当前位置:文档之家› 高二数学空间向量基本定理-P

高二数学空间向量基本定理-P

高二数学空间向量基本定理-P
高二数学空间向量基本定理-P

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

三维设计3.1.2 空间向量的基本定理

3.1.2 空间向量的基本定理 学习目标 1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.3.理解基底、基向量及向量的线性组合的概念. 知识点一 共线向量定理与共面向量定理 1.共线向量定理 两个空间向量a ,b (________),a ∥b 的充要条件是________________,使________________. 2.向量共面的条件 (1)向量a 平行于平面α的定义 已知向量a ,作OA → =a ,如果a 的基线OA ________________________,则就说向量a 平行于平面α,记作________. (2)共面向量的定义 平行于____________的向量,叫做共面向量. (3)共面向量定理 如果两个向量a ,b __________,则向量c 与向量a ,b 共面的充要条件是____________,使____________. 知识点二 空间向量分解定理 1.空间向量分解定理 如果三个向量a ,b ,c ________,那么对空间任一向量p ,________________________,使__________. 2.基底 如果三个向量a ,b ,c 是三个____________,则a ,b ,c 的线性组合____________能生成所有的空间向量,这时a ,b ,c 叫做空间的一个________,记作________,其中a ,b ,c 都叫做__________.表达式x a +y b +z c ,叫做向量a ,b ,c 的____________或____________. 类型一 向量共线问题 例1 如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→ ,F 在对角线A 1C 上,且A 1F →=23 FC → .求证:E ,F ,B 三点共线.

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

空间向量基本定理

空间向量基本定理 【学习目标】 在复习平面向量定理的基础上,掌握空间向量基本定理及其推论; 【学习重点】 掌握空间向量基本定理及其推论; 【学习难点】 掌握空间向量基本定理及其推论。 【课前预习案】 一、复习 平面向量向量基本定理 。 二、课本助读:认真阅读课本第35页的内容. 1.空间向量基本定理:如果向量 , , 是空间中三个 的向量,a 是空间中 向量,那么 实数123,,λλλ,使得 112233a e e e λλλ=++①。 空间中 的三个向量123,,e e e 叫做这个空间的一个 。①式表式向量a 关于基底123,,e e e 的分解。 特别地,当向量123,,e e e 时,就得到这个向量的一个正交分解。当1e i =,2e j =,3e k =时,就是我们前面学过的标准正交分解。 2.以下四个命题中正确的是( ) A .空间的任何一个向量都可用其它三个向量表示 B .若{a ,b ,c }为空间向量的一组基底,则a ,b ,c 全不是零向量 C .△ABC 为直角三角形的充要条件是AB ·AC →=0 D .任何三个不共线的向量都可构成空间向量的一个基底 【课堂探究案】 探究一:基底的判断

A / C M E D / B / D B 1.若{a ,b ,c }是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .a,2b,3c B .a +b ,b +c ,c +a C .a +2b,2b +3c,3a -9c D .a +b +c ,b ,c 2.在以下3个命题中,真命题的个数是( ) ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面; ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a , b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. A .0 B .1 C .2 D .3 探究二:用基底表示向量 3. 如图,在正方体///B D CA OADB -中,,点E 是AB 与OD 的交点,M 是OD / 与CE 的交点,试分别用向量OC OB OA ,,表示OD 和OM 4.如图,在平行六面体 ABCD —A ′B ′C ′D ′中, 的单位向量分别是' ,,,,321AA AD AB e e e 且,2=AB ,5=AD ,7'=AA 试用321,,e e e 表示AC 、B A '、 D A '、'AC . 【课后检测案】 1.在长方体ABCD —A 1B 1C 1D 1中,下列关于1AC 的表达式中: ①1AA +A 1B 1→+A 1D 1→ ;

高二数学空间向量与立体几何单元测试卷一

A A 1 D C B B 1 C 1 图 高二(2)部数学《空间向量与立体几何》单元测试卷一 班级____姓名_____ 一、选择题:(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB = 2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A ,则BE 1 与DF 1所成角的余弦值是 ( ) A . 1715 B .2 1 C . 17 8 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别 是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 21 C .1530 D .10 15 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离 ( ) A . 5 15 B . 5 5 C . 5 5 2 D . 10 5 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 ( ) A . a 42 B .a 82 C .a 423 D .a 2 2 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( ) A . 6 3 B . 3 3 C . 3 3 2 D . 2 3 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC = 2 1 PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( ) A . 6 21 B . 3 3 8 C . 60210 D . 30 210 图 图

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

3.1.3 空间向量基本定理

3.1.3 空间向量基本定理 一、基础过关 1. 设命题p :a 、b 、c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的____________条件. 2. 下列命题中真命题有________(填序号). ①空间中的任何一个向量都可用a ,b ,c 表示; ②空间中的任何一个向量都可用基向量a ,b ,c 表示; ③空间中的任何一个向量都可用不共面的三个向量表示; ④平面内的任何一个向量都可用平面内的两个向量表示. 3. 已知a 、b 、c 是不共面的三个向量,则下列选项中能构成一个基底的一组向量是 __________. ①2a ,a -b ,a +2b ②2b ,b -a ,b +2a ③a,2b ,b -c ④c ,a +c ,a -c 4. 下列说法正确的是________(填序号). ①任何三个不共线的向量都可构成空间的一个基底; ②不共面的三个向量就可构成空间的单位正交基底; ③单位正交基底中的基向量模为1且互相垂直; ④不共面且模为1的三个向量可构成空间的单位正交基底. 5. 在以下三个命题中,真命题的个数是________. ①三个非零向量a 、b 、c 不能构成空间的一个基底,则a 、b 、c 共面; ②若两个非零向量a 、b 与任何一个向量都不能构成空间的一个基底,则a 、b 共线; ③若a 、b 是两个不共线的向量,而c =λa +μb (λ、μ∈R 且λμ≠0),且{a ,b ,c }构成空间的一个基底. 6. 已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x = ________,y =________. 7. 正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是底面A 1C 1和侧面CD 1的中心,若EF →+λA 1D → =0 (λ∈R ),则λ=______. 8. 从空间一点P 引出三条射线P A ,PB ,PC ,在P A ,PB ,PC 上分别取PQ →=a ,PR → =b , PS →=c ,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=__________________.(用 a , b , c 表示) 二、能力提升 9. 若向量MA →、MB →、MC → 的起点M 与终点A 、B 、C 互不重合且无三点共线,且满足下列 关系(O 是空间任一点),则能使向量MA →、MB →、MC → 成为空间一个基底的关系是 ________(填序号). ①OM →=13OA →+13OB →+13 OC →

高二数学空间向量及其运算

高二数学空间向量及其运算 课题:http:///空间向量及其运算(一) 教学目的: 1.理解空间向量的概念,掌握空间向量的加法、减法和数乘运算 2.用空间向量的运算意义和运算律解决立几问题 教学重点:空间向量的加法、减法和数乘运算及运算律 教学难点:用向量解决立几问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节,空间向量及其运算共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积这一节是全章的重点,有了第一大节空间平行概念的基础,我们就很容易把平面向量及其运算推广到空间向量由于本教材学习空间向量的主要目的是,解决一些立体几何问题,所以例习题的编排也主要是立体几何问题 本小节首先把平面向量及其线性运算推广到空间向量学生已有了空间的线、面平行和面、面平行概念,这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在

研究的范围已由平面扩大到空间一个向量已是空间的一个平移,两个不平行向量确定的平面已不是一个平面,而是互相 平行的平行平面集,要让学生在空间上一步步地验证运算法 则和运算律这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念 当我们把平面向量推广到空间向量后,很自然地要认识空间 向量的两个最基本的子空间:共线向量和共面向量把平行向 量基本定理和平面向量基本定理推广到空间然后由这两个定 理推出空间直线和平面的向量表达式有了这两个表达式,我 们就可以很方便地使用向量工具解决空间的共线和共面问题 在学习共线和共面向量定理后,我们学习空间最重要的基础 定理:空间向量基本定理,这个定理是空间几何研究数量化 的基础有了这个定理空间结构变得简单明了,整个空间被3 个不共面的基向量所确定空间-个点或一个向量和实数组(x,y,z)建立起一一对应关系本节的最后一个知识点是,两个 向量的数量积由平面两个向量的数量积推广到空间最重要的 是让学生建立向量在轴上的投影概念为了减轻教学难度,内 积的几个运算性质教材中没有证明学生基础好的学校可在教 师的指导下,由学生自己证明 教学过程: 一、复习引入: 1向量的概念

空间向量测试题

空间向量练习 1.在空间直角坐标系中,点()123P ,,关于平面xoz 对称的点的坐标是 A. ()123-,, B. ()123--,, C. ()123--,, D. ()123--,, 2.若直线l 的一个方向向量()2,2,2a =-v ,平面α的一个法向量为()1,1,1b =-v ,则 ( ) A. l ⊥α B. l l ?α D. A 、C 都有可能 3.以下四组向量中,互相平行的有( )组. (1)()1,2,1a =v , ()1,2,3b =-v .(2)()8,4,6a =-v , ()4,2,3b =-v . (3)()0,1,1a =-v , ()0,3,3b =-v .(4)()3,2,0a =-v , ()4,3,3b =-v . A. 一 B. 二 C. 三 D. 四 4.若ABCD 为平行四边形,且()4,1,3A , ()2,5,1B -, ()3,7,5C --,则顶点D 的坐标为( ). A. ()1,13,3-- B. ()2,3,1 C. ()3,1,5- D. 7,4,12??- ??? 5.如上图,向量1e u v , 2e u u v , a v 的起点与终点均在正方形网格的格点上,则向量a v 用基底1e u v , 2 e u u v 表示为( ) A. 1e u v +2e u u v B. 21e u v -2e u u v C. -21e u v +2e u u v D. 21e u v +2e u u v 6.已知A (4,6), 33,2B ?? - ???,有下列向量:①()14,9a =v ;②97,2b ?? = ???v ;③14 ,33c ??=-- ???v ; ④()7,9c =-v 其中,与直线AB 平行的向量( ) A. ①② B. ①③ C. ①②③ D. ①②③④ 7.已知三棱锥,点分别为的中点,且,用,,表示,则等于( ) A. B. ) C. D. 8.已知向量()()2,1,3,4,2,a b x =-=-r r ,使a ⊥r b r 成立的x 与使//a r b r 成立的x 分别为( ) A. 10,63- B. -10,63- 6 C. -6, 10,63- D. 6,- 10,63- 9.若a r =(2,3), b r =()4,1y -+,且a r ∥b r ,则y =( ) A. 6 B. 5 C. 7 D. 8 10.已知向量()()2,1,2,2,2,1a b =-=r r ,以a b r r 、为邻边的平行四边形的面积( ) A. 65 B. 65 C. 4 D. 8 11.如图所示,空间四边形OABC 中, ,,OA a OB b OC c ===u u u r u u u r u u u r ,点M 在OA 上,且2OM MA =u u u u r u u u r , N 为BC 中点,则MN u u u u r 等于( ) A. 121232a b c -+ B. 211322a b c -++ C. 112223a b c +- D. 221332a b c +- 12.在空间直角坐标系O xyz -中,点()1,2,2-关于点()1,0,1-的对称点是 ( ) A. ()3,2,4-- B. ()3,2,4-- C. ()3,2,4-- D. ()3,2,4-

空间向量基本定理汇总

1 装 订 线 庆云第一中学课堂导学案 (设计者:于长田 审核者:刘晓莉) 年级 高二 学科 数学 编号 x (2-1)44日期 2015-12-02 班级 姓名 3.1.2空间向量基本定理 一.学习目标:掌握空间向量基底的概念;了解空间向量的基本定理及其推论;了解空间向 量基本定理的证明。 二.自学指导:阅读课本P82—P84页注意下面问题。 1.共线向量定理: 2.共面向量: 3.共面向量定理: 4.空间向量分解定理: 三.知识应用 例1在平行六面体ABCD —A 1B 1C 1D 1中,AB = a ,AD =b ,1AA =c ,P 是CA 1的中点,M 是CD 1的中点,N 是C 1D 1的中点,点Q 在CA 1上,且CQ :QA 1=4:1, 用基底{a 、b 、c }表示以下向量: (1)AP ,(2)AN ,(3)AQ 练习:1.已知平行六面体ABCD —A 1B 1C 1D 1,设,AB = a ,AD =b ,1AA =c 用基底{} ,,a b c 表示如下向量 : (1) 111,,,AC AB A D DC (2)AG (G 是侧面CC 1D 1D 的中心) 2.已知空间四边形OABC 中,M,N 分别是对边OA,BC 的中点,点G 在MN 上,且MG=2GN.设OA=,a ,OB b = ,OC c =试用基底{} ,,a b c 表示OG 例2.已知向量a =1e -22e +33e ,=21e +2e ,=61e -22e +63e , 判断a +b 与c 能否共面或共线?c -3b 与b -2a 能否共面或共线?

3 . 已知2,a i j k =-+ 32,b i j k =-++ -37c i j =+ 证明这三个向量共面。 4.已知三个向量a ,b ,c 不共面,并且p a b c =+-,235q a b c =--,71822r a b c =-++,向量p ,q ,r 是否共面? 例 3.已知矩形ABCD,P 为平面ABCD 外一点,且P A ⊥平面ABCD,M,N 分别为PC,PD 上的点,且 PM=2MC,PN=ND 求满足MN=x AB y AD z AP ++的实数x,y,z 的值。 5 已知平行六面体ABCD —A 1B 1C 1D 1 (1)化简112 23 AA BC AB ++并在图上标出其结果。(2)设M 是底面ABCD 的中心,N 是侧 面BCC 1B 1对角线BC 1上的 3 4 分点,设1MN AB AD AA αβλ=++试求,,αβλ的值。 练习巩固: 1.“a =x b ”是“向量a 、b 共线”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是 ( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC → D .|AB →|=|BC →| 3.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是 A .a B .b C .a +2b D .a +2c 4.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 5.在下列等式中,使点M 与点A ,B ,C 一定共面的是 ( ) A.OM →=25OA →-15OB →-15OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC →=0 D.OM →+OA →+OB →+OC → =0 6.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC → 确定的一点P 与A , B , C 三点共面,则λ=________. 7.在以下3个命题中,真命题的个数是________. ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面. ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线. ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. 8.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD → =2e 1-e 2,若A ,B ,D 三点共

相关主题
文本预览