当前位置:文档之家› 探析石油化工设备运行过程中的状态监测预警系统

探析石油化工设备运行过程中的状态监测预警系统

探析石油化工设备运行过程中的状态监测预警系统
探析石油化工设备运行过程中的状态监测预警系统

探析石油化工设备运行过程中的状态监测预警系统

从状态监测预警系统应用实际来说,其能够实现对设备运行的实时动态监测,具有推广应用价值。基于此系统,实现了设备运行的动态监测,以及不拆卸全部设备的运行监测。通过动态诊断和分析,确定设备故障产生的位置以及原因,为后续工作的开展,提供有力的依据。

标签:石油化工设备;状态监测预警系统;动态化;实时化

引言:石油化工设备运行管理工作中,利用状态监测预警系统,可以获得设备使用和运行状态情况,为后续设备管理和检修等工作的开展,提供有力的依据。在具体实践中,为保证其功能作用的发挥,必须要加大系统构建的质量把控。基于此,在接下来的文章中,将围绕石油化工设备运行过程中的状态监测预警系统方面进行详细分析,希望能给相关人士提供重要的参考价值。

1. 状态监测预警系统功能

从实际应用需求角度来说,状态监测预警系统,应该具备以下功能:1)资料管理功能。对设备设计和制造以及安装等的数据,进行记录和管理,能够为设备运行管理,提供有力的依据。2)设备重要性分级功能。状态监测预警系统的应用,能够依据设定的分级标准,自动化分类设备,进行相应的监控。3)数据录入功能。利用状态监测预警系统,对采集的设备运行状态信息和数据,进行录入和管理,不仅方便,而且快捷。4)信息处理功能。对各类设备的运行监测参数,编制对应的判定标准,比如振动值的振幅等。完成数据信息的录入后,状态监测预警系统可以自动加工处理,同时结合历史数据以及设定的标准对比分析。5)存储功能。状态监测预警系统应该具有很大的空间,用于存储基础数据以及监测数据等。6)依据诊断标准,状态监测预警系统完成数据和信息的加工外,结合设备运行实际情况,为后续维修作业的开展,提供相应的策略,开展综合评价,比如监护运行等,提出具体的工作策略。7)报表功能。状态监测预警系统的应用,定期对设备运行状态以及缺陷,进行梳理,将需要进行修理的设备,打印出报表,为相关工作决策和安排提供依据。

2. 石油化工设备运行过程中的状态监测预警系统分析

状态监测故障诊断技术是设备管理现代化的一种重要手段。为了达到监测诊断的预期效果,必须建立一套完整的规范的运作程序,充分依靠计算机技术,建立状态监测预警系统。设备故障状态监测诊断系统的执行程序,目前在国内外曾研究提出过多种模式。但归纳起来,基本的程序应当包括:选择受控设备、确定监测等级、建立预知维修体系、制定监测标准实施监测诊断、提出预警报告,缺陷的治理等基本环节。

2.1选择受控设备

液压设备在线监测技术及应用1

液压设备在线监测技术及使用 在线监测是液压设备及工艺过程故障诊断和状态监测的重要途径。这一章结合实例论述多媒体和网络技术背景下液压装置在线监测系统的组成、功能、基本要求、相关因素和使用方法。 第1节设备在线监测技术概述 14.1.1 综述 随着现代化大生产的不断发展和科学技术的不断进步,为了最大限度地提高生产效率和产品质量,作为主要生产工具的机械设备正朝着大型、高速、精密、连续运转以及结构复杂的方向发展。这样,在满足生产要求的同时,设备发生故障的潜在可能性和方式也在相应增加,并且设备一旦发生故障,就可能造成严重的甚至是灾难性的后果。如何确保机械设备的安全正常运行已成为现代设备运行维护和管理的一大课题。对机械设备进行在线监测是保障其安全、稳定、长周期、满负荷、高性能、高精度、低成本运行的重要措施。 所谓在线监测(on-line monitoring),是在生产线上对机械设备运行过程及状态所进行的信号采集、分析诊断、显示、报警

及保护性处理的全过程。 设备在线监测技术以现代科学理论中的系统论、控制论、可靠性理论、失效理论、信息论等为理论基础,以包括传感器在内的仪表设备、计算机、人工智能为技术手段,并综合考虑各对象的特殊规律及客观要求,因此它具有现代科技系统先进性、使用性、复杂性和综合性的特征。 目前,在线监测技术发展的主要趋势如下: 整个系统向着高可靠性、智能化、开放性以及和设备融合为一体的方向发展,从单纯监测分析诊断向着主动控制的方向发展。 采集器向着高精度、高速度、高集成度以及多通道方向发展。精度从8位发展到12为甚至16位,采集速度从几赫发展到几万赫,采集器内插件有所减少,从通用电子元件的组装向专用芯片ASIC的方向发展。 采样方式从等时采样向着等角度同步整周期采样的方向发展,以获取包括相位在内的多种信息,采集的数据从只有稳态数据发展到包括瞬态数据在内的多种数据。 通道数量从单通道向多通道发展,信号类型从单个类型向着

液压系统调节方法

拖泵及泵车液压系统调节方法 一、目的: 本调节方法适用所有砼泵系列产品,其中调试前的准备要求有质保人员确认后方可进行下一步。 二、应用范围: 所有砼泵系列产品 三、调节步骤 (一)调试前准备 1、加注AW46液压油,应用滤油机进行加油。 2、加注润滑脂,夏季用"00"型,冬季用"000"型,摇动润滑脂泵,使润滑脂达到各润滑点 3、水箱(洗涤室)必须加满清水 4、泵车及柴油机拖泵:旋转减速机加注齿轮油,将柴油箱加满柴油,向柴油机中加入机油至规定高度,向柴油机水箱中加入防冻液 5、电动机拖泵:电机输出轴旋转方向的确定,点动启动按钮,电机运转1-2秒,从泵座的观察口看电机输出轴的旋转方向——从电机轴端看电机为逆时针方向旋转,若电机旋转方向不对,则将电源任意两相交换位置接上即可 6、在主阀块至主油缸之间串入滤油车(左右各一台) 7、检查主油泵吸油自封装置是否处于开启位置。 8、检查臂架泵吸油管路上闸阀是否处于全开位置。 9、拧开主油泵、臂架泵壳体上的螺堵,排出空气,直到螺口冒油时再将螺堵拧紧。 10、蓄能器充氮气至气压为6MPa,并将蓄能器泄油球阀关死。 11、将主溢流阀及辅阀组上溢流阀全部拧松。 (二)、限幅脉冲值、时间及日期的设定 1、近控操作

控制面板图 Ⅰ、DS300文本显示器+车下操作盒界面 DS300A文本显示器操作 控制面板上装有触摸式按钮的文本显示器其中正泵、反泵、遥控/近控切换、讯响、油压表开关(ALM)可以直接操作,其它功能都由ESC键、Enter键、上翻键、下翻键、左翻键、右翻键结合文本显示器画面进行操作。现将各功能操作分述如下: 1、按钮操作 (ALM)按钮:(ALM)按钮为压力表开关按钮。主系统压力表及臂架系统压力表平时是处于关闭状态,需要观察主系统或臂架系统压力时,按下(ALM)按钮,压力表开关打开,压力表开始指示,延时2分钟后自动关闭。 遥控/近控切换按钮:用来进行遥控与近控的切换,每按一下,就改变当前工作状态,文本显示器的屏幕上显示“当前状态:遥控状态或近控状态”,表示系统已处于遥控或近控状态。 正泵按钮:当按下正泵按钮时,发动机升速,当转速升至设定转速时,开始正泵,再次按时,正泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:正泵”表示系统处于正泵工作状态。 反泵按钮:当按下反泵按钮时,发动机升速,当转速升至设定转速时,开始反泵,再次按时,反泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:反泵”表示系统处于反泵工作状态。按钮左上角信号灯亮时,表示系统处于反泵工作状态。反泵有优先,即在正泵工作状态时,按反泵按钮,系统立即转入反泵,再次按反泵按钮,系统又恢复到正泵状态。此功能主要是保证在出现堵管时能以最快的速度处理。 讯响按钮:按住按钮,喇叭和蜂鸣器鸣叫,松开按钮,讯响停止。 2.文本显示器画面操作 根据画面上的提示进行相应的操作:初始化设定、参数设定和功能操作: 1)初始化设置 当向PLC中新输入程序后,文本显示器立即显示下列信息: A)请选择底盘:五十铃、volvo、奔驰 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: B)请选择分动箱类型:进口分动箱、国产分动箱 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: C)请选择水泵马达类型:低速水泵马达、高速水泵马达 按提示选择正确的底盘型号,按ENTER确认后,进入下一个提示界面:

液压机操作规程

液压机操作安全规程 一. 注意事项 1、操作前要穿工作服,扣紧衣扣、袖口,不得敞开工作服操作,严禁带手套。 2、机体压板上下滑动时,严禁将手和头部伸进压板、模具工作部位。 3、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 4、作业前,应先清理模具上的各种杂物,检查各部电气设施、手柄、传动部位、防护、限位装置齐全、可靠、灵活。 5、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 6、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好模具后再试压。 7、液压机工作前首先启动设备空转5分钟,同时检查油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。 8、开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 9、液压机工作完毕,应切断电源、将压机液擦试干净,将模具、工件清理干净,摆放整齐。 二、开机前点检 a.查验“交接班记录”,查看有无异常事项,避免液压机“带病工作”; b.检查油位位置,不得低于最低液位线,否则加注液压油

c.检查液压机各紧固件是否牢靠、限位装置及安全防护装置是否完整、可靠,其中紧固件包括模具扣压抓、限位开关、光幕传感器等固定和定位螺栓、螺钉; d.确认模具是否正确,如需更换模具,必须在停机状态下进行,避免碰触启动开关,装好上下模具对中,调整好模具间隙,不允许单边偏离中心,保证滑块中心线和模具中心线重合,模具应符合技术要求,并紧固牢靠,模具紧固要求四角紧固,严谨两端或三角紧固,即4X 扣压爪均应压紧模具; e.填写点检记录表。 三、工作前开机检查 a.开机顺序:开启电源(控制台侧面)旋转松开紧急停止按钮根据工艺要求,调整好各工艺参数按下电机启动按钮,此时液压泵处于空负荷循环状态; b.压板动作顺序:快下慢下工作放气停机保压慢回快回慢顶抽芯退回。 c.工作状态 调模:“工作状态选择”开关置于调模状态,各动作需手动完成; 手动:“工作状态选择”开关置于手动状态,各动作需手动辅助完成;自动:“工作状态选择”开关置于自动状态,各动作自动完成; d.工作状态旋至手动,双手同时按下“双手运行”按钮,滑块快下,达到设定限位后,滑块慢下,上下磨具闭合保压,达到设定时间。动作完成后,滑块慢回至设定限位后,快回复位,此时滑块处于静止泄

最新设备状态监测管理制度

设备状态监测管理制度 1 目的 为了加强设备状态监测的管理,保证装置安全、稳定、长周期运行,依据国家相关法律、法规制定本制度。 2 范围 本制度规定了设备状态监测管理内容。 本制度适用于本厂设备状态监测。 3 职责 3.1 主管设备管理工作的厂领导,依据《设备管理制度》的管理要求和职责,全面负责设备状态监测的管理工作。 3.2 生产设备技术部职责: 3.2.1 负责甲醇厂设备状态监测工作的归口管理,负责制定甲醇厂设备状态监测的有关制度及实施细则,并监督、检查、考核。 3.2.2 建立甲醇厂设备状态监测管理体系,根据设备分级管理要求,制定不同级别设备的状态监测管理策略。 3.2.3 将状态监测数据进行保存,定期对监测工作进行总结。 3.2.4 负责定期组织监测数据的归纳、整理、分析,了解设备运行状况,为转动设备运行、维护、检修提供依据,对监测发现异常的设备,组织有关人员对故障进行分析并处理。 3.2.5 负责组织状态监测相关技术交流和培训。 3.2.6 负责或参与状态监测系统配置技术方案的设计审查、安装、调试和验收工作。

3.3 各车间职责 3.3.1 负责本单位状态监测的日常管理,制定状态监测计划,落实状态监测责任,做好本单位状态监测管理工作。 3.3.2 负责组织监测数据记录,依据分析结果,评价设备运行状态,对发现的故障征兆,及时组织协调有关单位诊断、处理。 3.3.3 归纳、整理状态监测数据、收集技术资料。 3.4 车间主操作人员职责 3.4.1 严格按照工艺卡片参数操作。 3.4.2 及时通报设备状态监测信息,指导运行和检修。 4 内容 4.1 设备状态监测组织机构(参照设备管理组织机构) 4.2 甲醇厂的大型机组空压机、氧压机、合压机、焦压机、增压膨胀机应逐步建立、完善在线监测系统。 4.3 对已建立的原厂监测系统,应完善诊断系统,按时检查、分析监测数据。 4.4 未建立在线监测系统的转动设备,按照分级管理要求,认真做好离线监测计划,依据“定人员、定设备、定测点、定仪器、定周期、定标准、定路线、定参数”的原则进行状态监测,对监测结果及时进行分析提出运行、维修建议。 4.5 监测发现转动设备异常时,应增加监测频次,必要时采用精密诊断故障进行分析,及时掌握故障的发展趋势,防止事故发生。 4.6 加强状态监测、故障诊断技术培训和交流,定期总结成果和经验,提高状态监测人员的技术素质。 5 相关文件记录

液压设备在线监测技术及应用.

液压设备在线监测技术及应用 在线监测是液压设备及工艺过程故障诊断与状态监测的重要途径。这一章结合实例论述多媒体与网络技术背景下液压装置在线监测系统的组成、功能、基本要求、相关因素与应用方法。 第1节设备在线监测技术概述 14.1.1 综述 随着现代化大生产的不断发展和科学技术的不断进步,为了最大限度地提高生产效率和产品质量,作为主要生产工具的机械设备正朝着大型、高速、精密、连续运转以及结构复杂的方向发展。这样,在满足生产要求的同时,设备发生故障的潜在可能性和方式也在相应增加,并且设备一旦发生故障,就可能造成严重的甚至是灾难性的后果。如何确保机械设备的安全正常运行已成为现代设备运行维护和管理的一大课题。对机械设备进行在线监测是保障其安全、稳定、长周期、满负荷、高性能、高精度、低成本运行的重要措施。 所谓在线监测(on-line monitoring,是在生产线上对机械设备运行过程及状态所进行的信号采集、分析诊断、显示、报警 及保护性处理的全过程。 设备在线监测技术以现代科学理论中的系统论、控制论、可靠性理论、失效理论、信息论等为理论基础,以包括传感器在内的仪表设备、计算机、人工智能为技术手段,并综合考虑各对象的特殊规律及客观要求,因此它具有现代科技系统先进性、应用性、复杂性和综合性的特征。 目前,在线监测技术发展的主要趋势如下: 整个系统向着高可靠性、智能化、开放性以及与设备融合为一体的方向发展,从单纯监测分析诊断向着主动控制的方向发展。

采集器向着高精度、高速度、高集成度以及多通道方向发展。精度从8位发展到12为甚至16位,采集速度从几赫发展到几万赫,采集器内插件有所减少,从通用电子元件的组装向专用芯片ASIC的方向发展。 采样方式从等时采样向着等角度同步整周期采样的方向发展,以获取包括相位在内的多种信息,采集的数据从只有稳态数据发展到包括瞬态数据在内的多种数据。 通道数量从单通道向多通道发展,信号类型从单个类型向着 多种类型(包括转速、振动、位移、温度、压力、流量、速度、开关量以及加速度等方向发展。 数据的传输从串行口和并行口通讯向着网络通讯(波特率可达10兆、100兆甚至几百兆的方向发展。 监测系统向对用户友好的方向发展,显示直观化,操作方便化,采用多媒体技术实现大屏幕动态立体显示。 分析系统向多功能发展,不仅能分析单组数据,还可分析开停机等多组数据。 诊断系统向智能化诊断多种故障的方向发展,由在线采集离线诊断向在线采集和实时诊断的方向发展。 数据存储向大容量方向发展,存储方式向通用大型数据库方向发展。 诊断与监测的方式向基于Internet/Intranet的远程诊断与监测的方向发展。 14.1.2 在线监测的重点对象与基本要求 (1在线监测的主要对象 须在线监测的重点设备主要如下:

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统 MDS-4000系统简介 MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。 MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。 MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。 MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。 MDS-4000系统特点 MDS-4000系统技术特点

重调机液压系统使用说明书

重调机液压系统 使用说明书 一、概述 1、用途 该液压系统适用于翻车机配套设备重车调车机以及其它列车牵引设备的牵车臂的提升和落下。另外它也可适用于各种不同需要提升或落下重物的场合。 2、组成 该液压系统主要由15kW卧式电机、双联叶片泵、换向阀、执行机构、油箱、蓄能器等装臵组成。该液压系统采用集成式设计,体积小,结构紧凑,无渗漏,易维护,操作简便、可靠。 二、液压系统主要性能参数 1、系统额定压力 16MPa 2、系统流量 57L/min (前泵) 18L/min (后泵) 3、起落臂工作压力 10-12MPa 4、制动工作压力 4MPa 5、摘钩工作压力 2MPa 6、充氮压力 4.5MPa 7、电机功率 15kW

8、电机转速 1460r/min 9、抬臂时间 10S 10、落臂时间 8S 11、摘钩时间 <2S 12、制动时间 <1S 13、有效容积 605L 14、油液 YA-N46 三、液压系统工作原理及概况 1、原理(参见原理图) 本系统主要有以下三个作用:抬落臂、摘钩、制动。 双联泵(10)通过弹性联轴器(11)从电机(12)得到机械能后,经滤油器(9)从油箱(1)吸油然后泵的两个出口分别输出压力

油P1、P2。P1、P2的压力分别由卸荷阀(14)和(15)调定。压力油P1经卸荷阀(14)至集成块(20),压力油分两路,一路经叠加阀(21)(22)(23)(24)至摆动油缸;另一路经叠加阀(34)(33)(32)(31)至平衡油缸,摆动油缸、平衡油缸联动,完成大臂抬落。压力油P2经卸荷阀(14)分两路,分别完成提销和制动。蓄能器(26)在抬臂时蓄能,落臂时释放能量,并为平衡油缸提供背压及补充循环油。 2、工作概况(参见原理图) (1)启动电机(12)5DT得电,车臂落下,到位后5DT失电,3DT得电制动抱闸打开调车机接车。 (2)将重车牵至翻车机上定位3DT失电制动。2DT得电提后钩销到位,2DT失电。3DT得电调车前行一段,将车辆送到迁车台后3DT失电,1DT得电提前钩,到位后1DT失电,调车机停止,3DT得电调车机返回3DT失电调车机停止,4DT,6DT得电,车臂抬起到位,4DT、6DT失电,调车机返回,开始下一循环。 四、液压系统调试 1、泵站接通电源,并将泵站电机接上地线。 2、取下泵站空气滤清器,由此口向油箱注入清洁工作油(粘度18—38mm2/S),至油位计上限(油箱容积约605升)。 3、拧松(不准拧下)整个液压系统中最高一处或几处管道连接螺纹,作液压系统排空气用。 4、将泵站卸荷阀、溢流阀全开(即反时针转动手柄至极限位臵),

设备状态在线监测2011年度工作总结

设备状态在线监测2011年度工作总结 在股份公司领导和检修车间领导的支持和指导下,设备状态在线监测不断的茁壮成长,监测员们密切配合,爱岗敬业,恪尽职守,在不断的学习和探索中,积累总结经验,发现设备异常和故障分析的技术日趋成熟,为股份公司设备长周期稳定运行奠定了坚实的基础,在这一年里,提前发现问题,及时反馈设备异常近200余起,再结合各个车间现场操作人员的积极配合,避免了多起设备安全事故近50余起。 现对过去的一年中设备状态在线监测小组的工作收获及工作成绩简要回顾总结如下: 一、设备状态在线监测于2010年10月份成立以来,在这一年里,大家在工作上严于律己,在上班的八个小时中,时刻保持精神状态集中,认真观察在线监控的每台设备的振动趋势,仔细分析每个异常数据的频谱图、时域图、瀑布图。在付班时,也都来到工作岗位对股份公司的近百台的离线检测设备进行测量、分析和诊断工作,通过不断学习,总结,相互交流,共同提高。大家的口头禅:“只要数据异常,肯定有原因”,是信号干扰,是负荷波动,还是设备已出现故障,都会到现场仔细观察,测量设备的每一个测点,尽最大努力保证每个测量数据的准确性、每个故障的及时发现,认真的与现场操作人员沟通,询问近期设备运行状况,再和设

备近期的振动趋势做对照,进而详尽的分析设备的运行状况。当发现设备运行异常时,及时到现场查看联系相关人员协调解决,或及时电话通知现场人员注意该设备的运行趋势和运行状态。在线监测工作中,我们公司的“严,实,细,快”得到了充分的贯彻和发展。在线监测工作取得的成绩可以说是在很多数据的收集整理中取得的,我们的操作制度和考核制度齐备和严谨,首先要严守岗位,对待测量数据,要严谨,细致,结合现场的实际状况,设备运行的原始参数,确保取得真实的测量数据,严格,认真分析,发现异常及时、快速反应,迅速联系现场人员加强巡检,做好预防工作和检修的准备,对待设备异常要提前发现提前预知、提前做好检修预案,杜绝设备安全事故的发生! 二、在大家的共同努力下,尽管我们在设备状态线监测成立时间较短,但是取得的成绩是有目共睹的,预测出近50余起设备安全事故,如:如往复式压缩机轴瓦磨损,往复式压缩机十字头连接螺栓松动,缸体活门损坏,旋转式设备地脚松动,轴承磨损和润滑不良,联轴器的同轴度,同心度不良,以及叶轮转子不平衡等等。简单列举如下:1、10月30日尿素6#CO2压缩机一段中体垂直振动测点V4,振动加速度趋势,突然波动较大,且上升趋势明显,由正常情况下的0.15g上升至0.36g。查看频谱图,1X较高,在50~350Hz之间存在少量幅值较低的高倍频成分。从瀑布图上看,高倍频

汽车运行状态远程监测系统开发

78交通信息与安全2010年第5期第28卷总157期 角速度、车轮角减速度、车辆负载量、车身纵向倾斜度、轮胎温度及轮胎压力等,因此,要装相关的传感器。个别量难于直接测出,则通过其他量计算得出。对于装有制动防抱死系统(ABS)的车辆,车轮上都装有转速传感器,于是,可通过CAN通信总线从ABS控制器中提取车轮转速信号及其车轮角减速度信号。 2.1.2数字信号处理器(DSP) 车载子系统除实施状态数据的采集外,还需作一些信号处理和计算,较高实时性要求;同时还与车辆的其他控制系统相互通信,并控制无线传输模块和液晶显示模块。本系统选择了TMS320F2812数字信号处理芯片,系统时钟采用30MHz的无源晶振;复位芯片TPS3307—18具有手动复位功能和三路电压监测功能,上电复位时间固定在200ms,满足整个系统各部分的复位时序要求;系统采用JTAG仿真接口[1]。2.1.3通信接口设计 1)车载子系统与车辆内部其他ECU通信。本设计中的网络接口单元利用专用协议芯片TL718[21加以辅助电路可自动适应KWP2000,IS09141,SAEJ1850(CPW和VPW)与CAN5种协议。TMS320F2812芯片内部具有CAN控制器,为使协议传输控制更加方便。CANH和CANL分别与外部端口连接,CANRx和CANTx分别同TL718相应引脚相连。 2)车载子系统与远程诊断中心通信。车载子系统通过GPRS网络实现与远程监测中心通信,即远程监测中心接收来自车辆的运行状态信息,并向车辆回传监测结果。图3所示为设立于监测中心、利用GPRS移动通信网完成车辆运行状态数据传送的收发模块。GPRS模块选用深圳华为公司产品GTM900B,该模块提供丰富的语音和数据业务等功能,用户无需实现PPP协议也可以实现数据传输功能[3]。 图3车辆运行状态数据的GPRS收发模块2.1.4液晶显示模块 本系统采用的LCD为深圳TOPWAY公司的LM3033CFW一0B一1,内置ST7920液晶控制器。在电路设计时,应特别注意DSP与外围设备的时序配合。通过分别对TMS320F2812的读、写周期和液晶模块的一个写使能周期的分析,两者时序不匹配,设计了相应的外部硬件等待电路[4]。为了解决时序问题,实现TMS320F2812对液晶模块的正常访问,本系统设计时使用了分频计数器实现XREADY信号的扩展方法[5]。2.2移动通信与网络通信子系统 移动通信网和计算机网络是把车辆状态信息传送到设置于车辆管理中心的检测与诊断服务器中的通道。GPRS是一种以全球手机系统(GSM)为基础的数据传输技术,和连续在频道传输方式不同的是,GPRS以封包(packet)来传输,使用者所负担的费用以其传输资料单位计算,较为便宜‘引。 2.3状态监测和故障预测服务子系统 该子系统由监测中心的数据收发GPRS模块和各软件模块(包括:车载信息入库模块、综合数据库模块、知识库模块、知识库管理模块、推理机模块、预测结果发送模块)和人机接口组成。见图4。 人机接[ 1啤嵫 ———.L—.一,——J!...一 推理机模块卜.一知识库模块l —T===。 叫综合数据库模块 =二二[= r。。。。。。。。。。。。。。。。。。。。。。。。。。。。。一 l车载信息入库模块I 监测中心数据收发模块(GPRS模块2) 图4状态监测和故障预测服务子系统2.3.1监测中心数据收发模块(GPRS模块)监测中心服务器与GPRS模块之间的通信是本系统的关键之一,只有数据准确的传输,才能及时准确地监测汽车的状态,两者之间通信的具体实现步骤如下。 1)串口驱动。由于专家系统终端是用PC机实现的,必须从底层的串口通信开始逐渐实现GPRS登录、数据的传输,串口驱动包括打开串口(opencomm)、关闭串口(closecomm)、读串口数据(readcomm)、向串口写数据(writecomm)、串口中断(interruptuartrxIsr)等功能。 2)登录GPRS网络。通过GPRS模块 GTM900B支持的AT命令集对其进行初始化设

挖掘机液压系统原理

一、主液压回路系统的构成 日立挖掘机主液压回路系统是由主液压系统和先导回路系统构成。主液压回路将泵的液压油供给各操作机能的促动器。 二、先导回路液压操作系统的组成 液压系统是由发动机、主泵、先导泵、控制阀各1台和四个液压缸、1台旋转马达及2台行走马达组合而成、泵通过输入轴由发动机所驱动。主泵的液压油通过控制阀流到各促动器。先导泵的液压油流入先导回路内。 三、主回路 1、主液压回路 主液压回路系由吸引回路、输出回路、回油路及牌友回路所构成。液压系统由主泵、控制阀、行走马达各一台及四个液压缸。 主泵是斜轴式排量可变型轴向活塞泵,是由发动机驱动的(发动机转速比为1.0) 2、吸引回路和输出回路 泵通过吸引滤油器吸引液压油箱的油,油从泵流入控制阀,然后由油箱口放出,主泵放出的油通过控制阀流至各促动器。 控制阀控制各种液压机能,从各促动器流出的回油通过控制阀和液压油冷却器流回液压油箱。 3、回油路 每个促动器放出的油全部通过控制阀流回液压油箱内。回油路内有旁道单向阀,其设定压力分别为9.8×10^4pa及4×9.8×10^4pa。通常回油通过液压油冷却器及左侧控制阀流回液压油箱, 油温低时,粘度变高,通过油冷却器时的阻力也随着增大。 油压超过9.8×10^4pa时,回油直接流回液压油箱,可在短时间内把油温提高到适当的高度。 油冷却器被阻塞时,回油通过旁道单向阀直接流回液压油箱。 旁道单向阀被阻塞时设在冷却器和液压油箱之间,其设定压力为4×9.8×10^4pa。 液压箱内设有直流式滤油器,从左右两侧的控制阀流出的油合流后经直流式滤油器过滤,直流式滤油器内有旁道安全阀。当滤芯阻塞使差压达9.8×10^4pa时,旁道安全阀就打开,油直接流回液压油箱。 4、排油回路 马达及刹车阀等内部漏的油以及润滑油回路内的油,全部都积蓄起来,经过排油回路流回操作油箱。 5、行走马达排油回路 左右两行走马达漏的油由各个马达壳的排油口排出,合流后通过中心接头,经过直流式滤油器流回液压油箱。 6、旋转马达排油回路 旋转马达漏的油排出后,与行走回路排出的油一起通过直流式滤油器流回液压油箱。 7、输出压控制 控制阀内的卸载安全阀控制泵的输出压力保持一定。全部操作均在330×9.8×10^4Pa设定压力操作。 在挖掘操作时,设定压力变为370×9.8×10^4Pa。 狼涌截止安全阀把高压油释放到液压油箱内,以免油压系统及发动机承受过负荷。 8、先导回路 先导回路是由吸引、出油回路构成的。先导系统有先导泵、换冲阀、保险阀、2个高速电

压力机液压系统全解

湖南工业大学 机电控制技术 课程设计 资料袋机械工程学院(系、部) 2015 ~ 2016 学年第二学期课程名称机电控制技术指导教师职称副教授 学生姓名专业班级班级学号 题目压力机液压系统的电气控制设计 成绩起止日期 2016 年 6 月 25 日~ 2016 年 7月 1 日

课程设计任务书 2015—2016学年第二学期 机械工程学院(系、部)机械设计制造及其自动化专业机设1301 班级课程名称:机电控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2016 年 6 月 25日至 2016 年 7月 1日共 1 周 指导教师(签字): 2016年 7 月 1 日 系(教研室)主任(签字): 2016年 7月 1 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计 起止日期: 2016年 6 月 25 日至 2016 年 7 月 1 日 学生姓名: 班级: 学号: 成绩: 指导教师(签字): 机械工程学院 2016年7月1日

目录 一、课程设计的内容与要求 (1) 1.1课程设计对象简介 (1) 1.2压力机结构及工作要求 (2) 1.3液压系统工作原理及控制要求 (5) 1.4课程设计的任务 (6) 二、电气控制电路设计 (6) 2.1继电器-接触器电气控制电路的设计 (7) 2.1继电器-接触器电气控制电路图分析及介绍 (10) 2.3选择电气元件 (13) 三、压力机的可编程控制器系统的设计 (14) 3.1可编程控制器控制系统设计的基本原则 (16) 3.2可编程控制器系统的设计 (18) 四、设计体会与总结 (19) 五、参考资料 (20)

设备状态监测

1)设备状态监测的概念 对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 (2)设备状态监测与定期检查的区别 设备的定期检查是针对实施预防维修的生产设备在一定时期内所进行的较为全面的一般性检查,间隔时间较长(多在半年以上),检查方法多靠主观感觉与经验,目的在于保持设备的规定性能和正常运转。而状态监测是以关键的重要的设备(如生产联动线、精密、大型、稀有设备,动力设备等)为主要对象,检测范围较定期检查小,要使用专门的检测仪器针对事先确定的监测点进行间断或连续的监测检查,目的在于定量地掌握设备的异常征兆和劣化的动态参数,判断设备的技术状态及损伤部位和原因,以决定相应的维修措施。 设备状态监测是设备诊断技术的具体实施,是一种掌握设备动态特性的检查技术。它包括了各种主要的非破坏性检查技术,如振动理论,噪音控制,振动监测,应力监测,腐蚀监测,泄漏监测,温度监测,磨粒测试(铁谱技术),光谱分析及其他各种物理监测技术等。 设备状态监测是实施设备状态维修(Condition Based Maintenance)的基础,状态维修根据设备检查与状态监测结果,确定设备的维修方式。所以,实行设备状态监测与状态维修的优点有:①减少因机械故障引起的灾害;②增加设备运转时间;③减少维修时间;④提高生产效率;⑤提高产品和服务质量。 设备技术状态是否正常,有无异常征兆或故障出现,可根据监测所取得的设备动态参数(温度、振动、应力等)与缺陷状况,与标准状态进行对照加以鉴别。表5-9列出了判断设备状态的一般标准。 表5-9 判断设备状态的一般标准

设备状态监测及故障诊断

设备状态监测及故障诊断 近年来,为了提高设备管理与维修的现代化水平,在省设协和油田设备处的大力支持与帮助下,我厂应用状态监测及故障诊断技术,及时发现并解决了许多设备隐患,提高了设备运行可靠度,为电厂长周期、满负荷生产奠定了良好的基础。 1 开展状态监测与故障诊断工作的缘由 1.1 状态监测与故障诊断是一种新的管理理念 电厂生产的特点是自动化水平高、生产连续性强,一旦某台设备发生故障,将迫使机组降低负荷,甚至停机。多年的摔打与磨练告诉我们:单凭眼看、手摸、耳听、鼻嗅等感观经验来判断设备故障已无法适应现代化生产的需要,只有开展状态监测和故障诊断工作才能彻底摆脱这种落后的管理模式。 1.2 状态监测和故障诊断是提高设备管理水平的需要 我厂已搞过8次大修,在检修项目的确立和设备系统部件的更换上,虽然针对性、方向性有了很大提高,但确切性、适宜性、经济性仍有差距。根据“四个凡是”的贯标精神要求,设备、系统的大小修的立项应更具科学性、针对性,减少盲目性,要解决这一问题,惟有开展状态监测和故障诊断。 1.3 状态监测和故障诊断是降本增效的需要。我厂检修费用一年比一年紧缩,降本增效压力逐年递增,如何进一步降低发电成本,是摆在全厂干部职工面前的一个现实问题。从历年大修情况来看,部分单位存在不同程度的欠修和过剩检修。过剩检修意味着工作量加大,费用增加,造成人、财、物的浪费,而欠修将给设备运行带来隐患。开展状态监测和故障诊断可有效避免欠修和过剩检修,做到物尽其用,达到降本增效的目的。 1.4 状态监测和故障诊断是二期投产的需要 我厂二期两台机组相继投产,如果按照过去三年一大修的计划,每年至少要安排一台机组大修,甚至一年安排两台机组的大修。我厂经过8次机组大修,积累了丰富的检修经验,对设备、系统的性能特点有了更深的了解。特别是1999年和2000年的机组技改性大修,使设备的可靠性有了明显提高,基本具备了把机组三年一大修改为四年一大修的条件。延长大修周期的保证是开展状态监测和故障诊断,延长设备使用寿命,避免突发性故障。 近几年来,通过实践逐步提高了对状态监测和故障诊断工作的认识,通过对设备定时、定点、定人监测,特别是#2机组在线监测系统,避免了多起设备事故,更坚定了我们开展这项工作的决心。 2 开展状态监测及故障诊断技术的依据

液压系统操作规程

编号:SY-AQ-07004 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 液压系统操作规程 Operating procedures for hydraulic system

液压系统操作规程 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 1、经常检查液压油路钢管、胶管、接头的螺栓是否完全紧固。避免漏油现象发生。 2、经常检查系统中各种液压滤清器的滤芯与空气滤清器的滤芯是否堵塞。 3、经常检查液压油的油位是否达到要求,工作中也要时刻注意油位的变化,一旦发现油液不足,应马上补充,避免油泵吸空,形成真空,从而烧坏液压油泵,造成不必要的损失。 4、各种泵、调速阀的各种设定值不得修改。如觉得参数不合要求,可联系生产厂家,由厂家就各参数进行修改。 5、液压系统能否正常地工作,完全依赖于各个液压元件的工作状态,而各个液压元件的工作状态,取决于联系它们之间的油液清洁度和温度。因此,操作人员时刻注意,各个液压系统油液的清洁,保持油的温度在设定的范围内。

6、若系统出现问题,应首先仔细阅读液压原理,搞清楚各元件的功能后,研究出现的问题,等原因明了后,才能进行各个元件的清洗、调节或更换,以免造成严重不良后果。 7、拆卸运输或重新组装时,应将拆卸下来的各种钢管或胶管进行密封(油堵堵塞);组装时注意清洁,防止污物进入管道,损坏系统中的液压元器件,造成不必要的损失。 8、关于钳盘式制动器、液压泵站的有关操作、调整、注意事项请参看相关的使用说明书。 这里填写您的公司名字 Fill In Your Business Name Here

100T锻造操作机行走驱动液压系统设计

2018年8月第46卷第16期机床与液压MACHINE TOOL &HYDRAULICS Aug.2018Vol.46No.16DOI :10.3969/j.issn.1001-3881.2018.16.014 收稿日期:2017-03-31 基金项目:2016年沈阳航空航天大学非博士学位青年成长基金资助项目(201603Y) 作者简介:李向阳(1982 ),男,硕士,实验师,主要从事机械及液压学科教学及研究工作三E -mail:xiangyangcc @https://www.doczj.com/doc/7f3592945.html,三100T 锻造操作机行走驱动液压系统设计 李向阳1,田富2,闫周1,刘远瞩1,王帅1 (1.沈阳航空航天大学工程训练中心,辽宁沈阳110136;2.北方重工集团工程设计院,辽宁沈阳110141) 摘要:作为现代锻造工业中重要的辅助设备,锻造操作机具有工作响应速度快二自动化程度高二定位精度高二抗干扰能力强二工作稳定和缓冲性能良好等优点,在装备制造业中得到了广泛应用三详细介绍100T /250Tm 液压操作机行走驱动液压系统的设计二参数选择以及液压元件的型号确定等方面的内容,可为类似设计提供参考三 关键词:锻造操作机;行走驱动;液压系统 中图分类号:TD451 文献标志码:B 文章编号:1001-3881(2018)16-048-4Design of Hydraulic System of 100T Forging Manipulator Driving Parts LI Xiangyang 1,TIAN Fu 2,YAN Zhou 1,LIU Yuanzhu 1,WANG Shuai 1(1.Engineering Training Center,Shenyang Aerospace University,Shenyang Liaoning 110136,China;2.Research &Design Institute,Northern Heavy Industries Group Co.,Ltd.,Shenyang Liaoning 110141,China)Abstract :Forging manipulator is an important auxiliary equipment for modern forging industry.It has fast response speed,high automation,high precision,strong anti-interference ability,stable operation and good cushioning performance and other advantages.So it has been widely used in the equipment manufacturing industry.For 100T /250Tm hydraulic forging manipulator,the design,parame-ter selection and hydraulic components determination for the driving hydraulic system of the forging manipulator were introduced.It pro-vides reference for similar design.Keywords :Forging manipulator;Driving system;Hydraulic system 随着我国装备制造业迅速发展,尤其是在当今制造业转型升级的机遇面前,越来越多的企业都努力提升自身装备的自动化水平三而其中作为基础的锻造装备,由于现场工作环境恶劣,钢锭硕大而笨重,如何灵活二精确二高效地加工锻件成为设计人员不断探索的课题三液压锻造操作机作为锻造过程中重要的辅助设备,它具有工作响应速度快二自动化程度高二定位精度高二抗干扰能力强二工作稳定和缓冲性能良好等优点[1],在装备制造业中得到了广泛应用三作者对100T /250Tm 液压操作机行走机构液压系统进行了详细的设计和研究三1 行走机构组成及技术要求 行走机构主要作用为驱动大车前进和后退,实现 锻件的水平移动三该机构通过液压马达来实现大车的 运动和定位,同时控制大车起停带来的冲击三大车行 走机构分为有轨和无轨两种三 有轨式操作机活动范围及服务对象是确定的,工 作时方便与锻造设备对中,同时为了确保锻件的轴向送进精度,锻造操作机大车行走机构通常采用链轮链条传动方式[2]三操作机大车行走机构采用机械传动液压驱动的方式,行走马达通过减速器将驱动力矩传递给链轮,链轮与固定在地面上的链条啮合,驱动大车沿车轮轨道行走,前后车轮为从动轮,仅起支撑重力和导向[3],其结构主要由传动链轨二链轮二传动链和变速机构等组成,如图1所示 三 图1 操作机行走机构液压系统作为锻造操作机大车行走的控制核心,万方数据

液压挖掘机控制系统介绍

液压挖掘机控制系统介绍 目前,机电液一体是液压挖掘机的主要发展方向盘,其目的是实现液压挖掘机的全自动化,即人们对液压挖掘机的研究,逐步向机电液控制系统方向转移,使挖掘机由传统的杠杆操纵逐步发展到液压操纵、气压操纵、电气操纵、液压伺服操纵、无线电操纵、电液比例操纵和计算机直接操纵。所以,对挖掘机的机电液一体化的研究,主要集中在液压挖掘机的控制系统上。 液压挖掘机控制系统是对发动机、液压泵、多路换向阀和执行元件(液压缸、液压马达)等所构成的动力系统进行控制的系统。按控制功能,可分为位置控制系统、速度控制系统和力(或压力)控制系统;按控制元件,可分为发动机控制系统、液压泵控制系统、多路换向阀控制系统、执行元件控制系统和整机控制系统。 目前,液压挖掘机控制系统已发展到复合控制系统。 发动机的控制系统 由柴油机的外型特性曲线可知,柴油机是近似的恒扭矩调节,其输出功率的变化表现为转速的变化,但输出扭矩基本不变化。油门开度增加(或减小),柴油机输出功率就增加(或减小),由于输出扭矩基本不变,所以柴油机转速也增加(或减小),即不同的油门开度对应着不同的柴油机转速。由此可见,对柴油机控制的目的是,通过对油门开度的控制来实现柴油机转速的调节。 目前应用在液压挖掘机柴油机上的控制装置有电子功率优化系统、自动怠速装置、电子调速器、电子油门控制系统等。 液压元件控制系统 对液压泵的控制都是通过调节其变量摆角来实现的。根据控制形式的不同,可分为功率控制系统、流量控制系统和组合控制系统等三大类。其中的功率控制系统有恒功率控制、总功率控制、压力切断控制和变功率控制等;流量控制系统有手动流量控制、正流量控制、负

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

相关主题
文本预览
相关文档 最新文档