图像分割(2)
- 格式:ppt
- 大小:10.04 MB
- 文档页数:55
图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。
图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。
本文将从原理和实现两个层面对图像分割算法进行深入讲述。
一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。
通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。
1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。
1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。
分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。
此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。
1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。
1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。
此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。
二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。
主要有以下两种方法。
2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。
其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。
2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。
该方法常用的特征提取技术包括SIFT、SURF、LBP等。
实验六图像分割一、实验目的利用光谱特征进行遥感图像的分割和分割后处理。
二、实验内容1、利用直方图进行图像分割2、提取指定颜色的对象3、去除图片的背景噪声4、提取厦门市TM遥感影像中的水体信息5、提取线性地物信息6、图像形态学基本方法三、实验条件电脑、ENVI软件。
厦门市TM遥感影像、实验数据四、实验步骤1.利用直方图进行图像分割图像:地物与直方图DSCF0153.JPG打开图像,并显示图像的直方图在直方图窗口,移动RGB拉伸的最小值分别为150,160,150,并分别应用,查看拉伸后的图像。
使用下面的表达式去除天空,其中,b1,b2,b3对应图像的R,G,B通道,b4对应原始图像。
b4*(1-b1 lt 150)* (b2 lt 160) * (b3 lt 150)2.彩色图像的分割(1)提取图像中的兰花关闭所有打开的窗口和文件图像:兰花.jpg要求:将兰花从图像分割出来主要操作:利用直方图,查看当前像素值工具比较兰花在各个通道上的灰度值的差异,确定兰花与周围物体最大的通道或通道的组合。
提示:兰花是蓝色的。
表达式:(b1 gt b2)* (b1 gt b3),其中b1是蓝通道,b2,b3对应绿和红通道。
(2)去除背景噪声,提取图像中的娃娃关闭所有打开的窗口和文件图像:娃娃.jpg选择“波段“作为直方图数据来源,进行图像拉伸。
思考以下问题①直方图有什么特征?②任意对RGB波段进行拉伸,图像发生了什么变化?③按照如下设置进行图像拉伸,R:154~184,G:8~100,B:0~160,图像发生了什么变化?④如何去除背景中的噪声?步骤:使用float(b1)/ float(b2)对通道R和G进行代数运算,产生图像m1;对于m1图像,使用b1 gt 0.98进行代数运算,产生图像m2;使用原始图像的RGB作为b1(在变量与波段匹配的对话框中,点击按钮Map Variable to input file),使用m2作为b2,进行代数运算b1*b2,产生新的图像m3,按照R,G,B顺序合成显示。
图像分割之(二)Graph Cut(图割)Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation)、立体视觉(stereo vision)、抠图(Image matting)等。
此类方法把图像分割问题与图的最小割(min cut)问题相关联。
首先用一个无向图G=<V,E> 表示要分割的图像,V和E分别是顶点(vertex)和边(edge)的集合。
此处的Graph和普通的Graph稍有不同。
普通的图由顶点和边构成,如果边的有方向的,这样的图被则称为有向图,否则为无向图,且边是有权值的,不同的边可以有不同的权值,分别代表不同的物理意义。
而Graph Cuts图是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S”和”T”表示,统称为终端顶点。
其它所有的顶点都必须和这2个顶点相连形成边集合中的一部分。
所以Graph Cuts中有两种顶点,也有两种边。
第一种顶点和边是:第一种普通顶点对应于图像中的每个像素。
每两个邻域顶点(对应于图像中每两个邻域像素)的连接就是一条边。
这种边也叫n-links。
第二种顶点和边是:除图像像素外,还有另外两个终端顶点,叫S (source:源点,取源头之意)和T(sink:汇点,取汇聚之意)。
每个普通顶点和这2个终端顶点之间都有连接,组成第二种边。
这种边也叫t-links。
上图就是一个图像对应的s-t图,每个像素对应图中的一个相应顶点,另外还有s和t两个顶点。
上图有两种边,实线的边表示每两个邻域普通顶点连接的边n-links,虚线的边表示每个普通顶点与s和t连接的边t-links。
在前后景分割中,s一般表示前景目标,t一般表示背景。
图中每条边都有一个非负的权值w e,也可以理解为cost(代价或者费用)。
一个cut(割)就是图中边集合E的一个子集C,那这个割的cost(表示为|C|)就是边子集C的所有边的权值的总和。
The Development of A Kind of Online Image CodeRecognition System一种在线图像编码识别系统的设计Zhen Jie Li( ShanDong University Information Science and Engineering College JiNan,250100,ShanDong,China)Abstract: This paper describes the design and the implement of online image coding char recognition system. It analyses and researches the important contents about the system. Then it provides the solutions of main problems.In recognition algorithm, combining template matching with feature recognition, it put forword an improved template matching algorithm based on feature weights. The algorithm can obviously improve the char recognition ratio.摘要:本文介绍了在线图像编码字符识别系统的设计与实现过程,对其中重点环节进行了分析与研究,给出了主要环节问题的解决方法,在识别算法上,结合模板匹配与特征识别,提出了基于特征加权的模板匹配算法,该算法对提高字符识别率提到了较好的作用。
Keyword: image processing; pattern recognition; feature weights; software design0 IntroductionCharacter recognition of image coding is still the subject of intense study at home and abroad, it has broad applications, such as Automatic number plate recognition, postal code of the automatic identification, automatic reading papers, reports, automatic processing, because of this online image coded character recognition has some common, this paper online tire coding character recognition system for the general image coding character recognition system has been elaborated on the key link of the research and analysis, the method of the other online image coded character system Development of guiding significance.0引言图像编码字符识别的研究目前仍是国内外一个重点研究课题,它具有广泛的应用背景,比如车牌号码自动识别、邮政编码的自动识别、试卷自动阅读、报表自动处理等,由于这种在线图像编码字符的识别都具有一些共性,本文结合在线轮胎编码字符识别系统的设计,对一般图像编码字符识别系统进行了阐述,对关键环节进行了研究与分析,该方法对其它在线图像编码字符系统的开发具有一定指导意义。