当前位置:文档之家› 快速去除镍镉扩散镀层的清除剂组合物及其退镀方法

快速去除镍镉扩散镀层的清除剂组合物及其退镀方法

快速去除镍镉扩散镀层的清除剂组合物及其退镀方法
快速去除镍镉扩散镀层的清除剂组合物及其退镀方法

1/2页

快速去除镍镉扩散镀层的清除剂组合物及其退镀方法

技术领域

[0001] 本发明涉及一种化学去除镍镉扩散镀层的清除剂组合物溶液及其退镀方法。背景技术

[0002] 镍镉扩散镀层是五十年代发展起来的一项电镀工艺,该镀层的工艺特点是先镀低应力的、致密的镍层.再在镍镀层上镀镉.经335士5℃加热扩散.形成热扩散电镀合盘层。该扩散层具有底镍层、镍镉扩散层和表面微薄的富镉层结构。在高温下抗腐蚀能力非常强,成为钢基体的阳极防护层,能防止480℃下工作的碳钢、合金钢、不锈钢的氧化和锈蚀。近四十年来在国外航空发动机中不断得到应用,而且多用干重要的旋转部件和紧固件的表面防护。为防止来自进气道的空气中的水份和发动机工作的温度(4 00℃)而引起的腐蚀和氧化,镍镉扩散镀层以其优良的抗高温氧化、抗冲刷和耐腐蚀性能,被广泛应用于航空发动机压气机部件上。正是由于其优良的耐腐蚀性能导致该镀层去除十分困难。现有公开的镍镉扩散镀层去除方法存在镀层去除速度缓慢、劳动效率低、镀层去除不彻底、容易造成基本材料过腐蚀等特点。

[0003] 目前公开的能够在钢铁基体上退除铜镍铬及装饰性防腐镀层的方法,通常采用间硝基苯磺酸钠(防染盐S)和氰化钠,在强碱性条件下煮退或以阳极法退除。但这两种方法都对基体金属有腐蚀。采用浓硝酸退除法在操作时有一定的危险性,而且产生硝烟,必须有通风和处理硝烟的设施。浓硝酸吸水后,钢铁基体就会被腐蚀。不管如何处理,对环保都有一定影响,所以一般不采用。氰化钠和防染盐S 。这是传统方法,后来有人引进苛性钠、柠檬酸钠、硫脲等,但是氰化物还是主要载体,去掉后会降低退除速度和效果。处理温度超过70摄氏度时,有大量的混合性有毒气体外逸。在处理过程中,旁边不能站人。盐酸电解法和硫酸一磷酸电解法。这些方法在铜、镍、铬被退除剥离的过程中,对钢铁基体也会产生腐蚀。虽然引进缓蚀剂(如硫脲、六次甲基四胺及某些脂肪胺等)可以减少腐蚀,但终究还是腐蚀。碱性有机胺退除法。只有三乙醇胺对铁系金属有溶解作用,但化学溶解非常慢,电解阳极法溶解也不快,并放出有味的气体。总之,用强酸及其混合酸,对铜、镍、铬镀层均有去除能力。采用强酸实际上类似于化学抛光,不仅抛去了镀层,同时也抛去了基体—— 钢铁。这种方法既不清洁,也很不经济,所以不能作为退镀的研究路线。对于钢铁件上装饰性镀层的退除,一不能在强酸中进行,否则会腐蚀基体,二不能在强碱中进行,强碱虽对钢铁有钝化作用,但对镍也有钝化作用,故镍不能被退除。上世纪80年代初,采用蒸汽加温的阳极法对电镀铜、镍、铬后有缺陷的零件进行退镀。但是用蒸汽法退除镀层,钢铁基体不可避免地产生麻状腐蚀,退镀后的零件要重新抛光,才能重新进入工艺流程,这就是返工件。返工件镀完后的产品要降级为二等品。目前关于钢铁上装饰性镀层退除的方法很多,但是要不腐蚀钢铁基体则很困难。如果是化学法退除铜、镍、铬镀层,根据钢铁的物理化学性能及有机化学知识,无论采用何种物质及何种物理手段(高温、超声、振动等),要保持钢铁基体不腐蚀一直认为是是不太可能的。因此,在钢铁基体上实施无腐蚀退除铜、镍、铬镀层一直是业内研究的课题。到目前为止,能快速去除镍镉扩散镀层,而且对基体材料腐蚀深度小的方法还未见相关文献报道。

说 明 书CN 102888607 A 3

刀具涂层制备方法及应用

刀具涂层制备方法及应用 摘要:随着科学技术的发展,难加工材料的使用越来越多,为了适应这一要求,现代机械加工工业正朝着高精度、高速切削、干式切削技术、绿色制造以及降低成本等方向发展,也因为如此,人们对制造用刀具提出了更高的要求。涂层刀具有高硬度和优良的耐磨性,延长了刀具的寿命。当前刀具涂层制备方法主要包括化学气相沉积和物理气相沉积,刀具涂层的种类也日益丰富。涂层刀具的发展呈现涂层成分多元化,涂层结构多层化,涂层基体梯度化和涂层工艺灵活化的趋势。目前刀具涂层的制备也存在许多不足之处,主要体现在相关技术的研究不够深入方面。本文就刀具涂层的制备方法、刀具涂层制备问题以及刀具涂层的应用等方面进行了一些论述。 关键词:刀具涂层CVD PVD绿色制造清洁化生产 1、前言 随着科学技术的进步,难加工材料的使用日益增多,材料的力学性能不断提高,而且,对加工效率的要求也不断提高,传统的未涂层刀具常常不能适应新的要求。尽管目前常用的刀具如高速钢刀具(硬度66-70HRC)和硬质合金刀具(硬度89-93.5HR C)的硬度都很高,但是对于难加工材料的高效加工已不适用。虽然可以采取各种措施提高刀具材料的硬度与耐磨性,但同时必然带来刀具材料抗弯强度和冲击韧性的下降,即材料变脆,从而影响刀具的使用性能。 在高速钢刀具基体和硬质合金刀具基体上涂覆一层或多层硬度高、耐磨性好的金属或非金属化合物薄膜(如TiC,TiAIN,Al203等)的涂层刀具,结合了基体高强度、高韧性和涂层高硬度、高耐磨性的优点,降低了刀具与工件之间的摩擦因数,提高了刀具的耐磨性而不降低基体的韧性。因此,刀具涂层技术是解决刀具材料中硬度、耐磨性与强度、韧性之间矛盾的一个有效措施。刀具涂层是一种耐磨涂层,其特性要求是:耐磨性好、硬度高、化学稳定性好、摩擦系数低、导热性及稳定性好。 刀具涂层有类似于冷却液的功能,它产生一层保护层,把刀具与切削热隔离开来(因为难熔金属化合物有比刀具基体和工件材料低得多的热传导系数),使热量很少传到刀具,从而能在较长的时间内保持刀尖的坚硬和锋利。表面光滑的涂层(软涂层)还可以减少摩擦来降低切削热,保持刀具材料不受化学反应的作用,因为在大多数高速干切削中,高温对化学反应有很大的催化作用。通常软涂层和硬涂层作复合涂层,形成一个多涂层刀具,既有硬度高、耐磨性好的特性,又有摩擦系数小、切屑易流出的优点,有优良的替代冷却液的功能。

综述pvp

聚维酮的药用 【摘要】聚乙烯基吡咯烷酮,英文名:Polyvinyl Pyrrolidone,简称PVP,是性能优异、用途广泛的非离子型水溶性高分子精细化学品,由N- 乙烯基吡咯烷酮(N- vinylpyrrolidione,简称NVP)经自由基聚合而成。PVP 具有许多优良的物理化学性能,如优异的溶解性、低毒性、成膜性、增溶性、络合性、生理相容性、表面活性和化学稳定性等。 【关键词】聚维酮,药用 随着药物制剂工艺的不断发展,聚维酮作为非离子型水溶性高分子化合物药用辅料得到越来越广泛的应用。 聚维酮系列药用辅料的优异生理相容性是其固有而独特的产品性质,发展到如今,它已与纤维素类衍生物、丙烯酸类化合物一起成为当今三大主要合成药用辅料。 聚维酮系列根据K 值的不同可分为多种型号,其中应用最广泛的品种为K15、K30 及K90。中国药典仅收载K30 的质量标准,而英美药典是将所有聚维酮K 系列作为一个整体标准来收载的。目前,聚维酮作为药用辅料,具有多方面的制剂用途。 一.PVP在片剂中的应用 1.1 粘合剂 在片剂制造上,通常使用K25或K30。PVP广泛用作片剂、颗粒剂等的粘舍剂,用量一般为3~5% (W/W),粘合剂溶液浓度为0.5~5% (W/W)。所用PVP量的多少可直接影响片子的抗拉强度,

一般PVP用量越多,片子抗拉强度越大。粘台剂PVP采用不同的加入方法即内加法或外加法会影响片剂的崩解时间,内加法即PVP以干粉状态与药物粉末混合,然后以水或有机溶媒湿润制粒,外加法即PVP以有机溶媒或水溶解后再加入混好的药物粉末中。Wan LSC等研究表明,采用内加粘合剂制得片子较外加法崩解时间延长,溶解速度变慢。内加法特别适用于脏器浸膏和吸湿性大的药物。采用流化床喷雾干燥制粒(简称一步法制粒)是 当前片剂制粒工艺方面的一项新技术,在以PVP为粘合剂用流化床制粒时,所用PVP浓度、体积、喷雾速度、装料量等都会影响制得粒子的性质,采用低浓度、小体积、小喷雾速度、大装料量时可制得高质量的颗粒,该方法适用于许多品种。 国外以PVP作片剂粘台剂的品种较多,一般与淀粉、羟丙基甲基纤维素、微粉硅胶等制成混合浆,压片时可改善可压性,提高溶出性能。 对于湿热敏感的药物,可用PVP的有机溶液(一般用乙醇溶液)制粒。这样既避免了水分的影响,叉可在较低的温度下快速干燥。 对于疏水性药物,则适宜用PVP的水溶漉作粘合剂,这样布但易于均匀湿润,并且能使琉水性药物表面变为亲水性,有利于药物的溶出和片剂的崩解。 用于泡腾片。一般泡腾片内含有碳酸氢钠和枸橼酸的混合物,用PVP的无水乙醇溶液制粒时,不会发生酸碱反应.用5% PVP无水乙醇溶液作为含维生索C泡腾片的粘台剂,制得的颗粒可压性好,片

刀具涂层特点及应用

目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD和CVD的复合涂层等,从刀具制造商或涂层供应商那里可以很容易地获得这些涂层。本文将介绍一些刀具涂层共有的属性以及一些常用的PVD、CVD涂层选择方案。在确定选用何种涂层对于切削加工最为有益时,涂层的每一种特性都起着十分重要的作用。 1.涂层的特性 (1)硬度 涂层带来的高表面硬度是提高刀具寿命的最佳方式之一。一般而言,材料或表面的硬度越高,刀具的寿命越长。氮碳化钛(TiCN)涂层比氮化钛(TiN)涂层具有更高的硬度。由于增加了含碳量,使TiCN涂层的硬度提高了33%,其硬度变化范围约为Hv3000~4000(取决于制造商)。表面硬度高达Hv9000的CVD金刚石涂层在刀具上的应用已较为成熟,与PVD涂层刀具相比,CVD 金刚石涂层刀具的寿命提高了10~20倍。金刚石涂层的高硬度和切削速度可比未涂层刀具提高2~3倍的能力使其成为非铁族材料切削加工的不错选择。 (2)耐磨性 耐磨性是指涂层抵抗磨损的能力。虽然某些工件材料本身硬度可能并不太高,但在生产过程中添加的元素和采用的工艺可能会引起刀具切削刃崩裂或磨钝。 (3)表面润滑性 高摩擦系数会增加切削热,导致涂层寿命缩短甚至失效。而降低摩擦系数可以大大延长刀具寿命。细腻光滑或纹理规则的涂层表面有助于降低切削热,因为光滑的表面可使切屑迅速滑离前刀面而减少热量的产生。与未涂层刀具相比,表面润滑性更好的涂层刀具还能以更高的切削速度进行加工,从而进一步避免与工件材料发生高温熔焊。 (4)氧化温度 氧化温度是指涂层开始分解时的温度值。氧化温度值越高,对在高温条件下的切削加工越有利。虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证明它在高温加工中要比TiCN有效得多。TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVD TiAlN 涂层。 (5)抗粘结性 涂层的抗粘结性可防止或减轻刀具与被加工材料发生化学反应,避免工件材料沉积在刀具上。在加工非铁族金属(如铝、黄铜等)时,刀具上经常会产生积屑瘤(BUE),从而造成刀具崩刃或工件尺寸超差。一旦被加工材料开始粘附在刀具上,粘附就会不断扩大。例如,用成型丝锥加工铝质工件时,加工完每个孔后丝锥上粘附的铝都会增加,以至最后使得丝锥直径变得过大,造成工件尺寸超差报废。具有良好抗粘结性的涂层甚至在冷却液性能不良或浓度不足的加工场合也能起

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文 聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和 MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链 为聚合丙烯酸和侧链为聚醚 Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。 聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展 的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。 聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外, 也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。对于大中型的聚羧酸厂家,从聚羧酸

合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。 聚羧酸减水剂产品于 xx 年前后陆续投放市场之后,经历了早期的 APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。而聚醚产品按照设计产品的官能团种类和数量、侧链基团-(CH2CH2O)n-R的长短、极性与非极性基团的比例、单体的投料比及引发剂用量,已扩展到了多种衍生封端基团聚氧化烯醚类品种。 1.1 聚醚大单体的合成 1.2 新型聚醚类聚羧酸减水剂合成工艺 (1)采用自由基引发体系共聚:将适量的聚醚单体、水、烯基磺酸盐等按照一定比例放入三口烧瓶,边加热、边搅拌使之溶解均匀,调节至所需温度(一般60~75℃),控制温度,在1~2h内均匀滴加活性丙烯酸单体、分子调节剂、引发剂等原料,然后恒温水浴锅中保温,至聚合反应完成并匀化,降温中和,加水调节物料至设计浓度。

刀具涂层有哪些-刀具涂层种类大全

刀具涂层有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方 法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼 等超硬材料刀片上)而制备的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩 散和化学反应,从而减少了基体的磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳 定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍 以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。 现状 涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中 使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、 成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 类别 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚 石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀 片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以 上),可减少刀片的崩刃及破损,扩大应用范围。 新型涂层技术

Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。 涂层方法 生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD 相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。涂层材料 涂层材料须具有硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求。显然,单一的涂层材料很难满足上述各项要求。所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体

悬浮聚合-4.4无机分散剂(P124-P146)

4.4-无机分散剂 4.4.1 一般介绍 粉末状无机分散剂主要用于甲基丙烯酸甲酯,苯乙烯等单体的珠状悬浮聚合的场合。聚合结束后,吸附在聚合物珠粒表面的无机分散剂可以用稀酸洗去,保持聚合物制品的透明性,聚乙烯悬浮聚合很少选用无机分散剂。 在悬浮聚合方法的发展早期,就开始采用无机分散剂,长期来专利文献报道的无机分散剂种类很多,但经逐步淘汰,目前工业上使用的却只留几种。天然无机矿物粉末性能不稳定,首先被淘汰,氢氧化铝,磷酸钙占无机分散剂的主要地位。 无机分散剂单独使用时,要使悬浮液稳定,用量较多,效果也较差,如与少量表面活性剂复合使用,则可显著提高分散稳定效果,并减少用量。无机分散剂/高分子分散剂,/表面活性剂三者复合的当,也能取得良好效果。 无机分散剂是微细粉末,粒子愈细,则一定用量的覆盖面积愈大,悬浮液愈稳定。目前无机分散剂多由相应化学品经复分解沉淀反应就地配制,少量表面活性剂也可在配制时加入。在工艺上,可以用半沉降周期t1/2(min)来评价分散剂的细度或分散液的稳定性。所谓半沉降周期是将分散液倒入100ml量筒内,使其体积恰好到100ml刻度,然后静置,观察清液-浑浊液界面下移情况,当清液界面降到50ml刻度的时间即为t1/2。t1/2愈长,表明分散液愈稳定。 做深入研究时还可以测定单体液滴-固体粉末分散剂的接触角和液滴表面的吸附量,评价悬浮聚合体系的稳定性。所谓吸附量,是吸附前后分散液的浓度差除以吸附前的浓度,以百分比(%)表示。曾有报道,8种无机粉末对苯乙烯悬浮聚合稳定性的影响因素时发现,接触角θ>80。CaCO3,CoO,NiO等,稳定效果良好;50。<θ<80。,如Al2O3,Al(OH)3,ZnS等,也有稳定作用,但要使稳定的最小用量却是前一类的2倍;如θ<50。,如果石墨和高岭土,则将聚结。添加表面活性剂可以改变水-油-固的界面性质,润湿,吸附情况。对于单体-水-分散剂-表面活性剂的不同体系,对接触角大小的要求也不相同,上述数值仅供参考。 4.4.2 氢氧化镁或碱式碳酸镁 碳酸镁溶解度较大,很少用作悬浮聚合分散剂,而选用氢氧化镁或碱式碳酸镁。MgCl2 + 2NaOH→Mg (OH)2 + 2NaCl 碱式碳酸镁实际上是氢氧化镁和碳酸镁的复盐,由碳酸钠水溶液和硫酸镁(或氯化镁)水溶液就地反应而成。 2NaCO3 + 2MgSO4 + H2O →Mg(OH)2.MgCO3+2NaSO4+CO2 2NaCO3+2MgCl2+H2O→Mg(OH)2.MgCO3+NaCl+4NaCl+CO2 两溶液的加料次序,加料速度,搅拌速度,温度等因素对离子细度和悬浮聚合体系的稳定性均有影响。一般先将部分或全部碳酸钠水溶液,(8%-10%)加入配制槽内,保持60到70℃温度,在一定搅拌强度下以适当的速度同时加入余下的碳酸钠溶液和碳酸镁容液,(15%到16%)。加料次序颠倒,加料速度太慢,加料过快而搅拌速度太慢,或温度过高,均使沉淀粒子变粗从而使稳定保护效果变差。 氢氧化镁或碱式碳酸镁多用作甲基丙烯酸甲酯的悬浮(共)聚合,而苯乙烯悬浮聚合则多选用羟基磷酸钙做分散剂。

涂层刀具的应用现状及发展趋势

涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层可以提高切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高金属切削效率。本期话题, 主要讨论刀具涂层技术的最新进展情况和发展前景。 涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层提高了切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高了金属切削效率。今天,在切削刀具主流材料的硬质合金中,涂层硬质合金刀具占了80%,而其中CVD(化学涂层)又占了60%~ 65%,其余为PVD(物理涂层)。 在CVD涂层方面,包括TiCN、TiC、TiN、ZrCN和Al2O3等各种化合物的多层复合涂层对改善涂层的综合性能,如结合强度、韧性、耐磨性和抗磨性及耐腐蚀性具有良好的效果。现在典型的VCDTiN(外层)+ Al2O3(中层)+TiCN(内层)多层式结构正在从涂层工艺上和涂膜的厚度上得到进一步改善。MTCVD (中温化学涂层)因有较低的工艺温度和较快的沉积速率使得涂层与基体分界面上的脆性η相最小化,同时减少了在高温CVD涂层中常见的由高温导致的拉伸裂纹,因此,MTCVD TiCN涂层已成为CVD多层涂层中的一个主要构成,这种MTVCD已用于α- Al2O3涂层,如ISCAR的α-IC9150、α-IC9250、α-IC9350和α-IC4100等,提升了涂层与基体的结合强度和抗后面磨损、前面磨损和抗粘附的能力。 在PVD涂层方面,也从单一的TiN或TiCN或TiAlN涂层发展到现在的复合涂层即硬涂层+软涂层。为适应更高切削速度和干式切削的要求,涂层刀具的红硬性成为近几年PVD技术的开发热点。TiAlN的改进涂层AlTiN提高了薄膜中Al的含量(Al含量大于50%),提升了涂层的红硬性、化学稳定性和抗氧化的性能,如ISCAR的Al-IC910(加工铸铁和钢)、Al-IC900、Al-IC930(加工钢、不锈钢、硬钢、铸铁、 高温合金等)。 现代刀具涂层发展的一个重要特征就是复合化,为了提高其综合性能,涂层材料复合、涂层层复合以及CVD 与PVD复合,如ISCAR的DT7150(K05-K25)通过MTCVD Al2O3和PVD TiAlN复合涂层,提高了材质的综合性能,用于高速加工灰铸铁和球墨铸铁。而多样化是刀具涂层发展的另一个趋势,有各种氮化物、氧化物涂层材料,还有TiB、SN涂层、金刚石涂层、立方氮化硼涂层等等。多样化的深层次原因是专业化,即针对不同的需求采用不同的涂层,并能对涂层的组分、百分比、结构及厚度在更大范围内加以控制和改变,以适应不同的被加工材料和不同的切削条件,从而显著地提高刀具的切削性能。如CrAlN涂层,以Cr 元素替代Ti元素,具有3200HV硬度和1100℃的氧化温度,与TiAlN相比韧性更好,更适合断续切削和难加工材料的加工;以Si元素代替Al元素的涂层可获得用于硬切削的TiSiN,也可获得有润滑性的CrSiN,更适合用于铝、不锈钢等粘附性强的材料加工。此外,涂层材料的细微化是现代刀具涂层发展的另一个令人关注的趋势,纳米复合涂层正在越来越多的地方得到应用。在未来,刀具涂层将是一个系统的概念,即刀具涂层必须根据不断变化的现代切削应用条件来进行系统的组合,这是一种与传统观念中的“在刀具上涂覆一层薄膜”截然不同且复杂得多的系统工程方法,这需要我们进行系统思考。 刀具涂层进展概况 现代切削面临着不断发展的高速、高效、高精加工要求和愈来愈多的高强度、高韧性、难切削等高能级材

刀具涂层的特点及用途

刀具涂层的特点及用途 发布日期:[2008-6-10] 共阅[845]次 目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD和CVD的复合涂层等,从刀具制造商或涂层供应商那里可以很容易地获得这些涂层。本文将介绍一些刀具涂层共有的属性以及一些常用的PVD、CVD 涂层选择方案。在确定选用何种涂层对于切削加工最为有益时,涂层的每一种特性都起着十分重要的作用。 1.涂层的特性 (1)硬度 涂层带来的高表面硬度是提高刀具寿命的最佳方式之一。一般而言,材料或表面的硬度越高,刀具的寿命越长。氮碳化钛(TiCN)涂层比氮化钛(TiN)涂层具有更高的硬度。由于增加了含碳量,使TiCN涂层的硬度提高了33%,其硬度变化范围约为Hv3000~4000(取决于制造商)。表面硬度高达Hv9000的CVD 金刚石涂层在刀具上的应用已较为成熟,与PVD涂层刀具相比,CVD金刚石涂层刀具的寿命提高了10~20倍。金刚石涂层的高硬度和切削速度可比未涂层刀具提高2~3倍的能力使其成为非铁族材料切削加工的不错选择。 (2)耐磨性 耐磨性是指涂层抵抗磨损的能力。虽然某些工件材料本身硬度可能并不太高,但在生产过程中添加的元素和采用的工艺可能会引起刀具切削刃崩裂或磨钝。 (3)表面润滑性 高摩擦系数会增加切削热,导致涂层寿命缩短甚至失效。而降低摩擦系数可以大大延长刀具寿命。细腻光滑或纹理规则的涂层表面有助于降低切削热,因为光滑的表面可使切屑迅速滑离前刀面而减少热量的产生。与未涂层刀具相比,表面润滑性更好的涂层刀具还能以更高的切削速度进行加工,从而进一步避免与工件材料发生高温熔焊。 (4)氧化温度 氧化温度是指涂层开始分解时的温度值。氧化温度值越高,对在高温条件下的切削加工越有利。虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证

刀具涂层及种类

物理气相沉积(PVD) 法和化学气相沉积(CVD) 法,前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 对应克洛伊刀具涂层NC=CVD PC=PVD PVD 涂层种类涂层 特点 涂层硬 度 HV 涂层厚 度 μm 摩擦 系数 耐热 温度 涂层 颜色 应用范围 TiN 单层2300 2-3 0.6 600 金黄应用最为普遍,具有高硬度高耐磨性寄耐氧化性;适合大多数切削刀具,也适合多数成形模具及抗磨损工件 TiCN 单层2800 2-3 0.3 500 棕灰具有较低的内应力,较高的韧性以及良好的润滑性能;适合要求较低的摩擦系数而高硬度的加工环境。 TiAlN 单层3100 2-3 0.3 750 紫蓝化学稳定性好,具有高热硬性,极好的抗氧化和耐磨性,适合干切削场合。 CrN 单层1800 2-3 0.2 700 银灰有着显著的强润滑性能和耐高温特性,最适合铜类金属的切削刀具,以及耐磨耐腐零件的涂层 DLC 单层2500 1-2 0.1-0.2 300 黑灰优良的耐磨、耐腐蚀性能,摩擦系数极低,与基体结合力强。用于刀具时,通常以TiAlN 为基体配合使用,用以加工有色金属、石墨等材料 超A ( AHNO ) 多层3100 2-3 0.3 800 蓝紫 AHNO独特涂层配方,属于多层 复合高铝涂层,具有高硬度, 高耐磨性,较低的摩擦系数能 优点。在高温下稳定性强,特 别适合高速切削场合

复合材料 (2)综述

陶瓷基复合材料 摘要: 材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类. 复合材料是不同的材料结合在一起、形成一种结构较为复杂的材料。近年来,通过往陶瓷中加入或生成成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定的提高。陶瓷复合基材料就是以陶瓷材料为基体,并以陶瓷、碳纤维、难熔金属纤维、晶须、晶片和颗粒等为增强体,通过适当的复合工艺所构成的复合材料。本文主要综述了陶瓷基复合材料的发展状况,分类,基体,增强体,以及制备工艺等内容。 关键词:陶瓷基复合材料、基体、增强、制备。 1 陶瓷基复合材料的发展概况。 陶瓷材料作为技术革命的新材料早在十几年前就引起了美国的关注。近年来由于日本、美国、欧洲的竞相研究陶瓷材料技术得到迅速发展。作为能适应各种环境的新型结构材料陶瓷材料已步入了实用化阶段。为使陶瓷在更大范围内达到实用化国内外都对能改善陶瓷韧性陶瓷基复合材料进行了广泛研究。陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。因此,近几十年来,陶瓷基复合材料的研究有了较快发展。目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。 2 陶瓷基复合材料的分类 按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。 按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。

刀具涂层及如何正确选择刀具涂层

TiN、TiC、TiCN和TiAlN等刀具涂层及如何选择刀具涂层 TiN 氮化钛 TiAlN 氮化铝钛氮铝钛涂层氮铝化钛 TiCN 氮碳化钛 TiAlCN 氰化铝钛 Ti2N 氮化二钛 CrN, 氮化铬 ZrN, 氮化锆 AlTiN 氮化钛铝氮钛铝涂层 金刚公司推出的各种新型涂层 涂层颜色硬度HV 厚度μm 摩擦系数最高使用温度℃说明ZrCN复合兰灰 2500 1-4 550 通用性强 TiN单层金黄 2300 1-4 500 高性价比涂层 TiAlN复合紫色 3200 1-4 800 通用性强 AlTiN复合黑 3400 1-4 900 高速、高硬度加工 TiAlCrN 亚黑 3500 1-4 1000 特殊加工领域 TiCN渐层灰黑 3000 1-4 400 高韧性通用涂层

CrN渐层银亮 2000 3-15 700 适用加工铜、钛、模具 DLC 黑彩 1000~4000 400 适用于有色金属、石墨、塑胶 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而获得的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩散和化学反应,从而减少了月牙槽磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦因数小和热导率低等特性,切削时可比未涂层刀具提高刀具寿命3~5倍以上,提高切削速度20%~70%,提高加工精度~1级,降低刀具消耗费用20%~50%。因此,涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。目前,切削加工中使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以上),可减少刀片的崩刃及破损,扩大应用范围。 涂层方法 目前生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD相结合

浅谈使用复合分散剂的几点心得

浅谈使用复合分散剂的几点心得 目前,国内众多生产填充母料、色母料、消泡母料等的厂家都在大量使用复合分散剂这一母料专用分散助剂,业内不少专业人士也在各种平台上热议这一种材料,反映参差不齐。我通过使用这种材料近三年来也算有一些心得,与大家共同交流。 1、解决母料分散问题。 我当初从柯润欣公司购买复合分散剂,是看重这种材料具有分散、润滑、偶联等多重功效,能有效地解决和提高母料的分散性。使用后,母料的分散性的确得到很大的提高,原来母料中偶尔出现的堵网、白点等缺陷在近三年来客户使用过程中再也没出现,既稳定了产品,也稳定了客户,这是我最大的收获。 2、替代多种助剂。 我以前做填充母料,尤其是高档一点的,至少要使用四、五种以上的助剂(包括偶联剂),配方设计可以说是绞尽脑汁,现在我最多使用三种助剂就能解决,还省去了用偶联剂预先活化处理粉体这一环节。这还主要是考虑成本因素,不敢全部都用复合分散剂代替。而我作色母料就更简单了,就只用复合分散剂这一种助剂,配料和生产都减省多了。 3、关于添加比例问题。 我有时也听到一些同行朋友讲,他试用了复合分散剂没有达到理想的效果,而问他添加比例是多少,大多都说是不到百分之二,因为母料成本要求太低,不敢多加。我做过多种填充母料和色母料试验,复合分散剂的添加量至少要达到百分之二点五以上才能体现出它的特性,而添加比例越大,其优越的分散特性能越突出。我现在做填充母料时都将添加比例控制在百分之三点二到百分之四点五之间,而色母料达到百分之五到八。 4、关于如何组配和成本控制问题。 由于目前市面上母料价格一路走低,母料生产厂家对成本控制难度越来越大,很多同行朋友都面临提高产品性能和降低成本的两难境地,我同样也面临过这种情况。我处理的方法是,无论针对填充母料还是色母料客户,首先一点,要在产品性能上达到甚至高于客户的要求,避免退货或跑单。退货或跑单的损失远远大于我所追求的利润高低。根据复合分散剂的价格处在比较中等的情况,我在作填充母料组配时,就将复合分散剂作为分散主体,比例控制在产品能达到理想分散要求的条件下,然后补充一点低档次、低价位的其他助剂进行体系助剂补量,这样母料的分散有了保障,同时成本也更容易控制。而作色母料我以前大量采用EBS和进口PE蜡这些助剂,现在直接用复合分散剂代替了,分散性能同样好,

涂层刀具及其用法

涂层刀具及其用法 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而获得的。涂 层作为一个化学屏障和热屏障,减少了刀具与工件间的扩散和化学反应,从而减少了月牙洼磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦因数小和热导率低等特性,切削时可比 未涂层刀具提高刀具寿命3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。因此,涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。目前,切削 加工中使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以上),可减少刀片的崩刃及破损,扩大应用範围。 涂层方法 目前生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD相结合的技术,开发了复合的涂层工艺,称为PCVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至600℃以下(目前涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。

纳米复合材料及其制备技术综述

第23卷第4期2002年7月 江苏大学学报(自然科学版) Journal of Jiangsu U niversity(Natur al Science) V ol.23No.4 July2002 纳米复合材料及其制备技术综述 赵晓兵,陈志刚 (江苏大学材料科学与工程学院,江苏镇江212013) [摘 要]纳米材料是一种新型高性能的材料,已在工业生产中得到了广泛的应用 由于它具有特殊的用途和性能,更多地应用于一些特定的场合 纳米材料的制备方法一直是人们关注的热点问题,本文综述了纳米复合材料的制备方法,着重介绍了制备纳米复合材料的关键 纳米粉体的分散技术,重点介绍了几种常用的分散方法及其原理,并较全面地分析了纳米复合材料的应用前景 [关键词]纳米复合材料;制备方法;分散 [中图分类号]TB383 [文献标识码]A [文章编号]1671-7775(2002)04-0052-05 纳米材料是指三维空间中至少有一维处于纳米尺度的范围或由它们作为基本单元构成的材料 在纳米量级的范围内,材料的各种限域效应能够引起各种特性发生相当大的改变[1,2] 这些变化可以提高材料的综合性能,为发展新型高性能材料创造了条件 然而,单一的纳米晶材料在制备技术上存在困难,往往不能满足实际应用的需要,许多研究将纳米粒子和其他材料复合成纳米复合材料,这种复合材料有可能同时兼顾纳米粒子和其他材料的优点,具有特殊的性能 纳米复合材料的概念最早是由Rey和Kom arneni在20世纪80年代提出的[3] 纳米复合材料是由两种或两种以上的不同相材料组成,其复合结构中至少有一个相在一个维度上呈纳米级大小 纳米复合材料的组成可以是金属/金属、金属/陶瓷、陶瓷/陶瓷、无机(金属、陶瓷)/聚合物、聚合物/无机及聚合物/聚合物等不同的组合方式 1 纳米粉体的分散 由于纳米组分粒径小、比表面积大,极易形成尺寸较大的团聚体[4],从而使纳米复合材料中不存在或存在很少的纳米相,难以发挥纳米相的独特作用 因此,纳米组分在基体中的分散是制备纳米复合材料的关键,受到广泛的重视,目前主要采用以下几种方法实现纳米级分散 1 1 超声波分散 利用超声空化时产生的局部高温、高压或强冲击波和微射流等,弱化纳米粒子间的纳米作用能,可有效地防止纳米粒子的团聚 Lu将平均粒径为10nm的CrSi2加到丙烯晴-苯乙烯共聚物的四氢呋喃溶液中,经超声分散得到包裹高分子材料的纳米晶体[5] 采用超声波分散时,若停止超声波振荡,仍有可能使纳米粒子再度团聚 另外,超声波对极细小的纳米颗粒,其分散效果并不理想,因为超声波分散时,颗粒共振加速运动,使颗粒碰撞能量增加,可能导致团聚 1 2 机械搅拌分散 借助外力的剪切作用使纳米粒子分散在介质中 在机械搅拌下纳米粒子的特殊结构容易产生化学反应,形成有机化合物枝链或保护层,使纳米粒子更易分散 但搅拌会造成溶液飞溅,反应物损失 1 3 分散剂分散 1 3 1 加入反絮凝剂形成双电层 选择适当的电解质作分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间的库仑排斥作用使纳米粒子分散 例如,用盐酸处理纳米Al2O3后,在纳米Al2O3粒子表面生成三氯化铝(AlCl3),三氯化铝水解生成AlCl2+和AlCl2+,犹如纳米Al2O3粒子表面吸附了一层AlCl2+和AlCl2+,使纳米Al2O3成为一个带正电荷的胶粒,然后胶粒吸附OH-而形成一个庞大的胶团 如图1所示 由此可得分散较好的悬浮液 [收稿日期]2002-03-04 [基金项目]江苏省教育厅自然科学基金资助项目(99KJD430004) [作者简介]赵晓兵(1975-),男,河北石家庄人,江苏大学硕士生

涂层刀具的合理使用

涂层刀具的合理使用 被涂刀具表面应是光亮的磨光面,刀具各工作表面上不得有锈斑、磨糊、氧化、崩刃等缺陷,要求刃口上无毛刺。前、后刀面上的表面粗糙度应达到Ra<0.8~1.25μm。表面粗糙度值愈小,涂层的结合度愈好。此外,刀具表面的清洗质量也十分重要。 刀具基体材料 涂层刀具的基体材料与涂层材料应合理匹配,须根据不同的加工要求选用。涂层高速钢刀具的基体,既可用W6Mo5Cr4V2(M2)的通用型高速钢,也可用含钴的超硬高速钢和粉末冶金高速钢(PM HSS)。因粉末冶金的基体均匀,故使用效果好。加工钛合金时,推荐用含钴超硬高速钢如W2Mo9Cr4VCo8(M42)作为刀具的基体材料。对於涂层滚刀,当以正常切削速度(<45m/min)加工齿轮时,崩刃是滚刀磨损的主要原因,因此应选择韧性较好的W6Mo5Cr4V2高速钢作为刀具的基体材料;而在高速滚齿时(切削速度大於100m/min),月牙洼磨损是滚刀磨损的主要原因,因此应选用耐热性和耐磨性较高的含钴超硬高速钢或CW9Mo3Cr4VN 高速钢为刀具的基体材料。 涂层硬质合金刀具的基体,在加工钢材时,宜选择加工钢材的硬质合金,如WC-TiC-Co或WC-TiC-TaC-Co类合金(P30用得较多);加工铸铁和有色金属时,宜选择WC-Co类合金(K20用得较多)。 被加工材料的硬度及切削加工性,对涂层刀具的使用效果也有一定影响。试验证实,涂层刀具最适於切削高硬度和耐磨合金一类难加工材料。 刀具的几何角度 由於涂层的润滑性好,所以涂层刀具工作时常会在工件表面上打滑,为此涂层刀具上的後角应比未涂层刀具的後角略大。实践表明,对铰刀等一类精加工刀具,加大後角後,可使刃口锋利,切屑形成容易,打滑现象明显减少,刀具的使用性能提高。 切削用量和切削液 为了充分发挥涂层刀具的性能,必须正确选用切削用量和切削液。涂层刀具由于耐热性好,抗月牙洼磨损能力强,故可采用较大进给量和切削速度工作,但首先应选取较大进给量。通常涂层高速钢刀具采用的进给量比未涂层刀具提高10%~100%,提高20%~30%的切削速度是合适的。为了提高工效,涂层硬质合金刀具也可采用比未涂层刀具高25%~70%的切削速度进行切削。目前,用涂层硬质合金通用刀具加工中碳结构钢时的切削速度,立铣刀可达100~150m/min,钻头可达80~100m/min;丝锥加工铸铁为20~40m/min。 实践证明,使用20号机械油加10%煤油冷却时,可使涂层高速钢镗刀的寿命提高1~2倍。TiN涂层高速钢滚刀加工20CrMnTi(197HBS)钢制斜齿圆柱齿轮(模数m=5)时,使用20号机械油和煤油混合润滑,刀具寿命可提高5倍左右,即使重磨后也可提高2~3倍,干切时寿命仅提高1倍。 涂层刀具使用时还要求机床的精度好、刚性高和振动小,刀具或刀片的夹持也应牢固。 涂层刀具的重磨和重涂 涂层刀具磨损后必须进行重磨。涂层刀具重磨时,须将刀具上的磨损部分全部磨掉。对于只需重磨前刀面的刀具(如拉刀、齿轮滚刀和插齿刀等)或只需重磨后刀面的刀具(如钻头和铰刀等),若在其毗连切削刃的另一个刀面(如钻头的螺旋出屑槽)上的涂层未受损伤,刀具耐磨性即可提高。重新刃磨后的涂层刀

碳纳米管分散综述

碳纳米管的研究 摘要:综述了碳纳米管/聚合物复合材料制备过程中碳纳米管预先分散所使用的方法。为实现碳纳米管在聚合物中的分散,首先要求加入的碳纳米管本身具备足够的分散度。碳纳米管的分散方法主要有:表面化学修饰、分散剂分散、超声分散、机械分散、溶剂分散。 引言:自从1991年日本电镜专家Iijima首先在高分辨透射电子显微镜(HRTEM)下发现碳纳米管以来,碳纳米管优异的各项性能已经激起了众多研究人员对其结构、性能、应用的研究,并已取得了显著进展。纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出许多独特的物理化学性质。20世纪80年代初期纳米材料这一概念形成以后,世界各国都给予了极大关注。它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带米新的机遇。近年来,新型纳米材料和纳米技术在涂料工业中获得了大量应用,为提高涂料性能和赋予其特殊功能开辟了一条新途径。作为一种极具发展潜力的新型纳米材料,碳纳米管(CarbonNanotubes,CNTs)具有金属或半导体的导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等特性,将其应用于涂料领域,可使传统涂层的性能得到提升并赋予其新的功能。 1、碳纳米管的合成制备 1.1、碳纳米管主要制备法方法有电弧法、热解法和激光刻蚀法。其中电弧法(与Wolfgang-Kratschmer 法制备富勒烯类似)为在惰性气体气氛中,两根石墨电极直流放电,阴极上产生碳纳米管。热解法就是采用过渡金属作催化剂,700-1600K 的条件下,通过碳氢化合物的分解得到碳纳米管。激光刻蚀法采用激光刻蚀高温炉中的石墨靶子,碳纳米管就存在于惰性气体夹带的石墨蒸发产物中。碳纳米管的形成过程游离态的碳原子或者碳原子团,发生重新排布的过程。制备SWNT 时,必须添加一定数量的催化剂,如过渡元素(Ni、Co、Fe 等),或者镧系元素(Ld、Nd、La、Y 等),或者它们的混合物。催化剂在SWNTs 的生长过程中,能够降低弯曲应力,促进碳原子排列整齐并且阻止SWNTs 两端的富勒烯分子的形成。得到的碳纳米管的直径和直径分布主要取决于制备方法、催化剂的种类、生长温度等反应条件。 1.2、碳纳米管的进一步加工--- CNTs 的功能化(以SWNTs 为例): 目的:提高CNT 的溶解度,有助于纯化,并引入新的性能。 方式(与图中对照): ·共价功能化: A:端口功能化B:侧壁功能化 ·非共价功能化: C:表面活化剂功能化D:聚合物功能化E:内腔功能化

相关主题
文本预览
相关文档 最新文档