当前位置:文档之家› 发电机结构图

发电机结构图

发电机结构图
发电机结构图

1、定子机座与隔振

机座是用钢板焊接成的壳体结构,有足够的强度和刚度,是支撑铁芯和定子绕组的部件,并构成特定的冷却气体流道。作为氢气的气密容器,能承受机内以外氢气爆炸产生的冲击。机座由隔板、外皮和风区隔板组成,形成特定的环形进出风区。机座与出线罩之间的结合面用焊接方式进行密封,与端盖之间用注入密封胶方式进行密封。铁芯与机座之间装设轴向弹簧板,能有效吸收两级电机特有的铁芯倍频振动,减小振动对机座和基础的影响。

定子铁芯

定子铁芯是用相互绝缘的扇形片叠装压紧制成的。为了减小电气损耗,采用高导磁低损耗冷轧硅钢片冲压而成。。

扇形片两面涂刷有无机填料的热固性绝缘漆。

扇形片冲有定子绕组的下线槽和放置槽楔用的鸽尾槽。叠压利用定子定位筋定位,迭装中多次施压,两段用低磁性铸钢压圈将铁芯压紧成一个刚性圆柱体。铁芯齿部靠压圈内侧的非磁性钢压指压紧,边段铁芯涂有粘结漆,在铁芯压紧后加热使其粘结成一个牢固的整体,提高铁芯刚度。

边段铁芯齿设计成阶梯状并在齿中间开窄槽,同时在压圈上装有整体的铜屏蔽,降低铁芯端部的损耗和温升。

发电机在欠激运行时,铁芯端部物件上漏磁增加,铁芯边段齿部和压圈上感应很大的涡流,增加温度,为避免,采取以下措施。

1)采用铜屏蔽。铜屏蔽安装在压圈上,根据涡流效应,使得端部大部分轴向漏磁通被屏蔽掉,就铜屏蔽而言,涡流大小应考虑,铜屏蔽电阻仅为球墨铸铁压圈的1/5,热传导系数是压圈的5倍,从磁通投入深度的相对关系看,其损耗仅为压圈的一半,所以铜屏蔽不会出现局部过热。

2)边段扇形片开小槽

齿部占涡流的一半,开小槽后可使得漏涡流损耗减小至原来的1/4.

3)采用高电阻率,低导磁率的压圈和压指

4)增加铁芯端部内径:端部铁芯内径大于中部正常段区域铁芯内径,目的避免漏磁通集中在端部区域。

5)使用无磁性护环。根据去磁效应,护环词组随漏磁增加而增加,由于屏蔽作用即可避免磁通增加,对漏磁通而言,护环磁阻起到去磁作用

耐爆型压力容器;

隔振结构,切向弹簧板支撑结构,减少铁芯倍频传到机座;

定子槽数,42槽,

铁芯的日常管理:

运行中加强对铁芯温度的监督和分析,注意记录并分析铁芯温度的变化趋势,特别注意对相同工况下的历史数据进行比较,以及时发现铁芯的异常变化。运行人员在巡视发电机时应注意其噪声的变化,如发现噪声异常增大,应查明原因,必要时进行定子外壳振动测量,在适当时机安排停机检修。为防止发电机运行温度的变化对铁芯的松紧度造成影响,发电机运行中要尽可能保持发电机负荷的连续稳定。对于端部铁芯健康状况较差的发电机应尽可能少安排进相运行。对在运行中负荷变化和进相运行较多的发电机要注意发电机噪声的变化,检修时注意查看铁芯状况。

2、定子绕组

定子绕组由嵌入铁芯槽内的绝缘条形线棒组成,绕组端部为蓝式结构,并且由连接线结成规定的相带组。采用连续F环氧粉云母绝缘系统,表面有防晕处理措施。

线棒由绝缘空心股线和实心股线混合编织换位540而成。

定子线棒是通过空心股线中的水介质来冷却,冷却水路是双支路,每根线棒为励磁进水,汽侧出水,冷却水从励端混流管和绝缘引水管通过线棒端头的水接头进入线圈,冷却线圈后经汽侧排入外系统。在线圈端部,每根空心股线经水盒与水接头连接,所有股线都钎焊到水盒上。绝缘引水管将回流管和水盒上的水接头连接,回流管是接地的,因此,绝缘引水管能承受发电机的运行电压。线圈端部部件能承受正常运行的震动以及非周期运行和短路事故产生的线棒之间的电磁力。

绕组端部固定

定子绕组端部用浸胶涤波绳绑扎固定在玻璃钢支架和绑环组成的端部固定件上,绑扎固定后经烘焙固话,供整个端部在径向和轴向成为一个刚性的整体,确保端部固有频率远离倍频,避免共振。轴向可研支架滑销方向自由移动,减小由于负荷或工况变化而在定子绕组和支撑系统中引起的应力,满足调峰。端部振型模态试验:

GB20140-2006规定,柔性支撑的发电机定子端部整体振型的固有频率应避开95-112,且不应该为椭圆,在厂内形式试验中,发电机在额定空载和额定稳态短路工况中,绕组端部的倍频振动位移峰小于100um,正常运行中小于250um。

模态试验属于静态试验,仅能预测发电机运行中产生共振的可能性。试验结果存在100hz左右的椭圆形仅说明运行中有可能与电磁力产生共振,但理论和实践不一定一致,即使共振端部振幅不一定超标,例如我厂#1机组气端存

在99,107的椭圆振型,气端绕组100hz分量实测最大值为180um,因此不应把模态试验作为发电机是否安全投运的决定判据。唯一判据是实际振动是否超标。

热电阻检温计和测温接线板

在定子绕组的每一项设定的最热点埋设检温计,测量绕组温度。

在冷却器的进风区埋设检温计,测量冷却器的进出风温

热电偶

在定子压圈,铜屏蔽和铁芯边段齿部测量部位安装热电偶铜康热电偶。

为了测量定子绕组冷却水的出水温度,在绝缘引水管的出口埋热电偶。

热电偶的股线和保护套间隙用诸如磁性氧化物、氧化铝、氧化锆等陶瓷类物质填充,使股线和外层空气隔绝,并避免热电偶在空气和高温下被腐蚀。热电偶引线被引到测温端子箱的出线板上。

通风和冷却

发电机采用径向多留式密闭循环通风,在机座和铁芯之间由环形隔板分成进风区和出风区,各风区由风管彼此连接。构成交替的进出风路。定子铁心沿轴向分为13个风区,六个进七个出。轴流式风扇将氢气分别打入气隙和铁芯背部,进入铁芯背部的氢气,沿铁芯径向风道冷却进出风区铁芯后,进入气隙。少部分氢气进入转子槽内冷却转子。其他氢气返回铁芯,进入冷却器。%5冷却水管堵塞,发电机可以在额定工况下连续运行。

一组氢冷器退出后,允许带80%负荷。

线棒数:上侧42,下层42,两路并联

上下层不等截面,截面比1::08,上层附加损耗大,截面大,水流量大,发热均匀

上层:空心线4*5 *壁厚实心线4*10 *

4转子

转轴

转轴材料:高强度高导磁合金钢。

转子本体上防止励磁绕组的轴向槽,本次同时作为磁路。

转子大齿上加工横向槽,用于均衡大、小池方向的刚度,避免差异较大产生共振。

大齿上的阻尼,每级开3个阻尼槽。

转子绕组

绕组材料:含银铜线。良好的导电性,抗蠕变性能。

转子冷却采用气隙取气,斜流冷却方式。利用转子自泵风作用,在两端部,氢气从互换下进入绕组的冷却风道,冷却绕组端部后,从本体端部的排风去排出。在转子本体上,沿轴向分布进出风区,氢气通过槽楔后,进入两排斜流式风道,冷却绕组后,从出风区排出。由于采用了并联冷却风道,使得氢气冷却的转子和铁芯能够与采用水冷却的绕组匹配。采用铝槽楔和钢槽楔压紧。非磁性槽楔和磁性槽楔的应用保证合理的磁通分布。

槽衬采用含云母、玻璃纤维等绝缘材料复合压制而成,具有良好的绝缘性能和机械性能。

每级8组线圈,1号线圈7匝,共56匝,两项112匝。

每匝由上下两层线棒组成,

每圈由直线,弯角,端部圆弧中频焊接

直线部分铣出通风孔,构成斜流风道

退磁后要求剩磁值为:轴瓦、轴颈不大于2×10-4T

转子日常检查:

运行中,发电机与汽轮机之间的大轴接地电刷一定要投入运行。每月应检查一次励磁机侧轴承绝缘,保持良好状态。在运行中加强对发电机转子电流和转子轴振动的监视。随时监视运行中发电机的振动与无功出力的变化情况。如果振动伴随无功变化,则可能是发电机转子有严重的匝间短路。此时首先控制转子电流,若振动突然增大,应立即停机处理。转子一点接地保护投信号,发信后立即查找并汇报负责人。

集电环

材料:耐磨合金钢,与转轴采用热套装配,中间有绝缘筒。

加工有轴向和径向风孔,表面的螺旋沟改善电刷和集电环的接触情况,使得电刷之间的电流分布均匀。共有8*2*4=64,两个集电环共128块碳刷,平均每个刷辨35个电流

集电环日常管理:

按照集团公司定期工作制度及相关反措的要求加强电刷、集电环系统的专职维护。同一台发电机应采用同一生产厂家同一批号的碳刷。运行中应坚持红

外成像检测,及时调整,保证电刷接触良好。及时对集电环沟道和刷握进行吹扫,防止积碳引起转子绝缘下降。停机后和运行中对集电环、刷架和通风冷却装置进行清扫,清除积灰和污垢。必要时检查集电环椭圆度,椭圆度超标时应处理。运行中碳刷打火应采取措施消除,不能消除的要停机处理。一旦形成环火必须立即停机。

5出线盒

耐爆压力容器,气密试验合格;

反磁性不锈钢钢板焊接

与机座结合面T型密封槽,压铸密封胶密封。

内装6只出线瓷套管

外挂6*4只电流互感器

日常管理:

加强发电机封闭母线的管理。微正压装置要连续投入自动运行方式,运行中应加强巡视检查,检查压缩空气含水量,以保证除湿效果。微正压装置应处于断续启动状态,如果微正压装置长时间连续运行而不停顿,应查明原因。有条件的发电企业可采用仪用压缩空气作为微正压装置的气源,与就地空压机并列运行。根据需要,可进行气体干燥度的检测(露点温度低于环境温度)。

发电机的特性

空载特性

一般情况下,发电机既有无功,又有有功。有功电流的变化影响发电机的转速和频率,无功电流的变化影响发电机的电压。

短路特性

发电机的氢油水系统

1、发电机的氢系统

组成:氢气控制排,co2控制排,氢气干燥器,置换控制排,油水探测报警器,纯度分析仪,氢气冷却器,管路附件等。

1)、氢气纯度要求:98%以上,过低影响冷却效果,增加通风损耗,

2)、指标:温度,压力,纯度,及油水漏入量

氢气控制器减压阀YQQ-2型,安全阀开启压力,关闭压力氢气控制排上还有压力开关和压力表。用于供氢母管压力过低报警。

3)、co2控制排:

置换过程使用,置换过程中发电机内压力)油水报警器

报警器内部有浮子,报警器内油水积聚,上升,并报警。

氢气温度过低,容易结露,因此氢气温度必须必水温高。但氢气温度过高,容易造成发电机散热问题。发电机充气容积117.

气体置换:

A充氢时,用co2赶走机内空气,待co2含量超过95%以上,可用氢气赶走

co2.这一过程机内压力排氢相反。

B氢气纯度要求,对发电机是安全和经济两个影响。安全主要是说爆炸,特别是纯度在¥5-74%。从经济的角度看,氢气纯度过高,混合气体密度越小,通风损耗越小。经验表明,机内氢压不变,氢气纯度每降低1%,通风损耗增加11%。这对于发容量发电机是很客观的。因此可以考虑多排氢气。提高发电机效率。

C氢气湿度过高,影响氢气纯度,增加通风损耗。另一方,降低绕组的电气强度,加速护环的应力腐蚀,特别在温度高,湿度大,腐蚀加快。1、降低绕组的绝缘水平,形成绝缘表面沿面放电通道2、降低转子绝缘电阻,加速转子匝间短路和绕组接地故障的发生3、加快转子护环裂纹的萌生和扩展速率

氢气湿度过大的原因:1、母管氢气湿度大2、氢气冷却器漏水3、密封油含水量

发电机原理图解

固定磁场交流发电机原理模型 发电机是根据电磁感应原理来发电的,发电机首先要有磁 场,现在用一对磁铁来产生发电机的磁场,磁力线从北极到南 极。 在磁场内放入矩形线圈,线圈两端通向两个滑环,滑环通过 电刷连接到输出线上,输出线端连有负载电阻。 当线圈旋转时,根据电磁感应原理,线圈两端将会产生感应 电动势,当磁场是均匀的,矩形线圈作匀速旋转时,感应电势 按正弦规律变化,在负载电阻上有正弦交流电通过。动画中绿 色小球运动的方向表示感应电流的方向、运动的速度表示感应 电流的大小。 旋转磁场交流发电机原理模型 在这个模型中磁场是不动的,线圈在磁场中旋转产生感应电 势。在实际发电机中产生感应电势的线圈是不运动的,运动的 是磁场。产生磁场的是一个可旋转的磁铁,也就是转子,线圈 在磁铁外围,与磁铁转轴同一平面。当磁铁旋转时产生旋转磁 场,线圈切割磁力线产生感应电动势。 由于空气的磁导率太低,在旋转磁铁的外围安上环型铁芯, 也就是定子,可大大加强磁铁的磁感应强度。在定子铁芯的内 圆有一对槽,线圈嵌装在槽内。为了看清线圈电流与转子的运 动关系,把定子变成半透明的。当磁铁旋转时,线圈切割磁力 线感生交流电流。 真正发电机的转子是电磁铁,转子上绕有励磁线圈,通过滑 环向励磁线圈供电来产生磁场。把定子与线圈安在转子外围, 一个单相交流发电机原理模型就组成了。 转子作匀速旋转时,线圈就感生交流电流,画面中绿色小球 运动的方向表示感应电流的方向、运动的速度表示感应电流的 大小。 三相交流发电机原理模型

实际应用的都是三相交流发电机,其定子铁芯的内圆均匀分布着6个槽,嵌装着三个相互间隔120度的同样线圈,分别称之为A相线圈、B相线圈、C相线圈。装上转子就组成了一台三相交流发电机原理模型。 画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出线是相线。 当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。由于三个线圈相互间隔120度,它们感应电势的相位也相差120度。在画面上有每根相线的输出电势波形。 汽轮发电机的构造 这里介绍汽轮发电机的构造,是由蒸汽轮机或燃气轮机推动的发电机。发电机主要由转子与定子组成,由于汽轮机的转速很高,故汽轮发电机的转子是两极的,额定转速每分钟3000转,输出50赫兹的三相交流电。 这是转子铁芯构造示意图,在铁芯圆周上开有一些槽,嵌有励磁绕组,在圆周两侧各有一段槽距大的面称为大齿,就是磁极(图1所示)。励磁绕组两端通过集电环(滑环)接到励磁电源,在转子圆周两侧就形成北极与南极,旋转时就产生旋转磁场。 由于转子圆周上没有凸出的磁极(不像原理模型中的转子),称之为隐极式转子。 图2为嵌有励磁绕组的转子模型,为降低发电机的温度,在转子两端还装有风扇。 定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽(图3所示)。 在槽内嵌放定子的三相绕组。每相绕组由多个线圈组成,按一定规律对称排列。(图4所示)。使定子铁芯透明可看清绕组的分布(图4所示)。 转子插在定子内部,定子与转子的相对位置如图5所示。 定子固定在发电机的机座(外壳)内,转子由机座两端的轴承支撑,可在定子内自由旋转。集电环在机壳外侧,和碳刷架一同装在隔音罩内。在发电机外壳下方有发电机出线盒,发出的三相交流电从这里引出(图6所示)图7是发电机外观图 下载动画可观看发电机结构动画。 多磁极发电机原理模型 多磁极发电机的转子有多对磁极, 图1是有3对磁极的转子模型。由于每个磁极都是从转子上明显凸起,称之为凸极式转子。每个磁极上都 绕有励磁线圈,形成南北相间的6个磁极,励磁电源通过滑环向励磁线圈供电。 该模型的转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个周期。定子内园周有 18个槽

柴油发电机方案

高压柴油发电机组技术方案 一、概述 伴随着机房的扩容,作为备用电源的柴油发电机组容量要求越来越大,需多台大功率柴油发电机组并网才能满足负荷的要求,而且机房与实际使用负载间距离也越来越远,采用传统的多台低压柴油发电机组并联运行暴露出多项运行和传输的缺陷,为了能够更加安全、可靠地运行,采用高压机组是一种更好的选择。 高压机组应用于冶金企业、机场、数据中心等应急备用电源系统,因机组的输出电压10kV与原供电系统电压一致,可直接接入供电系统,省去了大笔供配电系统的设备投资。同时由于机组的输出电压高,输出电流小,在动力传输过程功率损失最小,适合远距离输送。高压输电电流相当于低压输电电流的1/26。 50Hz高压柴油发电机组主要电压等级有:6kV、6.3kV、6.6kV、10kV、10.5kV、11kV等,单台机组功率一般在1000kW以上,多台机组并联使用。 高压柴油发电机组与低压柴油发电机组分析比较 二、高压柴油发电机组应用 根据上述高低压柴油发电机组的应用特点,在容量要求较大和送电距离较远的应用场合,高压柴油发电机组具有大容量、远距离供电,机房集中建设、可靠性强、配套配电系统简单等明显优点,是大容量机组选型应用的必然趋势,高压柴油发电机组已经在银行、数据中心、冶金、民航等领域进行了大量的应用。

三、高压柴油发电机组的结构特点 高压柴油发电机组的结构分为:柴油发动机、交流发电机、高压开关柜、接地电阻柜、PT柜、并机柜及出线柜和集中控制台等部分。 3.1交流发电机 1、无刷自励式,H级绝缘,可耐温180℃,为发电机在恶劣环境中运行提供保障; 2、机座为钢制焊接结构,端盖为铸件,安装结构型式有单轴承和双轴承两种; 3、定子是2/3节距绕制,能有效抑制输出电压的波形畸变,及减少磁场发热; 4、转子装配前经过动平衡,完善的阻尼绕组帮助减少非恒定负荷下的电压偏差和热量; 5、励磁机转子的输出功率通过三相全波式整流器输给主机转子,该整流器由一浪涌抑制器保护,以免由诸如短路或者并联时相位失步而引起的冲击造成损坏; 3.2高压开关柜 高压并机开关柜由一组高压开关柜组成,主要组成部分为发电机进线柜及PT柜、出线柜。并机柜及出线柜装设综合保护装置及差动保护装置有效的保护机组及设备安装稳定运行。安装于高压柜上的综合保护器带有通用RS232、MODBUS通讯协议接口,用户可以根据需要对整个并机系统的电能实时参数进行采集,进行集中监控、归档管理。 高压开关柜断路器:ABB高压断路器、三菱高压断路器 3.3接地电阻柜 接地电阻柜系列中性点接地电阻采用的是电阻专用的原装进口不锈钢合金材料,其材料具有接地电阻要求的热力及电气性能,做到耐受高温、电阻率高及

发电机转子结构

发电机转子结构 发电机转子由主轴、轮毂、轮臂、磁轭、端压板、风扇、磁极、制动闸板等组成,如左上图所示。 其中:1-主轴2-轮毂3-转臂4-磁轭5-压板6-风扇7-磁极8-制动闸板 主轴是用来传递转矩,并承受转动部分的轴向力,通常用高强度钢整体锻成,或由铸造的法兰与锻造的轴筒拼焊而成;轮毂是主轴与轮臂

之间的连接件;轮臂是用来固定磁轭并传递扭矩的,大、中型机组的轮臂一般为焊接结构;磁轭的主要作用是产生转动惯量和挂装磁极,同时也是磁路的一部分,直径小于4m的磁轭可用铸钢或整圆的厚钢板组成,大于4m时则由3~5mm的钢板冲片叠成一整圆,用键固定在轮臂外端;磁极是产生磁场的主要部件,由磁极铁芯、励磁线圈和阻尼绕组三部分组成,并用“T”形结构固定在磁轭上。 由于大型水轮发电机的转速较低,因此,大型水轮发电机的磁极数要比汽轮发电机多的多。又因为大于4级的磁极在制造上很困难,所以,大型水轮发电机的磁极基本上是凸极式。另外,由于水轮发电机导水机构的关闭需要一定的时间, 为防止水轮发电机突然和电网解列(即甩负荷)时机组的转速升得过高,要求转子具有足够大的转动惯量。转动惯量通常用飞轮力矩--来表征。正因为这一原因,大型水轮发电机的转子都显得很笨重。 大型水轮发电机的转轴通常采用分段轴结构。水轮发电机转轴由顶轴、转子体和主轴三部分构成。由于中间一段是转子支架中心体,没有轴,因而又称“无轴结构”。转子支架(轮毂和轮臂)与主轴的联结采用空心轴。空心轴可提高锻造质量,还可以作为混流式水轮机的补气孔或轴流式水轮机操作油管的通道。 转子支架是安装磁轭、磁极及主轴的中间部件。在运行中要承受扭矩、重力、离心力等的综合作用。大型水轮发电机的转子支架有组合式(辐射型)和圆盘式两种。

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

发电机的构造

2.发电机的构造 发电机(图2-1)主要由机座、主发电机、励磁发电机及励磁系统等组成。 2.1 机座 发电机机座采用六面箱体结构,用钢板焊接而成,具有较高的强度、刚度和机械稳定性。上面“背包”部分用来安放励磁系统,机座侧面壁板开有各种功能窗口。 图2-1 发电机

图2-2 主机转子 图2-3 主机定子 主发电机包括主机转子(图2-2)和主机定子(图2-3),为典型的旋转磁极式隐极同步发电机。其作用是产生三相交流电输出到电网或其它负载。

励磁发电机包括励磁机定子(图2-4)和励磁机转子(图2-5),为典型的旋转电枢式凸极同步发电机。定子上有主磁极,并安装有主极线圈,当该线圈中通以直流电流时即产生固定的磁场;转子上嵌有交流电枢绕组,当转子旋转时,电枢绕组因切割磁力线而感应出交流电势。 图2-4 励磁机定子图2-5 励磁机转子

图2-7 旋转整流模块示意图 2.4 旋转整流模块、压敏模块 在主机转子与励磁机转子之间,安装有3块旋转整流模块,1块压敏模块。 2.4.1 旋转整流模块 旋转整流模块用径向螺钉固定在轴套上(图2-6)。 旋转整流模块的作用是:将励磁机的交流电变为直流电,为主机提供稳定的直流电。 图2-6 旋转整流模块安装位置 模块发生故障时可按以下步骤进行更换:拆下紧固螺钉和连接螺钉后,从汇流环下面沿轴向取出故障模块。按正确的极性(负极朝向励磁机端)装配模块,紧固螺钉和连接螺钉均涂螺纹固定剂,然后用力矩扳手将其拧紧。规定的拧紧力矩为:紧固螺钉为4.5N ·m ~5.5 N ·m ,连接螺钉为2.5 N ·m ~3.5 N ·m 。 旋转整流模块上有A 、K 、AK 三个接线柱,如图2-7所示。 注意:完好的旋转整流模块应该有一个非常大的反向电阻和很低的正向电阻。 具体测量方法为:

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

大型发电机结构说 图解

一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

详细解析汽车发电机工作原理

详细解析汽车发电机工作原理Time:2010-12-24 13:54:53 Author: Source:中电网交流发电机的结构 一、6管交流发电机的结构 交流发电机一般由转子、定子、整流器、端盖四部分组成。 JF132型交流发电机组件图见图2-5a JF132型交流发电机结构图见图2-5b JF132型交流发电机结构图见图2-5c (一)转子 转子的功用是产生旋转磁场。 转子由爪极、磁轭、磁场绕组、集电环、转子轴组成,见图2-6

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。 当两集电环通入直流电时(通过电刷),磁场绕组中就有电流通过,并产生轴向磁通,使爪极一块被磁化为N极,另一块被磁化为S极,从而形成六对相互交错的磁极。当转子转动时,就形成了旋转的磁场。 交流发电机的磁路为:磁轭→N极→转子与定子之间的气隙→定子→定子与转子间的气隙→S极→磁轭。见图2-7。 (二)定子 定子的功用是产生交流电。定子由定子铁心和定子绕组成。见图2-8A 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组有三相,三相绕组采用星形接法或三角形(大功率)接法,都能产生三相交流电。 三相绕组的必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。 1.每个线圈的两个有效边之间的距离应和一个磁极占据的空间距离相等。

2.每相绕组相邻线圈始边之间的距离应和一对磁极占据的距离相等或成倍数。 3.三相绕组的始边应相互间隔2π+120o电角度(一对磁极占有的空间为360o电角度) 例:国产JF13系列交流发电机三相绕组绕制见图2-8B 结构参数如下: 磁极对数p6对 定子槽数z36槽 定子绕组相数m3相 每个线圈匝数N13匝 绕组联结方法Y型联结 在国产JF13系列交流发电机中,一对磁极占6个槽的空间位置(每槽60o电角度),一个磁极占3个槽的空间位置,所以每个线圈两条有效边的位置间隔是3个槽,每相绕组相邻线圈始边之间的距离6个槽,三相绕组的始边的相互间隔可以是2个槽,8个槽,14个槽等。 (三)整流器 交流发电机整流器的作用是将定子绕组的三相交流电变为直流电,6管交流发电机的整流器是由6只硅整流二极管组成三相全波桥式整流电路,6只整流管分别压装(或焊装)在两块板上。 1.汽车用硅整流二极管特点 (1)工作电流大,正向平均电流50A,浪涌电流600A; (2)反向电压高,反向重复峰值电压270V,反向不重复峰值电压300V;

柴油发电机房设计要点与思路

柴油发电机房设计要点及思路 归纳总结柴油发电机房设计中电气专业相关的内容,介绍柴油发电机组的设置及运行流程、柴油发电机组主要特点,梳理柴油发电机设计思路,阐述施工图设计需注意的内容,并总 结柴油发电机房的建筑、结构、暖通相关专业要求。 1 柴油发电机设计思路 1. 1 收集设计所需要的条件 a. 气象条件:柴油发电机的额定容量是按照40 ℃进行测试的,只要外围环境不长时间超过40 ℃,柴油发电机即可按照额定值进行设计。 b. 海拔高度条件:海拔的升高将导致柴油发电机组动力性能下降,如果在高原地区选择柴油发电机不建议考虑超负荷运行的可能。 c. 水质条件:水质太硬将引起水冷系统的循环水沉淀水垢,降低传导外壁的导热效果,使冷却水循环效率下降,导致机组温升过快,发生事故,所以硬水的地区设置柴油发电机组需考虑循环水提前进行软化。

d. 负荷容量等:设备容量的统计首先需要满足现行规范的要求,如一级负荷中特别重要负荷,然后满足建设方对于项目功能特点的个别要求,分别进行统计,设计时建议选择消防负荷与重要的平时负荷之较大者,作为柴油发电机组的额 定容量。 1. 2 确定柴油发电机的使用类型 a. 常用型电站,为正常工作时使用的柴油发电机组。 b. 备用型电站,为发生停电事故时使用。 c. 应急型电站,重要负荷使用,如消防设备等,平时并不使用。 1. 3 进行初步设计 首先完成对柴油发电机的容量估算,根据笔者工程实践总结,初步设计阶段可 以按变压器总容量的10 % ~ 15 % 进行估算,如4 000 kVA变压器总容量, 可以选择500 kW的柴油发电机组;或也可以按建筑面积进行估算:如对于10 000 m2以上的建筑物可以按10 ~ 15 W / m2估算,10 000 m2以下的建筑物可 以按15 ~ 20 W / m2予以估算,如40 000 m2的建筑物,可以选择630 kW的柴油发电机组。

柴油发电机组施工工艺流程上课讲义

7.3.1.13、柴油发电机组施工方案 安装流程图如下: 1.1 机组固定安装 机组设备安装前,建筑工程应具备下列条件:结束屋顶、楼板工作,不得有渗漏现象;由于机组自重较大,混凝土基础应按照厂家要求达到允许安装的强度;预埋件及预留孔符合设计,预埋件牢固。发电机平移至设备基础后,采用四台15吨起道机提升至一定高度,将发电机组机架的安装孔与已经安装好的减震器的螺纹孔对正后,调节起道机将发电机组安放在减震器上。

1.2.1 排烟管道 本次施工按设计要求完成2台1000KW发电机组的排烟系统。 1.2.2 排烟管材 排烟管材为焊接管,应符合设计规定压力要求,管壁薄厚均匀,内外光滑整洁,不得有砂眼、裂纹、毛刺、弯曲、锈蚀等现象。烟管弯头等连接件不得有砂眼、裂纹、和角度不准现象。安装前应按设计和施工规范规定进行强度和严密性试验。 1.2.3 排烟管道安装及保温做法 1000KW发电机组采用∮350焊接钢管,并且我们按图纸要求在排烟管道上设置膨胀节、消音器、滑动支架及固定支架。发电机与消音器及与膨胀节间的连接采用法兰连接,烟管之间采用焊接连接(见附图一)。 按施工图所示,在每一处的膨胀节的排烟方向设置固定支架,其余部位则设置滑动支架。滑动支架的做法采用弹簧减振器与吊杆连接,悬挂槽钢横担,烟管抱卡采用圆钢,并用螺栓与扁钢托架连接(详见附图三);而固定支架做法采用槽钢支架与结构楼板固定连接,悬挂槽钢横担,其扁钢托架与槽钢横担焊接连接(详见附图四)。排烟管道水平引至Cg-Ch/C8-C9之间的管井,经L4转井至Cb-Cc/ C9,垂直上引至宴会厅L6,水平引出幕墙外。 在竖直烟井敷设时,垂直管道在管井首层设置固定支架(详见附图二),其余楼层则设置滑动支架。管道支、吊架位置应正确,埋设应平整牢固;固定在建筑结构上的支吊架,不得影响结构安全。排烟管道安装前,应先清除管内的污物。管道安装位置、标高应正确。待管道安装完毕,进行管道压力试验合格后,用耐火材料填充紧密。 排烟管的保温做法:本次排烟管共10根,排烟管采用焊接钢管。排烟管道在室内部分用50mm岩棉保温,在室内水平明露部份外包0.8mm厚的铝皮。 烟管支架间距以栢诚最终批复图纸为准。

汽轮发电机结构与原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽

轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。 在发电机本体醒目的位置装设有铭牌,标出发电机的主要技术参数,作为发电机运行的技术指标。 (一)定子 发电机的定子由定子铁芯、定子绕组、机座、端盖及轴承等部件组成。 1.定子铁芯 定子铁芯是构成磁路并固定定子绕组的重要部件,通常由0.5mm或0.35mm厚,导磁性能良好的冷轧硅钢片叠装而成。大型汽轮发电机的定子铁芯尺寸很大,硅钢片冲成扇形,再用多片拼装成圆形。 2.定子绕组 定子绕组嵌放在定子铁芯内圆的定子槽中,分三相布置,互成120°电角度,以保证转子旋转时在三相定子绕组中产生互成120°相位差的电动势。每个槽内放有上下两组绝缘导体(亦称线棒),每个线棒分为直线部分(置于铁芯槽内)和两个端接部分。直线部分是切割磁力线并产生感应电动势的有效边,端接部分起连接作用,把各线棒按一定的规律连接起来,构成发电机的定子绕

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

发电机动画课件

发电机系列 本栏展示用3d绘制的发电机系列教学课件,通俗易懂、直观形象。这些课件为青少年科技爱好者而作,可作中学物理的参考读物,有些可作为电工参考读物。 发电机基础原理:课件通过一个发电机原理模型讲解了发电机的基本原理,动画显示了磁力线走向、旋转线圈中感应电流的方向与输出电压的波形。 固定磁场交流发电机原理模型 发电机是根据电磁感应原理来发电的,发电机首先要有磁场,现在用一对磁铁来产生发电机的磁场,磁力线从北极到南极。 在磁场内放入矩形线圈,线圈两端通向两个滑环,滑环通过电刷连接到输出线上,输出线端连有负载电阻。当线圈旋转时,根据电磁感应原理,线圈两端将会产生感应电动势,当磁场是均匀的,矩形线圈作匀速旋转时,感应电势按正弦规律变化,在负载电阻上有正弦交流电通过。动画中绿色小球运动的方向表示感应电流的方向、运动的速度表示感应电流的大小。(观看动画固定磁场交流发电机原理模型)

旋转磁场交流发电机原理模型 在这个模型中磁场是不动的,线圈在磁场中旋转产生感应电势。在实际发电机中产生感应电势的线圈是不运动的,运动的是磁场。产生磁场的是一个可旋转的磁铁,也就是转子,线圈在磁铁外围,与磁铁转轴同一平面。当磁铁旋转时产生旋转磁场,线圈切割磁力线产生感应电动势。 由于空气的磁导率太低,在旋转磁铁的外围安上环型铁芯,也就是定子,可大大加强磁铁的磁感应强度。在定子铁芯的内圆有一对槽,线圈嵌装在槽内。为了看清线圈电流与转子的运动关系,把定子变成半透明的。当磁铁旋转时,线圈切割磁力线感生交流电流。 真正发电机的转子是电磁铁,转子上绕有励磁线圈,通过滑环向励磁线圈供电来产生磁场。把定子与线圈安在转子外围,一个单相交流发电机原理模型就组成了。 转子作匀速旋转时,线圈就感生交流电流,画面中绿色小球运动的方向表示感应电流的方向、运动的速度表示感应电流的大小。(观看动画旋转磁场交流发电机原理模型)

大型发电机结构说图解

大型发电机结构说图解文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

大型发电机一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转

子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线 发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。 三、发电机的结构 图3 大型发电机基本结构 目前我国热力发电厂的发电机皆采用二极、转速为3000r/m的卧式结构。如图4所示,发电机最基本的组成部件是定子和转子。 图4 300MW汽轮发电机组侧视图 1-发电机主体;2-主励磁机;3-永磁副励磁机;4-气体冷却器;5-励磁机轴承;6-碳刷架隔音罩;7-电机端盖;8-连接汽轮机背靠轮;9-电机接线盒;10-电路互感器;11-引出线;12测温引线盒;13-基座

发电机结构

同步发电机基本结构及工作原理 各位同事: 大家好! 今天我们有幸在一起学习同步发电机基本结构及工作原理,有讲的不周到的地方请大家指正! 一:同步发电机基本结构 发电机主要由定子、转子、端盖及轴承、氢气冷却器、冷却器罩、出线盒油密封装臵、座板、刷架、隔音罩等部件组成。发电机与主变压器之间采用带有微正压装臵的离相封闭母线,发电机中性点经干式单相变压器接地。发电机采用水氢氢冷却方式,即定子绕组为水冷却,转子绕组为氢气内部冷却,铁芯为氢气冷却,发电机整体为全封闭气密结构。定子绕组总进出水汇流管分别装在机座的励端和汽端,在出线罩内还装有单独的出水小汇流管,由进水汇流管经绝缘引水管构成向定子绕组、主引线、出线瓷套端子及中性点母线板供水通道,由出水汇流管汇集排出。定子铁芯沿轴向分为九大风区,其中四个进风区、五个出风区、冷热风区依次交替,转子与定子对应。转子绕阻槽部采用气隙取气斜流通风系统,冷风自铁芯径向风道进入气隙,通过转子表面进出风斗的旋转压头效应,进入转子绕阻的内风道,气体在风道内被加热后从两侧相邻出风区排入气隙。转子端部采用两路通风系统:一路由绕组端部直线部分侧面进风,由本体第一风区(或第九风区)出风;另一路由绕组端部弧部外侧进风,经过端部铜排的风沟至弧部中心里侧出风,再由大齿端头月牙槽排入气隙。氢气由装在转轴汽、励两端护环外侧的单级浆式风扇驱动,在定子机座内密封循环,热氢气经过氢气冷却器冷却进行再循环。氢气冷却器横臵于发电机两端顶部的外罩内,汽、励端各一组,每组冷却器由两个冷却器组成,水路为各自独立的并联系统。

定子:定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。

柴油发电机组的组成

柴油发电机组的组成 (全世界的发电机组均由发动机、发电机和控制系统组装而成,没有任何一家厂家既生产发动机,又生产发电机和控制系统,同时组装生产发电机组.所以严格来讲,所有发电机组均为组装机) ?原装机:国内习惯理解为在非中国境内组装的机组; ?组装机:国内习惯理解为在中国境内的以进口发动机组装的机组; ?国产机:以国产发动机及发电机组装的机组。 发电机组结构及基本原理 柴油发电机组由柴油机、发电机、控制系统三大部分及其他辅助设备组成。常规机组结构图如上。柴油发电机工作原理 简而言之,就是柴油机驱动发电机运转。 在汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。 将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。

这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列的柴油机和发电机控制、保护器件和回路。 1、柴油机: (1)柴油机分类: (a)按冷却系统分:风冷、水冷、开式、闭式 (b)按调速方式分:机械离心、机械液压、电子调速、电子燃油喷射 (c)按结构分:直列式、V形 2、发电机 (1)、构成:定子、转子、励磁系统、自动电压调节等 (2)、类型: 按有无电刷分:有刷;无刷;

大型发电机结构说 现用图解)

大型发电机 一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。

相关主题
文本预览
相关文档 最新文档