当前位置:文档之家› 网格插值方法的背景及原理

网格插值方法的背景及原理

网格插值方法的背景及原理
网格插值方法的背景及原理

过各种网格插值方法的背景及原理:

1 反距离加权插值法

反距离加权插值法(Inverse Distance to a Power)首先是由气象学家和地质工作者提出的,后来由于D.Shepard的工作被称为谢别德法(Shepard方法),它的基本原理是设平面上分布一系列离散点,己知其位置坐标(xi,yi)和属性值zi(i=1,2,…),p(x,y)为任一格网点,根据周围离散点的属性值,通过距离加权插值求P点属性值。距离加权插值法综合了泰森多边形的邻近点法和多元回归法的渐变方法的长处,它假设P点的属性值是在局部邻域内中所有数据点的距离加权平均值,可以进行确切的或者圆滑的方式插值。周围点与P点因分布位置的差异,对P(z)影响不同,我们把这种影响称为权函数wi(x,y),方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额;对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时,给予一个特定数据点的权值,与指定方次的结点到观测点的距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重。所有其它观测点被给予一个几乎为0.0的权重。

2 克里金插值法

克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以法国D.G.Krige的名字命名的一种最优内插法。克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高:。克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金 (Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组

3 最小曲率法

最小曲率法(Minimum Curvature)广泛应用于地球科学用最小曲率法生成的插值面类似于一个通过各个数据值、具有最小弯曲量的长条形薄薄的弹性片。最小曲率法试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。最小曲率法不是一个精确的插值法,也就是说在插值的过程中不可能总是完全尊重数据。

控制收敛的两个参数:最大偏差参数,最大循环次数。

4 改进谢别德法

改进谢别德法(ModifiedQuadratic Shepard)是由Franke及Nielson提出,它仍是一个与距

离成反比的加权方法。在使用反距离加权插值法时,当增加、删除或改变一个点时,需要重新计算权函数wi(x,y),为了克服反距离加权插值法的这一缺陷,改进谢别德法同样使用距离倒数加权的最小二乘方的方法,但有以

下两个方面的改进:

(1)通过修改反距离加权插值法的权函数wi(x,y)=1/[di(x,y)],使其只能在局部范围内起作用,以改变反距离加权插值法的全局插值性质,即它利用了局部最小二乘方法来消除或减少所生成等值线的“鸭蛋”外观

(2)同时用节点函数Qi(x,y)来代替离散点(xi,yi)的属性值zi,Qi(x,y)是一个插值于点(xi,yi)的二次多项式.即有Qi(xi,yi)=zi(i=1,2,…,n)。而且Qi(x,y)在点(xi,yi)附近与函数属性值z(x,y)具有局部近似的性质。因此,如果认为距离(xi,yi)较远的点对Qi(xi,yi)影响不大,则可以认为在(xi,yi)点附近Qi(x,y)就可以近似地表示函数属性值z(x,y)。

5 自然邻点插值法

自然邻点插值法(Natural Ndghbor)是Surfer7、0才有的网格化新方法。自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例。实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。

6 最近邻点插值法

最近邻点插值法(Nearest Neighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或 Voronoi多边形)分析法是荷兰气象学家A.H_Thiessen提出的一种分析方法。最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速的赋值_2]。实际上,最近邻点插值的一个隐含的假设条件是任一阿格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为待的节点值。当数据已经是均匀问隔分布,要先将数据转换为 SURFER的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只有少数点没有取值,可用最近邻点插值法来填充无值的数据点。有时需要排除网格文件中的无值数据的区域,在搜索椭圆(Search Ellipse)设置一个值,对无数据区域赋予该阿格文件里的空白值。设置的搜索半径的大小要小于该阿格文件数据值之间的距离,所有的无数据同格节点都被赋予空白值。

7 多元回归法

多元回归(Polynomial Regression)是用来确定数据的大规模的趋势和图案多元回归实际上不是插值器,因为它并不预测未知的z值,它只是根据空间的采样数据,拟台一个数学曲面,用该数学曲面来反映空间分布的变化情况,它实际上是一个趋势面分析作图程序。

趋势面分析是对地质特征的空同分布进行研究和分析的一种方法,它是用某种形式的函数所代表的曲面来逼近该地质特征的空间分布。这个函数从总体上反映了采样数据的区域性变化趋势,称为趋势面部分;采样数据的实测值与这个函数对应值之差,称为偏差部分,它反映了,局部性的变化。这就是说,把采样数据的实测值分解成两部分,趋势面部分和偏差部分,趋势面部分用一个函数表示,它反映采样数据的总体变化,可以认为是由大范囝的系统性因素引起的;偏差部分反映了,局部性的变化特点,可以认为由局部因素和随机因素引起的。使用多元回归法进行趋势面分析要考虑两个方面的问题:一是趋势面函数(数学表达式)的确定;二是拟合精度的确定。通常用的趋势面函数主要是多项式趋势面,因为多项式能够逼近任意连续函数,因此,用多项式作趋势面能较好地反映连续变化的分布趋势,这在地质科学

中常用到。一般说多项式次数越高,则趋势面与实测数据偏差越小,但是,并不能说它就与实际情况最符合,这还要在实践中检验。次数较高的趋 势面只在采样点附近效果较好,在外推和内插的效果方面不好,因而在实际应用的效果并不理想。在实际应用中,对起伏变化比较缓和的简单采样数据配合次数较低的趋势面,就可以反映出区域背景;而变化复 杂且起伏较多的采样数据要配合次数较低高的趋势面。

使用多元回归法时要涉及到曲面定义和指定xY 的最高次数设置,在曲面定义中选择所需的多项式类型,可选用的曲面类型:简单平面(Simple planar surface)、双线性鞍(Bi —linear saddle)、二次曲面(Quadratic surface )、三次曲面(Cubic surface )、用户自定义多项式(User defined Polynomial )。

8 径向基函数插值法

所谓径向基函数(Radial Basis Function),其基函数是由单个变量的函数构成的。一个点(x,y)的这种基函数的形式往往是hi(x,y)=h(di),这里的di 表示由点(x,y)到第i 个数据点的距离。径向基函数插值法是多个数据插值方法的组合。根据生成一个圆滑曲面适应数据的能力。许多人认为其中的复二次函数是最好的方法。

所有径向基函数插值法都是准确的插值器,它们都能尽量适应你的数据。若要生成一个更圆滑的曲面。对所有这些方法都可以引入一个圆滑系数。

函数类型:最基本的函数类似于克里金中的方差图。当对于一个网格点插值时,这些函数为数据点规定了一套最佳权重。

基函数类型有:

倒转复二次函数(Inverse Multiquadric):R

h h B 221

)(= 复对数(Multilog):B(h)=log(R h +22) 复二次函数(Multiquadratic):B(h)=

R h 22+自然三次样条函数(Natural Cubic

Spfine):B(^)一( +R ) 薄板样条法函数(Thin Plate Spline):B(h)= ()R h 222/3+

式中h 为表示由点(x,y)到第i 个数据点的距离;R 参数是用户指定的平滑因子。

9 三角网/线性插值法

三角网/线性插值法(Triangulation with Linear Interpolation)使用最佳的Delaunay 三角形,连接数据点间的连线形成三角形 原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交,其结果构成了一张由三角形拼接起来的覆盖网格范囝的网。每一个三角形定义了一个覆盖该三角形内网格 节点的面。三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。给定三角形内的全部节点 SURFER 所采用的九种离散数据内插方法,几乎包括了目前所有的插值方法。该软件具有如此种类繁多的内插方法,这是其它同类软件所不能比拟的。一般可使用SURFER 默认的设置进行内插,生成网格文件,然后再绘制所需的图件 熟悉了各种内插方法的基本理论知识,根据各种数据的不同特点,结合数据分析的目的,就能科学地选择内插方法,灵活地进行参数设置内插生成网格文件,在此基础上绘制正确的图件,供我们提取更多的地学信息。

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间内搜索极小点的一种方法。它属于曲线拟合方法的范畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6)将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7)把取作区间内的另一个计算点,比较与两点函数值的大小,在保持两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述 方法进行三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为 的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,, 。计算函数值,,,构成三个初始插值结点、、。

土方计算网格法断面法等全法

由方格网来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成方格网来计算每一个方格内的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 系统首先将方格的四个角上的高程相加(如果角上没有高程点,通过周围高程点内插得出其高程),取平均值与设计高程相减。然后通过指定的方格边长得到每个方格的面积,再用长方体的体积计算公式得到填挖方量。方格网法简便直观,易于操作,因此这一方法在实际工作中应用非常广泛。 用方格网法算土方量,设计面可以是平面,也可以是斜面,还可以是三角网,如图8-38所示。 图8-38 方格网土方计算对话框 1、设计面是平面时的操作步骤: ● 用复合线画出所要计算土方的区域,一定要闭合,但是尽量不要拟合。因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结果的精度。 ● 选择“工程应用\方格网法土方计算”命令。 ● 命令行提示:“选择计算区域边界线”;选择土方计算区域的边界线(闭合复合线)。● 屏幕上将弹出如图8-38方格网土方计算对话框,在对话框中选择所需的坐标文件;在“设计面”栏选择“平面”,并输入目标高程;在“方格宽度”栏,输入方格网的宽度,这是每个方格的边长,默认值为20米。由原理可知,方格的宽度越小,计算精度越高。但如果给的值太小,超过了野外采集的点的密度也是没有实际意义的。 ● 点击“确定”,命令行提示: 最小高程=XX.XXX ,最大高程=XX.XXX 总填方=XXXX.X立方米, 总挖方=XXX.X立方米 同时图上绘出所分析的方格网,填挖方的分界线(绿色折线),并给出每个方格的填挖方,每行的挖方和每列的填方。结果如图8-39所示。 图8-39 方格网法土方计算成果图

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:

ANSYS网格划分总结大全

有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

克里金插值法

克里金插值法及其适用范围 20 巴任若测绘学院 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:

)()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组: ???????=??==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。 2 国内外研究进展 从克里金方法被提出到现在已有完善的理论,并在很多领域得到

网格划分的几种基本处理方法

网格划分的几种基本处理方法 贴体坐标法: 贴体坐标是利用曲线坐标,并使其坐标线与燃烧室外形或复杂计算区域边界重合,这样所有边界点能够用网格点来表示,不需要任何插值。一旦贴体坐标生成通过变换,偏微分方程求解可以不在任意形状的物理平面上,而在矩形或矩形的组合(空间问题求解域为长方体或它们的组合)转换平面上进行。这样计算与燃烧室外形无关,也与在物理平面上网格间隔无关。 而是把边界条件复杂的问题转换成一个边界条件简单的问题;这样不仅可避免因燃烧室外形与坐标网格线不一致带来计算误差,而且还可节省计算时间和内存,使流场计算较准确,同时方便求解,较好地解决了复杂形状流动区域的计算,在工程上比较广泛应用。 区域法: 虽然贴体坐标系可以使坐标线与燃烧室外形相重合,从而解决复杂流动区域计算问题。但有时实际流场是一个复杂的多通道区域,很难用一种网格来模拟,生成单域贴体网格,即使生成了也不能保证网格质量,影响流场数值求解的效果。因此,目前常采用区域法或分区网格,其基本思想是,根据外形特点把复杂的物理域或复杂拓扑结构的网格,分成若干个区域,分别对每个子区域生成拓扑结构简单的网格。由这些子区域组合而成的网格,或结构块网格。对区域进行分区时,若相邻两个子域分离边界是协调对接,称为对接网格;若相邻两子域有相互重叠部分,则此分区网格称为重叠网格。根据实际数值模拟计算的需要,把整个区域(燃烧室)分成几个不同的子区域,并分别生成网格。这样不仅可提高计算精度,而且还可节省计算机内存,提高收敛精度。但是计算时,必须考虑各区域连接边界处耦合以及变量信息及时、准确地传递问题。处理各个区域连接有多种方法,其中一个办法是在求解各变量时各区域可以单独求解若干次而对压力校正方程.设压力校正值在最初迭代时为零,为了保证流量连续各个区域应同时求解,然后对各个速度和压力进行校正。或者采用在两个区域交界处有一个重叠区,两个区域都对重叠区进行计算,重叠区一边区域内的值,要供重叠区另一边区域求解时用。或通过在重叠内建立两个区域坐标对应关系,实现数据在重叠区内及时传递。如果两个区采用网格疏密分布不相同,要求重叠区二边流量相等。区域法能合理解决网格生成问题,已被大量用来计算复杂形状区域流动。 区域分解法: 对于复杂几何形状的实际燃烧装置,为了保证数值求解流场质量,目前常采用区域分解法。该法基本要点是:根据燃烧室形状特点和流场计算需要,把计算区域分成一个主区域和若干个子区域,对各个区域(块)分别建立网格,并对各个区域分别进行数值求解。区域分解原则是尽量使每个子区域边界简便以便于网格建立,各个子区域大小也尽可能相同,使计算负载平衡有利于平行计算。各区域的网格间距数学模型以及计算方法都可以不同,通常在变量变化梯度大的区域,可以布置较细网格,并采用高阶紊流模型和描述复杂反应的紊流燃烧模型,以便更合理模拟实际流场。对于变量变化不太大区域,可采用较疏的网格和较简单的数学模型,这样可节省计算时间。各子区域的解在相邻子区域边界处通过耦合条件来实现光滑,相邻子区域连接重叠网格或对接网格来实现,在各子区域交界处通过插值法提供各子域求解变量的信息传递,满足各子域流场计算要求通量和动量守恒条件以便实现在交界面处各子域流场解的匹配和耦合,从而取得全流场解。 非结构网格法: 上述各方法所生成的网格均属于结构化网格,其共同特点是网格中各节点排列有序,每个节点与邻点之间关系是固定的,在计算区域内网格线和平面保持连续。特别是其中分区结构网格生成方法已积累了较多经验,计算技术也较成熟,目前被广泛用来构造复杂外形区域

ANSYS 13.0 Workbench 网格划分及操作案例

第 3章 ANSYS 13.0 Workbench网格划分及操作案例 网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。网格直接影响到求解精 度、求解收敛性和求解速度。此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所 耗费时间中的一个重要部分。因此,一个越好的自动化网格工具,越能得到好的解决方案。 3.1 ANSYS 13.0 Workbench 网格划分概述 ANSYS 13.0 提供了强大的自动化能力,通过实用智能的默认设置简化一个新几何体的网 格初始化,从而使得网格在第一次使用时就能生成。此外,变化参数可以得到即时更新的网 格。ANSYS 13.0 的网格技术提供了生成网格的灵活性,可以把正确的网格用于正确的地方, 并确保在物理模型上进行精确有效的数值模拟。 网格的节点和单元参与有限元求解,ANSYS 13.0在求解开始时会自动生成默认的网格。 可以通过预览网格,检查有限元模型是否满足要求,细化网格可以使结果更精确,但是会增 加 CPU 计算时间和需要更大的存储空间,因此需要权衡计算成本和细化网格之间的矛盾。在 理想情况下,我们所需要的网格密度是结果随着网格细化而收敛,但要注意:细化网格不能 弥补不准确的假设和错误的输入条件。 ANSYS 13.0 的网格技术通过 ANSYS Workbench的【Mesh】组件实现。作为下一代网格 划分平台, ANSYS 13.0 的网格技术集成 ANSYS 强大的前处理功能, 集成 ICEM CFD、 TGRID、 CFX-MESH、GAMBIT网格划分功能,并计划在 ANSYS 15.0 中完全整合。【Mesh】中可以根 据不同的物理场和求解器生成网格,物理场有流场、结构场和电磁场,流场求解可采用 【Fluent】、【CFX】、【POLYFLOW】,结构场求解可以采用显式动力算法和隐式算法。不同的 物理场对网格的要求不一样,通常流场的网格比结构场要细密得多,因此选择不同的物理场, 也会有不同的网格划分。【Mesh】组件在项目流程图中直接与其他 Workbench分析系统集成。 3.2 ANSYS 13.0 Workbench 网格划分 ANSYS 网格划分不能单独启动,只能在 Workbench 中调用分析系统或【Mesh】组件启 动,如图 3-1 所示。 图3-1 调入分析系统及网格划分组件

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

克里金插值法

克里金插值法 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数 i λ (i=1,2,……, n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

奇像记忆法基本原理

奇像记忆法基本原理 奇像记忆法基本原理远古时代,人们就已发现有关记忆的许多规律了。三千多年前的古埃及文献《阿德·海莱谬》有过记载:“我们每天所见到的琐碎的、司空见惯的小事,一般情况下是记不住的,而听到或见到的那些稀奇的、意外的、惊人等的异乎导常的事情,却能长期记忆。这真是神奇的现象!” 现代心理学、神经学揭示:人的大脑各构成的皮层及左右脑是各有分工的,右脑主管空间的、色彩等形象的思维,当碰到与常规不同的信号刺激,细胞异常兴奋,从而留下深刻的记忆痕迹,因此奇特夸张、生动强烈的图像容易产生强烈的记忆印象;而左脑擅长记忆逻辑性强的顺序关联事物。奇像顺序超级记忆法,正是根据现代科学研究成果,充分发挥和结合左右脑的优势,并经过长期实践证明效果令人惊奇的记忆方法。 奇像记忆原理:就是把平凡的、枯燥的事物转化成奇特夸张、生动强烈、顺序关联的图像进行记忆的方法。核心在于联想出奇特的的画面,尽可能地使之新颖独特、荒诞离奇、鲜明生动、超脱现实、违背逻辑,从而留下深刻的印象。 奇象记忆法的四个特征1,清晰性 就是要使奇象的形象尽量清晰、真切,千万不要似是而非、似有非有、朦朦胧胧。刚开始练习时,不要图快,否则不清晰,欲速则不达。

例如,想像飞机的奇象时,我们光想着天空中飞着一架飞机还不够,应该进一步想,天空中飞着一架银灰色的飞机,飞机的银灰色甚至刺痛你的眼睛; 想像树的奇象时,光想着路边有一棵树还不够,你可以想像一棵挂满着果实的大树就在你眼前,那一颗颗金黄色的果子真让你垂涎三尺。 2,运动性 就是要使物体动起来,使其行动有趣。 “体温计”与其静静地放着,不如让它敲击器物,发出声音,而且竟然不会碰碎。 “白云”忽儿像羊群,忽儿像棉花,悠悠地在天上飘动。 事物的平常状态与运动状态的区别是非常显著的,请看下面几组例子: 课桌上有一本书(平常)——课桌上的书向你的头上飞来(运动); 松树边站着一只老虎(平常)——松树边有一只老虎在荡秋千(运动); 3,夸张性 为了使奇象在头脑里形成强烈的深刻的刺激,留下难以忘怀的印象,呈现奇象时就要有意使代表现实形象的奇象,比现实生活中的形象夸大和加深,给大脑带来强烈的刺激。 例如,体温计可以比真的体温计大许多倍,长许多倍,它可以自己飞到患者腋下去测量;苍蝇的个头比真的苍蝇大得多。 请看下面几组例子:

网格划分实例详细步骤

一个网格划分实例的详解 该题目条件如下图所示: Part 1:本部分将平台考虑成蓝色的虚线 1. 画左边的第一部分,有多种方案。 方法一:最简单的一种就是不用布置任何初始的2dmesh直接用one volume 画,画出来的质量相当不错。 One volume是非常简单而且强大的画法,只要是一个有一个方向可以 mapped的实体都可以用这个方法来画网格,而事实上,很多不能map的单元也都可以用这个命令来画,所以在对三维实体进行网格划分的时候,收件推荐用one volume来试下效果,如果效果不错的话,就没有必要先做二维单元后再来画。 方法二:先在其一个面上生成2D的mesh,在来利用general选项,这样的优点是可以做出很漂亮的网格。

相比之下:方法二所做出来的网格质量要比一要高。 2. 画第二段的网格,同样演示两种方法: 方法一:直接用3D>solid map>one volume 方法二:从该段图形来看,左端面实际上由3个面组成,右端面由一个部分组成,故可以先将左端面的另两个部分的面网格补齐,再用general选项来拉伸,但是,问题是左面砖红色的部分仅为3D单元,而没有可供拉伸的源面网格,故,应该先用face命令生成二维网格后,再来拉伸,其每一步的结果分见下:

在用general选项时,有个问题需要注意:在前面我们说过,source geom和elemes to drag二选一都可以,但是这里就不一样了,因为source geom选面的话,只能选择一个面,而此处是3个面,所以这里只能选elemes to drag而不能选择source geom.

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

插值法在图像处理中的运用要点

插值方法在图像处理中的应用 作者: 专业姓名学号 控制工程陈龙斌 控制工程陈少峰 控制工程殷文龙 摘要 本文介绍了插值方法在图像处理中的应用。介绍了典型的最近邻插值、双线性插值、双三次插值、双信道插值、分形插值的原理。以分形插值为重点,在图像放大领域用MATLAB进行仿真,并与其它方法的结果做了比对。指出了各种方法的利弊,期待更进一步的研究拓展新的算法以及改进现有算法。

一、引言 人类通过感觉器官从客观世界获取信息,而其中一半以上的信息都是通过视觉获得的。图像作为人类视觉信息传递的主要媒介,具有声音、语言、文字等形式无法比拟的优势,给人以具体、直观的物体形象。在数字化信息时代,图像处理已经成为重要的数据处理类型。数字图像比之传统的模拟图像处理有着不可比拟的优势。一般采用计算机处理或者硬件处理,处理的内容丰富,精度高,变通能力强,可进行非线性处理。但是处理速度就会有所不足。图像处理的主要内容有:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等。以上这些图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分。 日常生活中,越来越多的领域需要高分辨率图像,采用图像插值技术来提高数字图像的分辨率和清晰度,从软件方面进行改进就具有十分重要的实用价值。多媒体通信在现代网络传输中扮演重要角色,因此插值放大提高图像分辨率是一个非常重要的问题。此外,图像变换被广泛用于遥感图像的几何校正、医学成像以及电影、电视和媒体广告等影像特技处理中。在进行图像的一些几何变换时,通常都会出现输出像素坐标和输入栅格不重合的现象,也必须要用到图像插值。图像插值是图像处理中图像重采样过程中的重要组成部分,而重采样过程广泛应用于改善图像质量、进行有损压缩等,因而研究图像插值具有十分重要的理论意义和实用价值。 图像插值是一个数据再生过程。由原始图像数据再生出具有更高分辨率的图像数据。分为图像内插值和图像间插值。前者指将一幅较低分辨率的图像再生出一幅较高分辨率的图像。后者指在若干幅图像之间再生出几幅新的图像。插值过程就是确定某个函数在两个采样点之间的数值时采用的运算过程.通常是利用曲线拟合的方法进行插值算法,通过离散的输入采样点建立一个连续函数,用这个重建的函数求出任意位置处的函数值,这个过程可看作是采样的逆过程。 20世纪40年代末,香农提出了信息论,根据采样定理,若对采样值用sinc函数进行插值,则可准确地恢复原函数,于是sinc函数被接受为插值函数,也称为理想插值函数。理想插值函数有两个缺点: (1)它虽然对带限信号可以进行无错插值,但实际中带限信号只是一小部分信号。 (2)sinc函数的支撑是无限的,而没有函数既是带限的,又是紧支撑的。 为了解决这个问题,经典的办法是刚窗函数截断sinc函数,这个窗函数必须在0剑l 之间为正数,在l到2之间为负数。sinc函数对应的是无限冲激响应,不适于有限冲激相应来进行局部插值。对数字图像来说,对图像进行插值也称为图像的重采样。它分为两个步骤:将离散图像插值为连续图像以及对插值结果图像进行采样。 经典的图像插值算法是利用邻近像素点灰度值的加权平均值来计算未知像素点处的灰度值,而这种加权平均一般表现表现为信号的离散采样值与插值基函数之间的二维卷积。这种基于模型的加权平均的图像插值方法统称为线性方法。经典的插值方法有:最近邻域法,双线性插值,双三次B样条插值,双三次样条插值,sinc函数等。线性方法,它们一个共同点就是,所有这些基函数均是低通滤波器,对数据中的高频信息都具有滤除和抑制效应,因

网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量

网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小

克里金插值法

克里金插值法及其适用范围 29 巴任若测绘学院 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:

)()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组: ???????=??==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。 2 国内外研究进展 从克里金方法被提出到现在已有完善的理论,并在很多领域得到了实际的应用,在某些领域的应用又推动了克里金理论的发展[3]。它的发展可归纳为四个时期,每个时期都是以每一届地质统计学大会的召开为标志。第一时期,初次提出了地质统计学理论,将地质统计学与传统的统计学分开,且提出了区域化变量、简单克里金、普通克

第二章 光束传播法基本原理

第四章光束传播法基础 第一节数值计算方法 1.电磁场数值计算 它是一种基于麦克斯韦方程组,建立逼近实际工程电磁场问题的连续型的数学模型,(合理的假设)然后采用相应的数值计算方法,经离散化处理,(合适的方法,使离散化的模型既能反映连续型模型的特性,又便于计算机分析)把连续型数学模型转化为等价的离散型数学模型,计算出待求离散数学模型的离散解(数值解),从而获得相应结果的一种方法。 2.数值方法分类: 时域分析、频域分析。 时域分析:模拟光在波导中的传播过程 频域分析:求解波导模式 时域分析逼真:把原来因为速度太快、结构太小、不可见的现象模拟出来,能够直观地展示。求解:波导连接、耦合、非线性特性、波导模式。 频域分析:光场分布、给定具体结构波导的模式的有效折射率(色散、偏振)、损耗(材料吸收、结构本身导致)等。 问题: 频域结果能否推得时域信息? 反之? 3.常用数值方法简介 (1)有限差分法(频域有限差分法) (20世纪50年代出现)利用划分网格的方法将定解区域离散化为网格离散节点的集合,然后基于差分原理,以各离散点上函数的差商来近似替代该点上的偏导数,这样待求的偏微分方程定解问题可转化为一组相应的差分方程的问题。根据差分方程组,解出各离散点上的待求函数值,即为所求定解问题的离散解,再应用插值方法便可从离散解得到定解问题在整个场域上的近似解。

原理:偏导→差分 方法特点:原理简单、通用性好;对复杂结构,计算量大(矩阵运算)。(频域分析) 适用范围:计算光波导的模式求解。 现状:适用于较简单结构的分析。但有限差分(偏导→差分)法广泛应用于数值方法中 (2) 有限元法 20世纪40年代提出,其在电磁问题方面的应用有约40多年历史。 以变分原理为基础,把所要求解的微分方程转化为相应的变分问题,即泛函求极值问题。常见方法为把要分析的区域划分为很多三角形(每个三角形成为一个基元),每个基元内的场用多项式来表达,然后加入不同基元间场的连续条件,就可得到整个横截面的场分布。 特点:较复杂---需要前处理(三角化,剖分);后处理:(场分布,伪解剔除)(通用性强,精度高)根据该方法对于各种各样的电磁计算问题具有较强的适应能力性,所形成的代数方程矩阵求解容易、收敛性好。 主要缺点: 对于形状和分布复杂的三维问题,由于其变量多和剖分要求细,往往因计算机内存而受到限制。程序设计复杂、计算量较大。 适用范围:求解光波导的模式(有效折射率、色散、双折射、传输损耗等)。 现状:功能最强大的数值方法之一。特别是上世纪90年代出现的矢量有限元方法,完全解决了有限元方法出现的伪解问题,大大降低了有限元法的后处理过程。 有限元光束传播法。 (3)时域有限差分法 时域有限差分法是近年来开始流行的一种数值模拟方法,它通过将麦克斯韦方程在时间空间上离散化的方法实现对电磁波传播的模拟。它能够得到电磁波传输的瞬态(即时域)信息,通过傅里叶变换即可得到相应的频域信息。

插值法的原理

《财务管理》教学中插值法的快速理解和掌握 摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种情况介绍其原理。 一、已知系数F和计息期n。求利息率i

这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F略小的系数记作F,其对应的利息率为i。

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

相关主题
文本预览
相关文档 最新文档