nd的4+→2+的跃迁,即398keVγ射线.因此Wilmarth等人对Bogdanov等人的建议提出了质疑. 1993年Breitenbach等人[3]报道,观测到了属于133Sm (EC+β+)衰变的能量为369.6keV和156.8keV的γ射线,它们的半衰期为(3.7±0.7)s.2001年我们[4]建议了133Sm(EC+β+)衰变的简单衰变纲图.根据Galindo-Uribarri等人[5]报道的133Pm的能级纲图,我们建议的衰变纲图中的214.5keV+x,84.5keV+x和0.0+x的能级应修改为分别对应于7/2+,5/2+和3/2+.我们注意到,这些衰变γ射线分成了无相互联系的两组.一组包括有一条84.5keVγ射线,它对应于子核133Pm的5/2+至3/2+的γ跃迁,可以认为这条γ射线是来自母核133Sm的5/2+的衰变,其半衰期为(2.8±0.5)s;另一组包括369.6和156.8keV的γ射线,其半衰期测定为(3.4±0.5)s;这两组γ射线的半衰期也有些不同. 本工作旨在对133Sm的βp衰变实验进行进一步的研究.希望能够找到它的βp衰变和(EC+β+)衰变之间的关联,以便澄清前期文献中的相关结论.另外我们还对2001年本组[6]发表的有关149Yb的βp衰变实验数据进行了统计模型分析. 本实验是在中国科学院兰州重离子加速器国家实验室进行的.实验装置请见文献[7]的图1.由SFC加速器引出的40Ca12+重离子束先穿过1.89mg/cm2厚的Havar窗,进入充满一个大气压氦气的靶室,穿过氦气层和铝降能片,最后轰击富集的金属同位素靶96Ru.靶子的富集度好于85%,其厚度约为1.4mg/cm2.束流强度约为40pnA.133Sm是通过融合蒸发2pn反应道产生的.反应产物在靶室中慢化并附着在添加剂的大分子团上,经过氦喷嘴驱动喷射到放置于收集室的传送带上.然后快速带传输系统把附着在传送带上的放 2006–01–24收稿 *国家自然科学基金(10375078,10475002)资助 1)E-mail:xsw@https://www.doczj.com/doc/8017583855.html, 1067—1070

水化热公式

以厚度为1m的工程底板为例。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.36计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p)+mf/50 (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.318; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量; c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3; 代入(1)得混凝土最终绝热温升: Tn=57.5℃; 代入(2)得: T3=57.5*0.615=35.4℃; T4=57.5*0.72=41.4℃; T5=57.5*0.796=45.77℃; T7=57.5*0.892=51.3℃; 底板按1m厚度计算: Tmax=Tj+Tt*δ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为10℃; Tt:t龄期时的绝热温升; δ:降温系数,取0.36; 按照混凝土最终绝热温升57.5℃代入: Tmax=10+57.5*0.36=30.7℃ 4、实测混凝土表面温度Tb 混凝土的内部最高温度为30.7℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。 5、混凝土表面保温层厚度计算 δi=K*0.5hλi(Tb-Tq)/ λ(Tmax-Tb)

实验四核衰变的统计规律与放射性测定的实验数据处理

实验四核衰变的统计规律与放射性测定的实验数据处理 学生:学号:同组: 一、实验目的 1.验证核衰变所服从的统计规律 2.熟悉放射性测量误差的表示方法 3.了解测量时间对准确度的影响 4.学会根据准确度的要求选择测量时间 二、实验原理 实验证明 ,在对长寿命放射性物质活度进行多次重复测量时,即使周围条件 相同,每次测量的结果仍不相同。然而,每次结果都围绕某一平均值上下涨落, 并且,这种涨落是服从一定的统计规律的。假如在时间间隔t 内核衰变的平均数为 n ,则在某一特定的时间间隔t 内,核衰变为 n 的出现机率 P(n)服从统计规律的泊松分布: P(n)(n)n e n(2-4-1) n! 图一表示 n =3.5的泊松分布曲线。泊松 分布在平均数 n 较小的情况下比较适用; 如果值相当大,计算起来十分复杂,实际 应用对泊松分布利用斯蒂令近似公式: n!2 n n n e n( 2-4-2) 化为高斯分布,得: 1(n n)2 e 2 n( 2-4-3) P(n) 2n图 1 泊松分布曲线高斯分布说明,与平均值的偏差 ( n n) 对于 n 而言具有对称性,而绝对值大的偏差出现的几率小。 放射性衰变并不是均匀地进行,所以在相同的 时间间隔内作重复的测量时测量的放射性粒子数 并不严格保持一致,而是在某平均值附近起伏。 通常把平均值 n 看作是测量结果的几率值,并用 它来表示放射性活度,而把起伏带来的误差叫做 测量的统计误差,习惯用标准误差n 来表描 述。实验室都将一次测量的结果当作平均值, 图 2高斯分布曲线 并作类似的处理而计为N N 。

计数的相对标准误差为: N1(2-4-4) N N 它能说明测量的准确度。当N 大时,相对标准误差小,而准确度高。反之,则相对标准误差大,而准确度低。为了得到足够计数N 来保证准确度,就需要延长测量时间t 或增加相同测量的次数m。根据计算可知,从时间t 内测的结果中算出的计数率的标准误差为: N N n (2-4-5) t t2t 计数率的相对标准误差 E 用下式表示: n 1 E t(2-4-6) nt n 若实验重复进行 m 次,则平均计数率的标准误差等于: n ( 2-4-7) mt 考虑本底后,标准误差为: N c N b n c n b (2-4-8) t c2t b2t c t b N c为 t c时间内源加本底的计数,n b为 t b时间内本底的计数, n c为源加本底的计数率, n b为本底的计数率。 放射性测量的相对标准误差: (n c 1 n b ) 2 t c t b( 2-4-9) E n b n c 过长测量时间并不有利,因此可合理地分配测定源加本底和本底计数的时间,可利用下列关系式: t c n c( 2-4-10) t b n b 究竟需要选择多长的测量时间,要根据对测量准确度的要求而定,即: n c n c n b (2-4-11) t c 2E 2 n a 式中 n a n c n b为放射源的计数率 当本底与放射率的计数率之比小于给定的准确度(n b E )的情况下,上式n a 可近似写为:

相关主题
文本预览
相关文档 最新文档