当前位置:文档之家› 人教版高中数学,第二章数列复习题

人教版高中数学,第二章数列复习题

人教版高中数学,第二章数列复习题
人教版高中数学,第二章数列复习题

解析 由题意知,a = ,b = ,c = ,

人教版高中数学——数列

第二章

章末复习课

课时目标

综合运用等差数列与等比数列的有关知识,解决数列综合问题和实际问题.

一、选择题

1.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比 数列,则 a +b +c 的值为( )

1 2

1

2 1

a

b

c

A.1 B .2 C .3 D .4 答案 A

1 5 3

2 16 16

故 a +b +c =1.

2.已知等比数列{a n },a 1=3,且 4a 1、2a 2、a 3 成等差数列,则 a 3+a 4+a 5 等于( ) A .33 B .72 C .84 D .189 答案 C

解析 由题意可设公比为 q ,则 4a 2=4a 1+a 3, 又 a 1=3,∴q =2.

∴a 3+a 4+a 5=a 1q 2(1+q +q 2) =3×4×(1+2+4)=84.

3.已知一个等比数列首项为 1,项数为偶数,其奇数项和为 85,偶数项之和为 170,

∴S 2n =S 奇+S 偶=255=

a 1(1-q 2n ) 1-22n

又 d ≠0,∴a 1=2d ,S 7=7a 1+ d

=35d =35.

∴S n =22n + ×(-2)=-n 2+23n ,

2=-

(n -

) + ②÷①得,q = =2,

1-q 1-2

3

5

.在数列{a n }中,a =1,a a =a +(-1)n (n ≥2,n ∈N ),则 的值是() 16 8 4 8 a 5 2 2 4

则这个数列的项数为( )

A .4

B .6

C .8

D .10 答案 C

解析 设项数为 2n ,公比为 q . 由已知 S 奇=a 1+a 3+…+a 2n -1. ①

S 偶=a 2+a 4+…+a 2n .

② 170

85 = ,

∴2n =8.

4.在公差不为零的等差数列{a n }中,a 1,a 3,a 7 依次成等比数列,前 7 项和为 35,则 数列{a n }的通项 a n 等于( )

A .n

B .n +1

C .2n -1

D .2n +1 答案 B

解析 由题意 a 23=a 1a 7,即(a 1+2d )2=a 1(a 1+6d ), 得 a 1d =2d 2.

7×6 2 ∴d =1,a 1=2,a n =a 1+(n -1)d =n +1.

a a 5 15 15 3 3

A. B. C. D.

答案

C 解析 由已知得 a 2=1+(-1)2=2,

1

∴a 3· a 2=a 2+(-1)3,∴a 3=2,

1 1

∴2a 4=2+(-1)4,∴a 4=3,

2

∴3a 5=3+(-1)5,∴a 5=3,

a 1 3 3 ∴ 3= × = .

6.已知等比数列{a n }的各项均为正数,数列{b n }满足 b n =ln a n ,b 3=18,b 6=12,则数 列{b n }前 n 项和的最大值等于( )

A .126

B .130

C .132

D .134 答案 C

解析 ∵{a n }是各项不为 0 的正项等比数列, ∴{b n }是等差数列.

又∵b 3=18,b 6=12,∴b 1=22,d =-2, n (n -1) 2

23 232

2 4 ∴当 n =11 或 12 时,S n 最大, ∴(S n )max =-112+23×11=132. 二、填空题

7.三个数成等比数列,它们的和为14,积为 64,则这三个数按从小到大的顺序依次为 __________.

答案 2,4,8

解析 设这三个数为 ,a ,aq.由 · a · a q =a 3=64,得 a =4.

由 +a +aq = +4+4q =14.解得 q = 或 q =2.

则? ,∴S 奇=162,S 偶=192, ? c y y z ??S =a (1-q )=3 解析 易知 q ≠1,∴? ??

S =a (1-q )=9

S 3

11.设{a n }是等差数列,b n =?2?a n

,已知:b 1+b 2+b 3= ,b 1b 2b 3= ,求等差数列的 ?1?a

则 n +1= =?2?a n +1-a n =?2?d . b n

?1?a ∴数列{b n }是等比数列,公比 q =?2?d .

? ??b =1 ? ? ??b =2 ?

? ??b =2

a a

q q

a 4 1

q q 2 ∴这三个数从小到大依次为 2,4,8.

8.一个等差数列的前 12 项和为 354,前 12 项中偶数项与奇数项和之比为 32∶27,则 这个等差数列的公差是____.

答案 5

解析 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11. ??S 奇+S 偶=354 ?S 偶÷S 奇=32∶27

∴S 偶-S 奇=6d =30,d =5. 9.如果 b 是 a , 的等差中项, 是 x 与 z 的等比中项,且 x , , 都是正数,则(b -c)log m x +(c -a)log m y +(a -b )log m z =______.

答案 0

解析 ∵a ,b ,c 成等差数列,设公差为 d ,

则(b -c)log m x +(c -a)log m y +(a -b )log m z =-d log m x +2d log m y -d log m z

y 2

=d log m xz =d log m 1=0.

10.等比数列{a n }中,S 3=3,S 6=9,则 a 13+a 14+a 15=________. 答案 48

3 1 3 1-q

1 6 6 1-q

S

∴ 6=1+q 3=3,∴q 3=2.

∴a 13+a 14+a 15=(a 1+a 2+a 3)q 12

=S 3· q 12=3×24=48. 三、解答题

?1? 21 1 8 8

通项 a n .

解 设等差数列{a n }的公差为 d ,

b ?2? n +1 ?1? ?1? ?2? n

?1?

1 1

∴b 1b 2b 3=b 32=8,∴b 2=2.

17

b 1

+b 3

= 8

,解得? 1 8 1

b 1

· b 3

=4

3

?b 1=2

或? 1 . ?b 3=

8

??b =1

当? 1 8

3

时,q 2=16,∴q =4(q =-4<0 舍去)

n -1

2n -5-此时,

b n =b 1q n 1= 4=2 .?8?· 5-2n 由 b n =?2? =?2?a n ,∴a n =5-2n . b =2?? 1

1 ??b 3=8 - n -1= 2n -3= a n ,此时,b n =b 1q n 1=2· ?4? ?2? ?2?

1- + - +…+ n -=2? ?2 3??? ? n +1??

-=3.∴ak n =a 1·3n 1.

2当? 1 时,q = ,∴q = ?q =-4<0舍去? (2)设 b n = (n ∈N *),S n =b 1+b 2+…+b n ,

是否存在 t ,使得对任意的 n 均有 S n >36

(2)b n = = = n -n +1 ,??

= 1-n +1 =2? ?

a 1 a 1

2(n +1)

?1?

?1? ?1? 1 1? ? 16 4

?1? ?1? ?1?

∴a n =2n -3.

综上所述,a n =5-2n 或 a n =2n -3.

12.已知等差数列{a n }的首项 a 1=1,公差 d >0,且第二项、第五项、第十四项分别是 一个等比数列的第二项、第三项、第四项.

(1)求数列{a n }的通项公式;

1 t n (a n +3)

总成立?若存在,求出最大的整数 t ;若不存在,请说明理由.

解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得 2a 1d =d 2.∵d >0,∴d =2 ∵a 1=1.∴a n =2n -1 (n ∈N *).

1 1 1?1 1 ? n (a n +3) 2n (n +1)

2 ∴S n =b 1+b 2+…+b n

1?? 1? ?1 1? ?1

1 ??

2 1? 1 ?

n 2(n +1).

t

假设存在整数 t 满足 S n >36总成立,

n +1 n 1

又 S n +1-S n =2(n +2)- =2(n +2)(n +1)>0, ∴数列{S n }是单调递增的.

1 t 1

∴S 1=4为 S n 的最小值,故36<4,即 t<9.

又∵t ∈Z ,∴适合条件的 t 的最大值为 8. 能力提升

13.已知数列{a n }为等差数列,公差 d ≠0,其中 ak 1,ak 2,…,ak n 恰为等比数列,若 k 1=1,k 2=5,k 3=17,求 k 1+k 2+…+k n .

解 由题意知 a 25=a 1a 17, 即(a 1+4d )2=a 1(a 1+16d ). ∵d ≠0,由此解得 2d =a 1.

a a +4d 公比 q = 5= 1 k +1

又 ak n =a 1+(k n -1)d = n 2 a 1,

k +1

∴a 1·3n -1= n 2 a 1.

∵a 1≠0,∴k n =2·3n -1-1,

∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n =3n -n -1.

14.设数列{a n }的首项 a 1=1,前 n 项和 S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…).

(2)设数列{a n }的公比为 f(t),作数列{b n },使 b 1=1,b n =f b ? (n =2,3,4,…).求数? 得 a 2= a n -1

3t 得 b n =f b ? = +b n -1.

? 3

∴b n =1+ (n -1)=

=- (2n 2

+3n ).

3+2t

a 2 3+2t 3t a 1 3t

n ∴ = ,(n =2,3,…).

(2)解 由 f(t)= = + ,

3 3 =- (b 2+b 4+…+b 2n )=- · n +3 32 ?3

3 ?,可知{b 2n -1}和{b 2n }是首项分别为 1 和

(1)求证:数列{a n }是等比数列;

? 1 ? n -1

列{b n }的通项 b n ;

(3)求和:b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n · b 2n +1. (1)证明 由 a 1=S 1=1,S 2=1+a 2, , = .

又 3tS n -(2t +3)S n -1=3t ,

3tS n -1-(2t +3)S n -2=3t.

①-②,得 3ta n -(2t +3)a n -1=0.

a 2t +3 3t ∴数列{a n }是一个首项为 1,

2t +3

公比为 的等比数列.

2t +3 2 1

3t 3 t ? 1 ? 2 n -1

2

∴数列{b n }是一个首项为 1,公差为3的等差数列.

2 2n +1 .

2n +1 5 4

(3)解 由 b n =

3 3,公差均为3的等差数列.

于是 b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1

=b 2(b 1-b 3)+b 4(b 3-b 5)+b 6(b 5-b 7)+…+b 2n (b 2n -1-b 2n +1)

4 4 1 ?

5 4n +1? 4 9

1.等差数列和等比数列各有五个量 a 1,n ,d ,a n ,S n 或 a 1,n ,q ,a n ,S n .一般可以“知 三求二”,通过列方程(组)求关键量 a 1 和 d (或 q ),问题可迎刃而解.

2.数列的综合问题通常可以从以下三个角度去考虑:①建立基本量的方程(组)求解; ②巧用等差数列或等比数列的性质求解;③构建递推关系求解.

上海市2020届高三数学试题分类汇编:数列(含解析)

高三上期末考试数学试题分类汇编 数列 一、填空、选择题 1、(宝山区2019届高三)如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则 公比q = 2、(崇明区2019届高三)已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立. 函数1()|sin ()|n n f x x a n =-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m = 总有两个不同的根,则{}n a 的通项公式是 3、(奉贤区2019届高三)各项均为正数的等比数列{}n a 的前n 项和为n S ,若1 l i m 3n n n n n S a S a →∞-<+,则q 的取值范围 是( ) A. (0,1) B. (2,)+∞ C. (0,1] (2,)+∞ D. (0,2) 4、(虹口区2019届高三)已知7个实数1、2-、4、a 、b 、c 、d 依次构成等比数列,若成这7 个数中任取2个,则它们的和为正数的概率为 5、(金山区2019届高三)无穷等比数列{}n a 各项和S 的值为2,公比0q <,则首项1a 的取值范围是 6、(浦东新区2019届高三)已知数列{}n a 为等差数列,其前n 项和为n S . 若936S =,则348a a a ++= 7、(普陀区2019届高三)某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元,绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%, 照此推算,此人2019年的年薪为 万元(结果精确到0.1) 8、(青浦区2019届高三)已知无穷等比数列{}n a 各项的和为4,则首项1a 的取值范围是 9、(松江区2019届高三)已知等差数列{}n a 的前10项和为30,则14710a a a a +++= 10、(徐汇区2019届高三)若数列{} n a 的通项公式为* 2()111n n a n N n n =∈+,则 l i m n n a →∞ =___________. 11、(杨浦区2019届高三)在无穷等比数列{}n a 中,121 lim()2 n n a a a →∞ ++???+= ,则1a 的取值范围 是 12、(长宁区2019届高三) 已知数列{}n a 的前n 项和为n S ,且11 2 n n n a a ++= ,若数列{}n S 收敛于

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学:第二章 数列 2.4 第2课时

第2课时等比数列的性质 学习目标 1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.

知识点一 由等比数列衍生的等比数列 思考 等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列; (3)???? ?? 1a n 是等比数列; (4){a 2n }是等比数列. ★答案★ 由定义可判断出(1),(3),(4)正确. 梳理 (1)在等比数列{a n }中按序号从小到大取出若干项:123,,,,,,n k k k k a a a a ……若k 1,k 2,k 3,…,k n ,…成等差数列,那么123,,,,,n k k k k a a a a ……是等比数列. (2)如果{a n },{b n }均为等比数列,那么数列???? ??1a n ,{a n ·b n },???? ?? b n a n ,{|a n |}是等比数列. 知识点二 等比数列的性质 思考 在等比数列{a n }中,a 25=a 1a 9是否成立?a 25=a 3a 7是否成立?a 2n =a n -2a n +2(n >2, n ∈N *)是否成立? ★答案★ ∵a 5=a 1q 4,a 9=a 1q 8,∴a 1a 9=a 21q 8=(a 1q 4)2=a 25, ∴a 25=a 1a 9成立.同理a 25=a 3a 7成立,a 2n =a n -2· a n +2也成立. 梳理 一般地,在等比数列{a n }中,若m +n =s +t ,则有a m ·a n =a s ·a t (m ,n ,s ,t ∈N *). 若m +n =2k ,则a m ·a n =a 2k (m ,n ,k ∈N *).

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

(完整版)高中数学必修五第二章数列测试题

高中数学必修5 第二章数列测试题 一、选择题(每题5分,共50分) 1、{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A 、667 B 、668 C 、669 D 、670 2、在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A 、33 B 、72 C 、84 D 、189 3、如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A 、a 1a 8>a 4a 5 B 、a 1a 8<a 4a 5 C 、a 1+a 8<a 4+a 5 D 、a 1a 8=a 4a 5 4、已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则|m -n |等于( ) A 、1 B 、43 C 、2 1 D 、83 5、等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A 、81 B 、120 C 、168 D 、192 6、若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ) A 、4 005 B 、4 006 C 、4 007 D 、4 008 7、已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A 、-4 B 、-6 C 、-8 D 、-10 8、设S n 是等差数列{a n }的前n 项和,若35a a =9 5,则59S S =( ). A 、1 B 、-1 C 、2 D 、2 1 9、已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A 、21 B 、-21 C 、-21或2 1 D 、41 10、在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A 、38 B 、20 C 、10 D 、9 二、填空题(每题6分,12题15分,16题10分,共49分) 11、设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0) +…+f (5)+f (6)的值为 .

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

最新上海教材高中数学知识点总结(最全)

精品文档 目录 一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量 九、复数与推理证明 十、直线与圆 十一、曲线方程 十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计 一、集合与常用逻辑 1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图、数轴 4.四种命题 原命题:若p 则q 逆命题:若q 则p 否命题:若p ?则q ? 逆否命题:若q ?则p ? 原命题?逆否命题 否命题?逆命题 5.充分必要条件 p 是q 的充分条件:q P ? p 是q 的必要条件:q P ? p 是q 的充要条件:p ?q 6.复合命题的真值 ①q 真(假)?“q ?”假(真) ②p 、q 同真?“p ∧q ”真 ③p 、q 都假?“p ∨q ”假 7.全称命题、存在性命题的否定 ?∈M, p(x )否定为: ?∈M, )(X p ? ?∈M, p(x )否定为: ?∈M, )(X p ?

精品文档 二、不等式 1.一元二次不等式解法 若0>a ,02 =++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα 02>++c bx ax 解集),(),(+∞-∞βα 注:若0a 情况 2.其它不等式解法—转化 a x a a x <<-?a x a x >或a x - 0) () (>x g x f ?0)()(>x g x f ?>)()(x g x f a a )()(x g x f >(a >1) ?>)(log )(log x g x f a a f x f x g x ()()() >--x x x f x f f(x)减函数:? 注:①判断单调性必须考虑定义域 ②f(x)单调性判断 定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性 T 是()f x 周期?()()f x T f x +=恒成立(常数0≠T )

精选高中数学数列分类典型试题及答案

【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1) 2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++= , 所以证得 31 2n n a -=. 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =, 又112233 ,,a b a b a b +++成等比数列,求 n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322...28n n a a a a n -++++=左边相当于是数列 {} 1 2n n a -前n 项和的形式, 可以联想到已知 n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.

高中数学必修五第二章《数列》知识点归纳

数列知识点总结 一、等差数列与等比数列 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 二、求数列通项公式的方法 1、通项公式法:等差数列、等比数列 2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。即 例1、在数列{n a }中,n S 表示其前n项和,且2 n n S =,求通项n a . 例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。 (1)叠加法:递推关系式形如()n f a a n 1n =-+型 ???≥-===-) 2() 1(111n s s n a s a n n n

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数学:第二章数列 2.1数列

2.1数列(第一课时) ——授课人:杭十四中袁礼峰教学目标: (一)知识目标:理解数列的基本概念;了解数列与函数之间的关系;理解数列的通项公式,并掌握用数列的通项公式求出数列的各项;掌握根据数列前几项写出它的一个通项公式. (二)能力目标:培养学生获取有效信息及归纳能力;培养学生应用知识的能力. (三)情感目标:利用问题的设计激发学生学习数学的兴趣,通过对数学问题的观察、探究和归纳,培养学生的探索和进取精神. 教学重点: 数列的通项公式. 教学难点: 求数列的通项公式. 教学方法: 发现式教学法. 教学主线: 通过大家感兴趣的问题引入数列概念,介绍数列基本概念深入理解数列,让数列和函数挂钩引出数列的图象表示,通过典型例题及练习诠释重点内容数列的通项公式的求取以及突破求通项公式的难点,每组例题及时小结,最后布置回家作业. 教学过程:课前板书2.1数列 1 2 3 4,课前分发纸张 1.数列引入:实例讲慢一点,注意抑扬顿挫,板书4个数列 实例一,请大家一起看我手上这支粉笔,假设它的长度是1,我现在把它当中折断,看我左手的粉笔,长度是多少?再把它当中折断,看我左手的粉笔,长度又是多少?再折,长 度呢?再折,长度?依此类推,每次折断剩下的粉笔长度依次构成一列数:1111 (1),,,,. 24816 L 接下来 实例二,请大家和我一起玩一个折纸游戏,请拿起手上的纸,对折一下,看手上纸的折痕是几条?再对折,共是几条折痕?再对折呢?依此类推,又得到一列数:(2)1,3,7,15,. L 师:再问大家一句,折8下呢?…折是折不下去的,这就是我们今天要研究的其中一个问题,相信大家课后就会有★答案★了. 好了,请大家看屏幕,图片上的运动员是谁?刘翔,大家都比较关心体育,不知大家对以下一组数据是否了解? 实例三,从1984年至今,我国体育健儿共参加了六届奥运会,获得的金牌数依次排成一列数:(3)15,5,16,16,28,32. 再看运动会上一幕 实例四,在前不久结束的杭十四中校运会上,体育老师为了保证40个班级广播操比赛各班之间能等距离站队,之前做了一个准备工作——在第一行导牌队员站立的横线上用粘胶纸标注站立点,从起点开始,每隔2米标注一个站立点,由近及远各标注点与起点的距离排成怎样的一列数(单位:m):(4)0,2,4,6,,78. L 2,4换一下行不行?不行,由近及远,那是有次序的 师:请大家仔细回味上述实例,想想看它们有什么共同特点? 生:它们均是一列数;它们是有一定次序的. 师:很好!象这样按一定次序排成的一列数我们就把它叫做数列.想一想?我们平时会经常听到一些分期付款问题啊,银行存款的利息问题等等,这都是与数列有关的问题,学习数列是很有必要的.下面我们对照已知的数列一起来了解一下数列的基本概念.

上海高二数学—数列单元测试卷

上海高二数学—数列单元测试卷 2013.10 班级 姓名 学号 一、填空题(每小题3分,共36分) 1.74 lim 35 n n n →∞+-= . 2.将0.2? 化为最简分数后,分子与分母之和为 . 3.已知等比数列{}n a 中,,81,341==a a 则该数列的通项=n a . 4.计算:22 342 lim (21)n n n n →∞+-+= . 5.已知数列{}n a 为等差数列,若169a a +=,47a =,则9a = . 6.等差数列{}n a 中,148121520a a a a a ++++=,则=15S . 7、在数列{}n a 和{}n b 中,21=a ,)(031*∈=-+N n a a n n ,n b 是n a 与1+n a 的等差中项,则=3b _________. 8.已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = . 10.设()11112612 1n S n n = ++++ +,且13 4 n n S S +?=,则=n . 10.若221log (9)log ()13 x x +-=,则2 lim(1)n n x x x →∞ +++= . 11.若数列{}n a 是等差数列,则数列n a a a b n n +++= 21(*∈N n )也为等 差数列;类比上述性质,相应地,若数列{}n c 是等比数列,且0>n c ,则有 =n d 也是等比数列. 12.在数列{}n a 中,如果存在非零常数T ,使得m T m a a =+对于任意非零正整数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知周期数列{}n x 满足 11n n n x x x +-=-(*2,n n N ≥∈)且11x =,2x a =(),0a R a ∈≠,当{}n x 的周期最小时, 该数列前2005项和是 .

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高中数学数列试题精选以及详细答案

高中数学数列试题精选以及详细答案

高中数学数列试题精选 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 【例2】 求出下列各数列的一个通项公式. (1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,…(4)0.2,0.22,0.222,0.2222,0.22222,… 【例3】 已知数列,,,,…则是这个数列的第25221125 几项. 【例4】 已知下面各数列{a n }的前n 项和S n 的公式,求数列的通项公式. (1)S n =2n 2-3n (2)S n =n 2+1

(3)S n =2n +3 (4)S n =(-1)n+1·n 【例5】 a =a 1n(n 1)(n 2)a 1n n 11已知+≥,=,-- (1)写出数列的前5项; (2)求a n . 【例6】 数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3+a 5;(2)256225 是此数列中的项吗? 【例7】 已知数a n =(a 2-1)(n 3-2n)(a=≠±1)是递增数列,试确定a 的取值范围. 高中数学数列试题精选以及详细答案 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 解 (1)所给出数列前5项的分子组成

高中数学第二章数列2222等差数列的性质学业分层测评苏教版

【课堂新坐标】2016-2017学年高中数学 第二章 数列 2.2.2.2 等 差数列的性质学业分层测评 苏教版必修5 (建议用时:45分钟) 学业达标] 一、填空题 1.在△ABC 中,三内角A ,B ,C 成等差数列,则角B 等于________. 【解析】∵A ,B ,C 成等差数列,∴B 是A ,C 的等差中项,则有A +C =2B ,又∵A +B +C =180°, ∴3B =180°,从而B =60°. 【答案】 60° 2.已知a = 1 3+2,b =1 3-2 ,则a ,b 的等差中项是________. 【解析】 因为a = 1 3+2=3-2, b = 13-2 =3+2,所以 a +b 2 = 3. 【答案】 3 3.在等差数列{a n }中,已知a 2+a 3+a 10+a 11=36,则a 5+a 8=________. 【解析】 由等差数列的性质,可得a 5+a 8=a 3+a 10=a 2+a 11, ∴36=2(a 5+a 8), 故a 5+a 8=18. 【答案】 18 4.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 【导学号:91730029】 【解析】∵{a n },{b n }都是等差数列,∴{a n +b n }也是等差数列,其公差为21-72=14 2=7, ∴a 5+b 5=7+(5-1)×7=35. 【答案】 35 5.(2016·泰州高二检测)若等差数列的前三项依次是1x +1,56x ,1 x ,那么这个数列的第101项是________. 【解析】 由已知得2×56x =1x +1+1 x , 解得x =2,

相关主题
文本预览
相关文档 最新文档