当前位置:文档之家› 求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法
求三角函数最值的四种常用解题方法

求三角函数最值的常用解题方法

一.使用配方法求解三角函数的最值

例1.已知函数的最大值为1,求的值

解:

结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成

时,要考虑的取值及的条件,才能正确求出最值。

二.使用化一法求解三角函数的最值

例2.求函数的值域。

分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。

—1—

解:

结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。

三.使用基本不等式法求解三角函数的最值

例3.求函数的值域

—2—

解:

解:

四.使用换元法求解三角函数的最值

例4.求函数的最值。

分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。

解:

—3—

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法 三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下. 1 配方分析法 如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法. 例1求函数y=2cos2x+5sinx-4的值域. 解原函数可化为 当sinx=1时,y max=1; 当sinx=-1时,y min=-9, ∴原函数的值域是y∈[-9,1]. 注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意. “cosx”,再求已知函数的最值 例2求下列函数的最值,并求出相应的x值.

y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max= 3 求反函数法 如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.

∴原函数的值域是 4 应用函数的有界性 上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下. 解由原式可得 (3y-1)sinx+(2y-2)cosx=3-y, 则上式即为 利用函数的有界性有 ∴原函数的值域是

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

三角函数值表

三角函数值表一常用三角函数值:

二反三角函数值

同角三角函数的基本关系式 1,倒数关系: 1csc sin =?x x 1sec cos =?x x 1cot tan =?x x 2,商数关系: x x x cos sin tan = x x x sin cos cot = 3,平方关系 1cos sin 22=+x x x x 22sec tan 1=+ x x 22csc cot 1=+ 倍角公式:

x x x cos sin 22sin = 2 cos 2sin 2sin x x x = x x x 22sin cos 2cos -= 2 sin 2cos cos 2 2 x x x -= 1cos 22 -=x 12 cos 22 -=x x 2 sin 21-= 2 sin 212 x -= x x x 2tan 1tan 22tan -= 2 tan 12tan 2tan 2x x x -= 半角公式: 2cos 12sin x x -±= 22cos 1sin 2x x -= 2cos 12cos x x +±= 2 2cos 1cos 2x x += x x x x x x x cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 万能公式: 2 tan 12tan 2sin 2x x x +=

2 tan 12tan 1cos 22 x x x +-= 2 tan 12tan 2tan 2x x x -= 奉送直线有关 1,斜截式 斜率K 和在Y 轴的截距是b b kx y += 2点截式 点()111,y x P 和斜率k ()11x x k y y -=- 3,两点式 点()()222111,,y x P y x P 和 1 21 121x x x x y y y y --=-- 4,截距式 在x 轴上截距是a 1=+b x a x 在y 轴上截距是b 两条直线平行的充要条件:21k k = 两条直线垂直的充要条件:121-=?k k 圆: 圆心在圆点,半径为r 的圆的方程是: 222r y x =+ 圆心在点()b a C ,,半径为r 的圆的方程是: ()()22 2 r b y a x =-+-

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

常用三角函数值

高中数学常用公式一常用三角函数值:

二反三角函数值 同角三角函数的基本关系式 1,倒数关系: 1c s c s i n =?x x 1s e c c o s =?x x 1c o t t a n =?x x 2,商数关系: x x x c o s s i n t a n = x x x s i n c o s c o t = 3,平方关系 1c o s s i n 2 2 =+x x x x 2 2 s e c t a n 1=+

x x 2 2c s c c o t 1=+ 倍角公式: x x x c o s s i n 22s i n = 2 c o s 2 s i n 2s i n x x x = x x x 2 2s i n c o s 2c o s -= 2 s i n 2 c o s c o s 2 2 x x x -= 1c o s 22 -=x 12 c o s 22 -=x x 2 s i n 21-= 2 s i n 212 x -= x x x 2 t a n 1t a n 22t a n -= 2 t a n 12 t a n 2t a n 2 x x x -= 半角公式: 2 c o s 12s i n x x -± = 2 2c o s 1s i n 2 x x -= 2c o s 12c o s x x +±= 22c o s 1c o s 2 x x += x x x x x x x c o s 1s i n s i n c o s 1c o s 1c o s 12t a n +=-=+-±= 万能公式: 2 t a n 12 t a n 2s i n 2 x x x += 2 t a n 12t a n 1c o s 2 2 x x x +-=

高中数学三角函数解题方法与技巧分析

龙源期刊网 https://www.doczj.com/doc/8011126922.html, 高中数学三角函数解题方法与技巧分析 作者:王元蕾 来源:《文理导航》2017年第29期 【摘要】在高中学习期间,三角函数是相对独立又颇为重要的一块内容。分析历年来的高考试题可以发现,全国卷中涉及的三角函数的内容一般为选择题(或填空题)和一道大题。选择题的型多变,不易解答。而大题一般出现在第一道大题的位置上,较为简单。另外,数理不分家,三角函数在高中物理的叠加场大题中也发挥着关键作用。总之,加强对于高中数学三角函数内容的学习,十分必要。在本文中,我将介绍自己在高中学习过程中,对三角函数这块内容的理解以及一些解题方法、答题技巧。 【关键词】三角函数;答题技巧;高考 引言 三角函数,顾名思义,与角度和函数有关,数学上对函数的定义为:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),因此,角度也就是函数定义中A了。据专家、老师以及我的分析,在全国卷中,三角函数题属于低档题,而且三 角函数知识属于高中阶段的工具性知识,因此必须熟练掌握。下面我根据个人经验,从三个方面介绍三角函数的答题技巧。 1.解题时要注意灵活运用基础知识 如例2:如右图所示,在三角形ABC中,已知:tan∠B=3/4,sin∠ADC=4/5,AD长度为5米。求:AB的长度。 解析:由sina/cosa=tana、tan∠B=3/4两个条件可以得出,sina=3/4cosa,再由 sina+cosa=1,联立方程组,再观察图一三角形,可以判断正弦值为正数,可以计算出 sin∠B=3/5。又因为知道sin∠ADC=4/5,则sin∠ADB=sin(180°-∠ADC)=sin∠ADC=4/5。由正弦定理得AD/sin∠B=AB/sin∠ADB,代入数值,解得AB的长度为20/3米。 2.解题时要注重题目的隐含条件 我们都知道三角函数隶属于函数,笔者根据高一学函数时总结的经验可以发现,三角函数题(特别是给出图的题,对图中标注的条件观察不仔细而导致题做不出来)有时候会含有隐含条件,例如:奇偶性、极值、锐角三角形等。 如例3:在銳角三角形ABC中,如果tan∠B=2+√3,sin∠C=√3 /2。求∠A的余弦值。

三角函数值表及记忆方法

角度 sin cos tan cot sec csc 函数 0 0 1 0 \ 1 \ 15 30 2 45 1 1 60 2 75 90 1 0 \ 0 \ 1 105 120 -2 135 -1 -1 150 2 165 -1 \ 180 0 -1 0 \

195 210 -2 225 1 1 240 -2 255 0 \ -1 270 -1 0 \ 285 300 2 315 -1 -1 330 -2 345

常用三角函数 角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 只想上传这一个表 下面的都是无用的话 不用看了。 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 2 1 sin45°=cos45°= 2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2、列表法: 值 角 函 数 0° 30° 45° 60° 90° sin α 20 21 22 23 24 cos α 2 4 2 3 2 2 2 1 2 tan α 3 3 1或 3 9 √3或 3 27 不存在 cot α 不存在 √3或 3 27 1或3 9 3 3 30? 1 2 3 1 45? 1 2 1 2 60? 3

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

求三角函数的周期6种方法总结多个例子详细解答

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、定义法 例1. 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切 函数x y tan =的周期是π. 解:∵ )2 3 (32tan )32tan(32tan ππ+=+=x x x , 即

3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 例2. 求函数 (m ≠0)的最小正周期。 解:因为 所以函数(m ≠0)的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4.求函数y =|sin x |+|cos x |的最小正周期. 解:∵)(x f =|sin x |+|cos x | =|-sin x |+|cos x | =|cos(x +2π)|+|sin(x +2π)|

三角函数解题思路方法

三角函数解题思路方法 三角函数解题思路方法 1.转化思想 转化思想贯穿于本章的始终.例如,利用三角函数定义可以实现 边与角的转化,利用互余两角三角函数关系可以实现“正”与“余”的互化;利用同角三角函数关系可以实现“异名”三角函数之间的互化.此外,利用解直角三角形的知识解决实际问题时,首先要把实际 问题转化为数学问题. 2.数形结合思想 本章从概念的引出到公式的推导及直角三角形的解法和应用,无一不体现数形结合的思想方法.例如,在解直角三角形的问题时,常 常先画出图形,使已知元素和未知元素更直观,有助于问题的顺利 解决. 3.函数思想 锐角的正弦、余弦、正切、余切都是三角函数,其中都蕴含着函数的思想.例如,任意锐角a与它的正弦值是一一对应的关系.也就 是说,对于锐角a任意确定的一个度数,sina都有惟一确定的值与 之对应;反之,对于sina在(01)之间任意确定的一个值,锐角a都 有惟一确定的一个度数与之对应. 4.方程思想 在解直角三角形时,若某个元素无法直接求出,往往设未知数,根据三角形中的边角关系列出方程,通过解方程求出所求的元素. 1.化简三角函数 方法:利用反复利用倍角半角公式,利用同角三角函数的关系。 2.求最值或单调区间。

方法:将X的`取值化为相应的值。 即将X的范围化为Ax+B的范围。 再作正弦函数标准图,横轴为Ax+B,在图上找最值或单调区间。 3.若要求三角形面积一般用S=0.5ab*sinC 若要求角度一般用余弦定理 高考最常考的就是把三角函数与必修5的解三角形结合起来,要求你要掌握: 降幂公式(sinxcosx=1/2sin2x;(cosx)的平方 =(1+cos2x)/2;(sinx)的平方=(1-cos2x)/2); 辅助角公式(asinx+bcosx=根号下(a的平方+b的平方)乘 sin(x+y)) 通过应用这两个公式就可以把函数类型转换成y=Asin(wx+y)的 形式,那有关此三角函数的一切性质(最值、周期、单调、对称中心、对称轴、奇偶性、平移)就可以迎刃而解了。 不知道你学没学必修5,如果是高二的学生,那三角还会和不等 式结合在一起考! 这个是高考最常见的大题,此类问题属于易、中、难之中的易。 其实三角函数问题,最重要的就是牢记公式,必须记!然后学以 致用!

高考中常见的三角函数题型和解题方法-数学秘诀

第12讲 三角函数 高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。 一、知识整合 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ω?=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 二、高考考点分析 2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次: 第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。 第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。 第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。 三、方法技巧 1.三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4.解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。 四、例题分析

相关主题
文本预览
相关文档 最新文档