当前位置:文档之家› 数学思想在解题中的应用(上)

数学思想在解题中的应用(上)

数学思想在解题中的应用(上)
数学思想在解题中的应用(上)

数学思想在解题中的应用(上)

目录

前言

第一章高中数学常用的思想方法

一、数形结合思想

1、知识点概述

2、解题方法指导

3、数形结合思想方法的应用

4、数形结合思想在函数中的应用

二、函数与方程思想

1、函数的思想

2、方程的思想

3、函数方程思想的应用

三、化归与转化思想

1、等于不等的相互转化

2、正与反的相互转化

3、特殊与一般的相互转化

4、简单与复杂的相互转化

前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,我们总想用旧的题型去套,这只是满足于解出来,只有对数学思想、数学方法理解和融会贯通时,才能提出新看法,巧解法。高考试题特别注重对数学思想方法的考察,特别是突出考察能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识的用数学思想方法去分析问题去解决问题,提高能力,形成数学素养,使自己具有数学头脑和眼光。

高考试题主要从以下几个方面对数学思想方法进行考察:

1、常用数学方法;配方法,换元法,待定系数法,参数法,消去法,数学归纳法等

2、常用数学逻辑方法:分析法,综合法,反证法,归纳法,演绎法等

3、常用数学思维方法:观察与分析,概括与抽象,分析与综合,特殊与一般,类比等

4、常用数学思想:数形结合思想,函数与方程思想,化归与转化思想,有限与无限思想,必然与或然

思想,分类讨论思想等

数学思想方法与数学基础知识相比较,它有较高的低位和层次。数学知识使数学内容,可以用文字,符号来记录和描述,随着时间的推移,记忆力的衰退,将来可能忘记。而数学思想是一种数学意识,只能够领会和应用,属于思想的范畴,用以对数学问题的认识,处理和解决。掌握数学思想方法,不是受用一阵子,而是受用一辈子。即使数学知识忘了,数学思想方法还是记得,对你还是起作用。

数学思想方法中,数学基本方法是数学思想的体现,是数学的模型,具有模式化和可操作性的特征。可以选用作为解题的基本手段。

可以说,知识是基础,方法是手段。思想是深化,提高数学素质的核心就是提高学生对数学知识方法的认识和应用。数学素质的综合能力的体现就是应用。

为帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍了高考中常用的基本思想方法,配方法,换元法,待定系数法,归纳法,参数法,数形结合思想,分类讨论思想,化归与转化思想,特殊与一般思想,有限与无限思想,或然与必然思想,函数与方程思想。末位整合了高考中的热点问题。

第一章数形结合的思想方法

一、知识要点概述

数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

二、解题方法指导

1.转换数与形的三条途径:

①通过坐标系的建立,引入数量化静为动,以动求解。

②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。

③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。

2.运用数形结合思想解题的三种类型及思维方法:

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,

分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

三、数形结合的思想方法的应用

(一)解析几何中的数形结合

解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.

1. 与斜率有关的问题

【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.

解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知

直线l过定点M(0,-1),且斜率为-.

∵ l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.

【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可

判断出斜率的取值范围.

2. 与距离有关的问题

【例2】求:y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值.

【分析】可看成求两动点P(cosθ,sinθ)与Q(cosα-3,sinα+2)之间距离的最值问题.

解:两动点的轨迹方程为:x2+y2=1和(x+3)2+(y-2)2=1,转化为求两曲线上两点之间距离的最值问题.如图:

3. 与截距有关的问题

【例3】若直线y=x+k与曲线x=恰有一个公共点,求k的取

值范围.

解:曲线x=是单位圆x2+y2=1的右半圆(x≥0),k是直线y=x+k在y轴上的截距.

由数形结合知:直线与曲线相切时,k=-,由图形:可得k=-,或-1

4. 与定义有关的问题

【例4】求抛物线y2=4x上到焦点F的距离与到点A(3,2)的距离之和为最小的点P的坐标,并求这个最小值.

【分析】要求PA+PF的最小值,可利用抛物线的定义,把PF转化为点P到准线的距离,化曲为直从而借助数形结合解决相关问题.

解:P′是抛物线y2=4x上的任意一点,过P′作抛物线的准线l的垂线,垂足为D,连P′F(F为抛物线的焦点),由抛物线的定义可知:

.

过A作准线l的垂线,交抛物线于P,垂足为Q,显然,直线AQ之长小于折线AP′D 之长,因而所求的点P即为AQ与抛物线交点.

∵ AQ直线平行于x轴,且过A(3,2),所以方程为y=2,代入y2=4x得x=1.

∴ P(1,2)与F、A的距离之和最小,最小距离为4.

【点评】(1)化曲线为直线是求距离之和最有效的方法,在椭圆,双曲线中也有类似问题.

(2)若点A在抛物线外,则点P即为AF与抛物线交点(内分AF).

(二)数形结合在函数中的应用

1. 利用数形结合解决与方程的根有关的问题

方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.

【例5】已知方程x2-4x+3=m有4个根,则实数m的取值范围 .

【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.

解:方程x2-4x+3=m根的个数问题就是函数y=x2-4x+3与函数y=m图象的交点的个数.

作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0

数形结合可用于解决方程的解的问题,准确合理地作出满

足题意的图象是解决这类问题的前提.

2. 利用数形结合解决函数的单调性问题

函数的单调性是函数的一条重要性质,也是高考中的热点问题

之一.在解决有关问题时,我们常需要先确定函数的单调性及单调

区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.

【例6】确定函数y=的单调区间.

画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].

3. 利用数形结合解决比较数值大小的问题

【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)

=f(x);②对任意的0≤x

1

2

≤2,都有f(x

1

2

);③y=f(x+2)的图象关于y轴对称.

则f(4.5),f(6.5),f(7)的大小关系是 .

解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.

显然,f(4.5)

4. 利用数形结合解决抽象函数问题

抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.

【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a0,且f(x)·g(x)有最小值-5.则函数

y=f(x)·g(x)在区间[-b,-a]上().

A. 是增函数且有最小值-5

B. 是减函数且有最小值-5

C. 是增函数且有最大值5

D. 是减函数且有最大值5

【解析】 f ′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.

∴ y=f(x)·g(x)在区间[a,b](a

又∵ f(x),g(x)分别是定义在R上的奇函数和偶函数.

∴ y=f(x)·g(x)是奇函数.

因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.

(三)运用数形结合思想解不等式

1. 求参数的取值范围

【例9】若不等式>ax的解集是{x|0

A. [0,+∞)B. (-∞,4]

C. (-∞,0)D. (-∞,0]

解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0

【点评】本题很好的体现了数形结合思想在解题中的妙用.

【例10】若x∈(1,2)时,不等式(x-1)2

A. (0,1)B. (1,2)

C. (1,2]D. [1,2]

解:设y

1=(x-1)2(1

2

=logax.

由图可知若y

1

2

(11.

y

1=(x-1)2过(2,1)点,当y

2

=logax也过(2,1)点,即a=2时,恰有y

1

2

(1

∴1

【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.

2. 解不等式

【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().

A. {x|0a}

C. {x|-a

解:依题意得f(x)是R上的偶函数,且在[0,+∞)上

是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)

<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,

+∞)时满足题意,故选B.

【例12】设函数f(x)=2,求使f(x)≥2的取值范围.

【解法1】由f(x)≥2得2≥2=2.

易求出g (x )和h (x )的图象的交点立时,x 的取值

范围为[,+∞). 【解法3】 由

的几何意义可设F1(-1,0),F2(1,0),M(x ,y ),

则,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶

点为(,0),由双曲线的图象和x+1-x-1≥知x≥.

【点评】 本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境. (四)运用数形结合思想解三角函数题

纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.

【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是 .

【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.

解:函数f(x)=由图象可知:1

【例14】当0

A. 2B. 2C. 4D. 4

解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线

的斜率,又点B的轨迹方程(0<α<),即x2+=1(x<0),如图,当过

点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.

【例15】若sinα+cosα=tanα(0<α<),则α∈().

解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan

=≈1.732>1.367,由图象知xP应小于.故选C.

【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.

【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0

解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f (x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.

【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.

【例17】△ABC中,A=,BC=3,则△ABC的周长为().

解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+A

C,∠CBD=∠B+,∠D=,由正弦定理

即AB+AC=6sin(B+),故选C.

(五)运用数形结合思想解复数题

【例18】设|z

1|=5,|z

2

|=2, |z

1

-z

2

|=13,求

z

z

1

2

的值。

【分析】利用复数模、四则运算的几何意义,将复数问题用几何图形帮助求解。

【解】如图,设z

1=、z

2

=后,则z

1

=、z

2

=如图所示

由图可知,|z

z

1

2

|=

5

2

,∠AOD=∠BOC,由余弦定理

得:

cos∠AOD=5213

252

222

+-()

××

4

5

∴z

z

1

2

5

2

(

4

5

±

3

5

i)=2±

3

2

【另解】设z

1=OA、z

2

=如图所示。则|

z

z

1

2

|=

5

2

,且

cos∠AOD=5213

252

222

+-()

××

4

5

,sin∠AOD=±

3

5

所以z

z

1

2

5

2

(

4

5

±

3

5

i)=2±

3

2

i,即

z

z

1

2

=2±

3

2

i。

【注】本题运用“数形结合法”,把共轭复数的性质与复平面上的向量表示、代数运算的几何意义等都表达得淋漓尽致,体现了数形结合的生动活泼。一般地,复数问题可以利用复数的几何意义而将问题变成几何问题,也可利用复数的代数形式、三角形式、复数性质求解。

本题设三角形式后转化为三角问题的求解过程是:设z

1=5(cosθ

1

+isinθ

1

),z

2

=+

isinθ

2),则|z

1

-z

2

|=|(5cosθ

1

-2cosθ

2

)+(5sinθ

1

+2sinθ

2

)i|=

B

292012-+cos()θθ=13,所以cos(θ1+θ2)=45,sin(θ1+θ2)=±3

5

z z 12

=521222[cos()sin()](cos sin )-+-+θθθθi i =52[cos(θ1+θ2)+isin(θ1+θ2)]=52(45±3

5i)=2±

3

2

i。 本题还可以直接利用复数性质求解,其过程是:由|z 1-z 2|=13得: (z 1-z 2)(z 1-z 2)=z 1z 1+z 2z 2-z 1z 2-z 1z 2=25+4-z 1z 2-z 1z 2=13, 所以z 1z 2+z 1z 2=16,再同除以z 2z 2得

z z 12

+z z 12=4,设z z 12=z ,解得z =2±3

2i。

几种解法,各有特点,由于各人的立足点与思维方式不同,所以选择的方法也有别。一般地,复数问题可以应用于求解的几种方法是:直接运用复数的性质求解;设复数的三角形式转化为三角问题求解;设复数的代数形式转化为代数问题求解;利用复数的几何意义转化为几何问题求解。

四、运用数形结合思想分析和解决问题时,要注意如下几点

在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.

1、注意图象延伸趋势

【例19】 判断命题:“当a>1时,关于x 的方程ax=logax 无实解.”正确与否.

错解:在同一坐标系中分别作出函数y=ax 及y=logax 的图象(a>1)(如图1),可见它们没有公共点,所以方程无实解,命题正确.

【评析】 实际上对不同的实数a ,y=ax 和y=logax 的图象的延伸趋势不同.例如当a=2时,方程无实数解;而当a=时,x=2是方程的解.说明两图象向上延伸时,一定相交,交点在直线y=x 上.

2、注意图象伸展“速度”

【例20】比较2n 与n 2的大小,其中n≥2,且n ∈N+.

错解:在同一坐标系中分别作出函数y=2x 及y=x 2的图象(如图2). 由图可知,两图象有一个公共点. 当x=2时,2x =x 2; 当x>2时,2x

当n>2,且n ∈N+时,2n

【评析】事实上,当n=4时,2n 与n 2也相等;当n=5时,2n >n 2.错因是没有充分注意到

两个图象在x≥2时的递增“速度”!要比较两个图象的递增速度,确实很难由图象直观而得.本题可以先猜想,后用数学归纳法证明.

本题的正确答案是

当n=2、4时,2n=n2;

当n=3时,2n

当n≥5时,n∈N+时,2n>n2.

证明略.

3、注意数形等价转化

【例21】已知方程x2+2kx-3k=0有两个实数在-1与3之间,求k

的取值范围.

错解:令f(x)=x2+2kx-3k,结合题意画出图象3中的(1),再由图象列出不等

解略.

【评析】事实上,不等式组(*)并不与题意等价,图象3中的(2)也满足不等式组(*),但两实根均大于3,还可以举出两实根均小于-1的反例.若不等式组(*)与图3中的(1)等价,需加上条件-3

4、注意仔细观察图象

【例22】已知关于x、y的方程组

(a>b>0)有四组实数解,求a、b、m应满足的关系.

错解:已知方程组中的两个方程分别是椭圆和抛物线的方程,

原方程组有四组实数解等价于椭圆与抛物线有四个不同的公共点.由

图4知,m<-b,且

【评析】观察图象过于草率!事实上,图5也是一种可能的情形,即当=a时,仍有可能为四组解.例如当a=2,b=1,m=-4时,可得解集为:{(2,0),(-2,0),(,),(-)}.

现用数形结合求解:

考虑一元二次方程

a2y2+b2y-(m+a2)b2=0,

令Δ=0(即相切情形),

解得m=-,

结合图象,

注意到m<-b,则a、b、m应满足的关系是-

从以上看出,有些问题可以用图象解决,但要认真分析,有些问题很难由图象直观而得,值得注意.

5.数形结合也有简繁之分

数形结合的核心与灵魂是“结合”.解题时,由于观察与联想的

视角不同,会出现不同的“结合”,“结合”得好就得到好的解题方法,

“结合”得不好就使解题过程繁琐且易出错,“结合”的优劣反映出了我

们的基础与能力,也反映出我们思维灵活性与创造性的水平,“结合”的

优化选择,应是数形结合法研究的重要一环.为便于说明,我们先看几例:

【例23】已知方程mx=x+m有两个相异实根,求实数m的取值范围.

视角一:视方程mx=x+m两边的代数式为两个函数,分别画出函数y=mx,

y=x+m的图象(如图1),由于两个函数中都含有m,故需进一步对m进

行分类讨论,情况复杂.图1仅表示m>0时的示意图.

视角二:由m≠0,先将原方程变形,得x-1=x,再视方程x-1=x

两边的代数式为两个函数,分别画出函数y=x-1,y=x的图象(如图2),

由图易看出:

当0<<1或-1<<0,即m<-1或m>1时,图象有两个不同交点,此时原方程有两个相异实根.

视角三:用分离参数法,先将原方程化为=m.

分别作出函数y=,y=m的图象(如图3),由图易看出,当m<-1,m>1时,两函数的图象有两个不同交点,此时原方程有两个相异实根.

视角四:用分离参数法,先将原方程化为.

当x>0时,得1-=,当x<0时,得-1-=.

分别作出函数y=,y=的图象(如图4),由图易

看出,当0<<1或-1<<0,即当m>1或m<-1时,两函

数的图象有两个不同交点,此时原方程有两个相异实根.

可见,例1的各解虽同是数形结合,但大有简繁之分,视角二优于视角一,视角一中两函数中的都含有m,因而他们的图象也是变化的,虽可以通过讨论而获得结论,但讨论时容易因考虑不周而产生漏解,视角三虽看图直观明了,但图象不易作出,而视角四既比视角三作图方便,又比视角二简单,不用讨论,这是因为视角二还有一个函数中含有m,而视角四中已不含m,所以这里以视角四为最理想.

【例24】已知函数f(x)=ax2+bx且2≤f(1)≤4,1≤f(-1)≤2,求f(-2)的取值范围. 这是我们常出错的题,其代数解法有待定系数法、特征函数法、三角代换法等,而众所周知的数形结合法是线性规划法.

这类问题可看作一个条件极值问题,即变量a、b在

2≤a+b≤4①

1≤a-b≤2②

这两个约束条件下,求目标函数y=4a-2b的最大(小)值问题

.约束条件2≤a+b≤4,1≤a-b≤2的解集是非空集,在坐标平面上表

示的区域是由直线:a+b=4,a+b=2,a-b=2,a-b=1所围成的封闭

图形(图5中的阴影部分).

y的大小又可以看作直线b=2a-y在b轴上截距的大小,

从图中易知当直线b=2a-y经过A(,),C(3,1)

时截距分别为最小f(-2)=5和最大f(-2)=10.

所以5≤f(-2)≤10.

其实还可有如下数形结合法:

要求f(-2)的取值范围,只要确定f(-2)的最大(小)值,

即找到f(x)的图象在x=-2时的最高点F与最低点E的纵坐标,

为此只要确定f(x)经过E、F时的函数表达式,由于f(x)=ax2+bx

是经过原点(c=0)的抛物线系,所以只要再有两点就可确定,由

已知2≤f(1)≤4,1≤f(-1)≤2,知f(x)在x=1时的最高

点B(1,4),最低点A(1,2),f(x)在x=-1时的最高点D(-1,2),最低点C(-1,1),(如图6),由抛物线的图象特征易知经过F点的图象就是经过O、B、D的图象C2,经过E点

,于是:

的图象就是经过O、A、C的图象C

1

将B(1,4),D(-1,2)坐标代入f(x)=ax2+bx得

解得a=3,b=1.

故图象经过O、B、D的函数为C

∶f(x)=3x2+x,所以

2

fmax(-2)=10.

将A(1,2),C(-1,1)的坐标代入f(x)=ax2+bx得

∶f(x)=x2+x,fmin(-2)=5.

故图象经过O、A、C的函数为C

1

所以5≤f(-2)≤10.

【例25】正数a、b、c、A、B、C满足a+A=b+B=c+C=k,求证:aB+bC+cA

本题的难度较大,用代数方法一时是无从下手的.若能数形结合,揭示其条件a+A=b+B=c+C=k 中隐含的几何背景——联想到三数相等的几何图形是等边三角形,则可得如下简捷的证法.

证明:如图7,

作边长为k的正三角形PQR,分别在各边上取点L、M、N,使得QL=A,LR=a,RM=B,MP=b,PN=C,NQ=c,

如果再观察a+A=b+B=c+C=k这个代数条件,从三数相等的几何图形是等边三角形,联想到四数相等a+A=b+B=c+C=k的几何图形是正方形.则又可作边长k的正方形(图8).

由面积关系知其结论aB+bC+cA

仅举三例,可见一斑,不但数形结合的确好,而且同是数形结合,也有不

好与好之分,只有把握住“结合”这一数形结合法的核心,才能把在由数

到形这一变换、操作过程中的图形选择的多样性,变成解题的灵活性和创造

性.在实际学习中要结合具体问题掌握一些常规的操作策略,例如要画的若是

函数图象,那就要设法让要画图象的函数尽可能少含参变量,最好不含参变量,如果一定要含有,也要设法让它在较低次的函数(如一次函数)或在简单函数中含有.只有这样,才能从一个新的层面上去理解、掌握、运用好数形结合法.

【结束语】在数形结合法的学习中,我们还应进一步看到运算、证明的简捷化与严格化是密切相关的,“数学中每一步真正的进步都与更有力的工具和更简单的方法的发展密切联系着,这些工具和方法同时会有助于理解已有的理论并把陈旧的复杂的东

西抛到一边.数学科学发展的这种特点是根深蒂固的.”“把证明的严格化

与简捷化绝对对立起来是错误的.相反,我们可以通过大量的例子来证实;

严格的方法同时也是比较简捷比较容易理解的方法.正是追求严格化的努力

驱使我们去寻求更简捷的推理方法”.

第二章函数与方程思想

函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

3.函数方程思想的几种重要形式

(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:

①存在实数k,使得方程恰有2个不同的实根;

②存在实数k,使得方程恰有4个不同的实根;

③存在实数k,使得方程恰有5个不同的实根;

④存在实数k,使得方程恰有8个不同的实根.

其中真命题是_____________

解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*)

作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不等的根,②当0<t<1时,原方程有4个根,③当t=1时,原方程有3个根.

(1)当k=-2时,方程(*)有一个正根t=2,相应的原方程的解有2个;

(2)当k =14时,方程(*)有两个相等正根t =1

2,相应的原方程的解有4个;

(3)当k =0时,此时方程(*)有两个不等根t =0或t =1,故此时原方程有5个根; (4)当0<k <1

4时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相

应的满足方程|x 2-1|=t 的解有8个

答案:1234

【例2】若不等式x 2

+ax +1≥0对于一切x ∈(0,1

2

]成立,则a 的最小值为_____________

解答:1. 分离变量,有a≥-(x +1x ),x ∈(0,12]恒成立.右端的最大值为-52,a≥-5

2.

2. 看成关于a 的不等式,由f(0)≥0,且f(1

2

)≥0可求得a 的范围.

3. 设f(x)=x 2+ax +1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.

4. f(x)=x 2+1,g(x)=-ax ,则结合图形(象)知原问题等价于f(12)≥g(12),即a≥-5

2.

【例3】 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x <0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为___________

解析:以函数为中心,考查通性通法,设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R 上的奇函数和偶函数,所以F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),

即F(x)为奇函数.又当x <0时,

F′(x)=f ′(x)g(x)+f(x)g′(x)>0,所以x <0时,F(x)为增函数. 因为奇函数在对称区间上的单调性相同,所以x >0时,F(x)也为增函数.

因为F(-3)=f(-3)g(-3)=0=-F(3).

如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3)

【例4】已知实数,a b 分别满足553,1532323=+-=+-b b b a a a ,则a b +=_________ 解答:已知的等式都是三次方程,直接通过方程解出,a b 有

一定的困难,但是,题设的两个等式的左边的结构相同,使我们想到用 统一的式子来表示这两个等式,对题设的两个等式变形为

()

()()()3

3

1212,1212a a b b -+-=--+-=,

根据这两个等式的特征,构造函数()32f x x x =+. 函数()f x 是一个奇函数,又是R 上的增函数,则有 ()()12,12,f a f b -=--=

于是, ()()()111,f a f b f b -=--=-因而得 11.

2.a b a b -=-+=

【例5】 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为

22,则直线l 的倾斜角的取值范围是___________

解答: 圆0104422=---+y x y x 整理为

222(2)(2)(32)x y -+-=,∴圆心坐标为(2,2),半径为32,

要求圆上至少有三个不同的点到直线0:=+by ax l 的距离为22,则圆心到直线

0:=+by ax l 的距离应小于等于2,

22

2a b +≤,∴ 2

41a a b b ????

++≤ ? ?????0, ∴ 2323a b ??

--≤≤-+ ???

,a k b =-,∴ 2323k -≤≤+,

直线l 的倾斜角的取值范围是51212ππ??

????

【例6】如果实数,x y 满足等式()2

223,x y -+=那么y x

的最大值为___________

心,以3为半径的

解答:根据已知等式,画出以()2,0为圆圆,则

y

x 的几何意义是圆上一点(),x y 与原点()0,0所连直线的

斜率.

显然, y

x

的最大值是过原点()0,0与圆

相切的直线OA 的斜

率,由2,3OC CA ==可得3

AOC π

∠=

.

于是,y x 的最大值是tan 33

π

= 【例7】设是方程0sin 1

tan 12=-+

θ

θx x 的两个不等实根,那么过点和的

直线与圆

的位置关系是___________

数思想方法与数学解题方法

中学解题数学思想方法与解题方法 第一部分:数学思想方法 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中莫基性成分,是学生获得数学能力必不可少的。 一、函数与方程思想 函数与方程的思想是中学数学最基本的思想。 所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。方程思想是解决各类计算问题的基本思想,是运算能力的基础。 高考把函数与方程思想作为七种重要思想方法重点来考查。 二、数形结合思想 数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。 数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。 数形结合思想研究的对象是数量关系和空间形式,即数与形两个方面由数思形,由形思数数形结合,用形解决数的问题。在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。 三、分类与整合思想 分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。 1)分类是自然科学乃至社会科学研究中的基本逻辑方法 2)从具体出发,选取适当的分类标准;划分只是手段,分类研究才是目的

初中数学解题思想方法

初中数学解题思想方法 数学解题思想方法有配方法、换元法、判别式法、待定系数法、消元法。以上是解题技 巧上的思想方法,比它们更具有普遍意义的思想方法有转化与化简思想方法、数学结合思想方法、归纳猜想、分类讨论、函数与方程思想等。在数学解题过程中我们要养成灵活运用数学思想方法的意义和习惯。 联想在解题中起着重要的作用,从自己的大脑知识仓库中找出与要解题目接 很相似 的原理、方法或结论,变通使用这些知识使问题得以解决。 一、配方法:是指将代数式通过配凑等途径,得到完全平方式或立方式,它广泛应用于 初中数学的各个方面,代数式的化简求值、解方程(组)、求最值等方面。 例1、求5245422 2-+-++y x y xy x 的最小值。 例2、设a ,b 为实数,求b a b ab a 222--++的最小值。 例3、在直角坐标中,有三点A (0,1),B (1,3),C (2,6),已知b ax y +=上横 坐标为0,1,2的点分别为D 、E 、F ,试求:222CF BE AD ++的最小值。 例4、已知x ,y ,z 是实数,且 0))((4)2=----z y y x x z (,求y z x 2+的值。 例5.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )(2012) A .18-. B .0. C .1. D . 98. 例6 .已知a<0,动点11(,),(1,0),,A a a B A B AB a a +-定点则两点距离的最小值为 二、换元思想方法 根据问题的特征或关系适当引进辅助的元素,替换原问题中的数、字母或式子,从而使 原问题得以解决,这种通过引用变量替换来解决问题的思想方法叫做换元思想方法,它是数学解题的一种基本思想方法,有着广泛的应用。 例722011 例8、已知12433++=a ,求 32133a a a ++的值。 (其中0402≥-≠mq ,n m )

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

高考数学解答题解题技巧

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学常用思想方法专题讲解

初中数学常用思想方法专题讲解 引入语 数学思想方法就是数学基础知识、基本技能的本质体现,就是形成数学能力、数学意识的桥梁,就是灵活应用数学知识与技能的灵魂、正确运用数学思想方法就是在中考数学中取得好成绩的关键、 解中考题时常用的数学思想方法有:整体思想、分类讨论思想、方程思想、转化的思想、数形结合思想、归纳与猜想的思想等、 中考解读 数学思想就是解决数学问题的灵魂,它在学习与运用数学知识的过程中起着关键性的指导作用、数学思想方法就是中考考查的重点内容之一,还因为它就是解决数学问题的根本策略,也就是学生数学素养的重要组成部分、数学思想总就是在解决问题的过程中体现出来,在中考中不会出现单纯的数学思想题目,这就增加了数学思想的掌握与训练的难度,但它也就是有规律的,只要勤于思考与总结,经过适当的训练,相信您一定能够掌握初中数学常用的思想方法、回顾近年全国各地的中考题,不难发现数学思想方法的考查频率越来越高,涉及的知识点也越来越多、预计2009年中考,对数学思想方法的考查可能呈现以下趋势:需要利用数学思想求解的题目稳中有增,涉及的知识点更加分散、其中,函数与方程思想的考查,很可能集中体现在应用题中;数形结合思想的考查以选择与填空为主;分类讨论思想的考查主要在求解函数、不等式、空间与图形、概率等问题中出现;……,总之,数学思想的掌握与训练应引起同学们的重视、 复习策略 由于数学思想总就是渗透在问题中,所以复习中要抓关键类型,突出重点知识与方法,比如方程思想与函数思想的联合复习等;要注意挖掘课本例、习题的潜在功能,以题思法,推敲其中的思想方法,多角度多侧面探讨条件的加强与弱化、结论的开放与变换、蕴含的思想方法、及与其她试题的联系与区别等,提高复习的效率、 题型归类 一、整体的思想 整体思想就是将问题瞧成一个完整的整体,把注意力与着眼点放在问题的整体结构与结构改造上,从整体上把握问题的内容与解题的方向与策略、运用整体思想解题,往往能为许多中考题找到简便的解法、 例1 (苏州市)若2 20x x --=, ( ) 分析:已知条件就是一个一元二次方程,通过求出方程的解再代入计算,当然可以得到结果,但就是显然很繁、注意到,条件可以转化为22x x -=,而且要求值的代数式中的未知部分都就是2 x x -,所以可以整体代入、 解:由条件得:22x x -=, 213、故应选A 、

高考数学选择题的解题技巧精选.

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

高中数学解题思想方法技巧:西瓜开门 滚到成功

第2 西瓜开门 滚到成功 ●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”. 数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号. ●典例示范 [题1] (2006年赣卷第5题) 对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1) [分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目. 其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论. [解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件. (ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件. 综合(i),(ii),本题的正确答案为C. [插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0. [再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想. [解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1). 满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C. [插语] 在这类 f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4 ,(x-1)3 4 ,自然要麻烦些. 由此看到,特殊化就是简单化. [再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题. 由于函数与图象相联,因此数形结合思想也容易想到. [解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合 条件. (右图水平直线) (ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1)

初中数学解题思维方法大全

初中数学解题思维方法大全 还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学 的解题思维和解题方法。暑假不出门,了解,助你在新学期解决数学难题。 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:特殊值淘汰法有些选择题所涉及的数学命题与字母的取值范围有关, 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然 后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既 采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这 样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义, 又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求 解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数 含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数 学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之 间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊 与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不 同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。

高考数学大题题型总结及答题技巧

高考数学大题题型总结及答题技巧 高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立 体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 17题三角函数 17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础; 18题立体几何 18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需 要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说 不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比 较大的影响,虽然高考的目的是选拔人才,但是全省的平均分也不能太低。 点击查看:高考数学大题有哪几种题型 提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点 是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂 直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。 19题导数 19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在 求导的过程中就找到思路了; 最适合高考学生的书,淘宝搜索《高考蝶变》购买 20题圆锥曲线 20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。 第二小题比较难,但是简单在有一定的套路,做题做多了就知道的套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中

初中数学解题技巧-常用的数学思想方法

初中数学解题技巧:常用的数学思想方法 初中数学解题技巧:常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果” 9、演绎法:由一般到特殊的推理方法。

高考数学几何大题解题技巧

高考数学几何大题解题技巧 1、平行、垂直位置关系的论证的策略 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2、空间角的计算方法与技巧 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算。 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式。 3、空间距离的计算方法与技巧 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有 时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与 平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5、平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6、与球有关的题型 只能应用“老方法”,求出球的半径即可。 7、立体几何读题 1弄清楚图形是什么几何体,规则的、不规则的、组合体等。 2弄清楚几何体结构特征。面面、线面、线线之间有哪些关系平行、垂直、相等。 3重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。 8、解题程序划分为四个过程 ①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。 ②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。 ③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。 ④回顾。对所得的结论进行验证,对解题方法进行总结。 感谢您的阅读,祝您生活愉快。

初中数学解题技巧(史上最全)

初中数学选择题、填空题解题技巧(完美版) 选择题目在初中数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。因此,要特别掌握初中数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。 1.排除选项法: 选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。 2.赋予特殊值法: 即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。 3.通过猜想、测量的方法,直接观察或得出结果: 这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。 4、直接求解法: 有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元 5、数形结合法: 解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。 6、代入法: 将选择支代入题干或题代入选择支进行检验,然后作出判断。 7、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。 8、枚举法:列举所有可能的情况,然后作出正确的判断。 例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( ) (A)5种(B)6种(C)8种(D)10种。分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B. 9、待定系数法: 要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。 10、不完全归纳法: 当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。 以上是我们给同学们介绍的初中数学选择题的答题技巧,希望同学们认真掌握,选择题的分数一定要拿下。初中数学答题技巧有以上十种,能全部掌握的最好;不能的话,建议同学们选择集中适合自己的初中数学选择题做题方法。 初中填空题解法大全 一.数学填空题的特点: 与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。考查内容多是“双基”方面,知识复盖面广。但在考查同样内容时,难度一般比择题略大。 二.主要题型: 初中填空题主要题型一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度

浅谈初中数学的数学思想方法

龙源期刊网 https://www.doczj.com/doc/7f3351471.html, 浅谈初中数学的数学思想方法 作者:赵金玲 来源:《祖国·建设版》2013年第03期 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。 1 初中数学思想方法教学的重要性 长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程听数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。 2 初中数学思想方法的主要内容 初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 2.1对应的思想和方法: 在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。 2.2数形结合的思想和方法 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难人微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。

相关主题
文本预览
相关文档 最新文档