当前位置:文档之家› 先进控制技术规律和方法的综述

先进控制技术规律和方法的综述

先进控制技术规律和方法的综述
先进控制技术规律和方法的综述

先进控制技术规律和方法综述

在实际的工业控制过程中,很多系统具有高度的非线性、多变量耦合性、不确定性、信息不完全性和大滞后等特性。对于这种系统很难获得精确的数学模型,并且常规的控制无法获得满意的控制效果。

面对这些复杂的工业控制产生了新的控制策略,即先进控制技术。先进控制技术包括:自适应控制,预测控制,推理控制,鲁棒控制以及包括模糊控制与神经网络在内的智能控制方法。本文详细介绍了自适应控制、预测控制以及这两种先进控制的应用领域和优缺点。

1.自适应控制

自适应控制的思想是对于系统中的不确定性,以及控制任务的艰巨性,对于部分未建模的动态特性、变化的被控对象和干扰信号,及时地测得它们的信息,并根据此信息按一定的设计方法,自动地做出控制决策、修改控制器结构和参数,使其控制信号能够适应对象和扰动的动态变化,在某种意义上达到控制效果最优或次优。

1.1 自适应控制介绍

目前自适应控制的种类很多,从总体上可以分为三大类:自校正控制、模型参考自适应控制和其他类型的自适应控制。

自校正控制的主要问题是用递推辨识算法辨识系统参数,根据系统运行指标来确定调节器或控制器的参数。其原理简单、容易实现,现已广泛地用在参数变化、有迟滞和时变过程特性,以及具有随机扰动的复杂系统。自校正控制系统的一般结构图如图1所示。自校正控制适用于离散随机控制系统。

图1 自校正控制结构图

模型参考自适应控制,利用可调系统的各种信息,度量或测出各种性能指标,把模型参考自适应控制与参考模型期望的性能指标相比较;用性能指标偏差通过非线性反馈的自适应机构产生自适应律来调节可调系统,以抵消可调系统因“不确定性”所造成的性能指标的偏差,最后达到使被控的可调系统获得较好的性能指标的目的。模型参考自适应控制可以处理缓慢变化的不确定性对象的控制问题。由于模型参考自适应控制可以不必经过系统辨识而度量性能指标,因而有可能获得快速跟踪控制。模型参考自适应控制结构框图如图2所示,模型参考自适应控制一般用于确定性连续控制系统。

图2 模型参考自适应框图

其他形式的自适应控制系统是指除前面所描述的自校正控制系统和模型参考控制系统以外基于先进理论的自适应控制系统及多变量过程自适应控制系统、非线性自适应控制系统和权系数自适应控制系统等。

1.2 自适应控制应用及其优缺点

控制器参数的调整最早出现于1940年,直到20世纪50年代末,由于飞机控制器的需要,麻省理工学院首先提出了飞机自动驾驶仪的模型参考自适应控制方案。1960年至1970年间,伴随着控制理论的发展,自适应控制设计有了有效的基础,进入20世纪80年代后,随着数字机性能价格比的迅速改善和微机应用技术的不断提高,至此自适应控制得到了充分的应用。如今自适应控制得到进一步发展,其不仅在工业领域取得了较大的成功,而且在社会、经济和医学等非工业领域也进行了有益的探索。自适应控制的应用主要有以下几个方面:工业过程控制,智能化高精密机电或电液系统控制,电力系统的控制,航天航空、航海和无人驾驶,柔性结构与振动和噪声的控制,生物工程及武器系统。

同一般的反馈控制相比,自适应控制具有如下优点:

(1)一般反馈控制主要适用于事先确知的对象或确定性对象。自适应控制可应用先前无法确知的对象和时变对象。

(2)一般反馈控制具有抗干扰能力,能够消除状态扰动引起的系统误差。自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能够消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。

(3)一般反馈控制系统的设计需要掌握描述系统特性的数学模型及其环境变化状况。自适应控制系统设计很少依赖数学模型,只需要较少的先验知识,就可以通过自适应的控制设计实现控制目标。

(4)自适应控制是更复杂的反馈控制,与一般反馈控制相比增加了自适应控制机构或辨识器,还附加了一个可调系统,可以解决更复杂的控制问题。

2.预测控制

预测控制是一种基于预测模型的控制方法,采用了滚动优化,反馈矫正等方法。

(1)预测模型:预测控制是一种基于模型的控制算法,这一模型称为预测模型,预测模型的功能是根据对象的历史信息和未来输入预测其未来输出,这里只强调模型的功能而不强调其结构形式;因此预测模型既可以是差分方程、微分方程等参数模型,也可以是被控过程的脉冲响应、阶跃响应等非参数模型。

(2)滚动优化:预测控制是一种优化算法,它是通过某一性能指标的最优来取得未来控制作用的,与通常的离散最优控制算法不同,其不是采用一个对全局相同的优化性能指标,而是在每一时刻有一个相对于该时刻的优化性能指标。

(3)反馈校正:预测控制是一种闭环控制算法。由于实际系统受非线性、时变、模型失配、干扰等因素的影响,基于不变模型的预测输出不可能与系统的实际输出完全一致,而在滚动实施优化过程中,又要求模型输出与系统实际输出保持一致,为此在预测控制算法中采用检测实际输出与模型输出之间的误差进行反馈校正来弥补这一缺陷。

2.1 预测控制介绍

现在比较流行的算法包括有:动态矩阵控制(DMC);广义预测控制(GPC);内模控制(IMC)等。

DMC算法是采用基于对象阶跃响应特征的预测模型。设计过程中采用固定格式,用二次型目标函数决定控制量最优值增量序列,采用自校正动态矩阵控制等多种算法,用改变二次型目标函数中的权系数阵来实现。

DMC算法是一种基于对象阶跃响应模型的预测控制算法,适用于渐近稳定的线性对象,其结构如图3所示。

图3 DMC结构示意图

DMC算法主要特点是,算法比较简单、计算量较少、鲁棒性较强,比较适用于有纯时延、开环渐进稳定的非最小相位系统。该方法近年来已在冶金、石油、化工等领域得到了广泛的应用。

广义预测控制(GPC)是80 年代末产生的一种新型预测控制算法,该方法融合了自适应控制与预测控制的基本思想,与模型算法控制(MAC)和动态矩阵控制(DMC)的主要区别在于采用受控可控自回归积分滑动平均模型(CARIMA)。广义预测控制改进了最小方差自适应控制中对非最小相位系统敏感等缺点,具有模型参数少,对扰动、随机噪声、时滞变化有较强的鲁棒性等特点,GPC方法的结构如图4所示。

图4 GPC控制结构框图

在广义预测控制中,通过输出的测量值与模型的预估值,得到模型的预测误差,在利用模型预测误差来校正模型的预测值,从而得到更为准确的将来输出的预测值.

内模控制(IMC)是预测控制的重要组成部分,最先由Garcia于1982年提出的,因为它的设计简单、跟踪调节性能好、鲁棒性强、可以消除不可测干扰的影响,可以用来分析和设计预测控制系统。

1989年Morari透彻研究了内模控制的鲁棒性和稳定性,并且由其他学者推广到非线性系统,蓬勃发展中的神经网络也引入到内模控制中。内模控制还和许多其它控制方式相结合,如内模控制与模糊控制、内模控制和自适应控制、内模控制和最优控制、预测控制的结合使内模控制不断得到改进并广泛应用于工

程实践中,取得了良好的效果。内模控制的基本控制如图5所示:

图5 内模控制结构框图

在上图中给出的是连续系统的内模控制结构框图,其中R(s)为给定输入;()r G s 为参考输入滤波器;()c G s 为内模控制器;()f G s 为反馈滤波器;()G s 为被控对象模型;()m G s 为预测对象模型,也称为内部模型;()D s 为外部不可测扰动;()e D s 为反馈差值;()Y s 为被控对象的输出量。内部模型()m G s 的选取可以有多种方法,可以为参数模型,也可以是非参数模型,人们常常将预测控制算法等价变换为相应的内模结构,通过内模控制理论的结果来分析预测控制的稳定性和鲁棒性。

当内部模型与实际模型精确相等(()()p m G s G s =),且没有扰动时时开环控制,但实际生产过程中系统模型是无法准确的得到的,因此内模控制实际应用中是一种闭环控制方法,()e D s 反映了模型不确定性与外加扰动对系统的影响。IMC 系统具有对偶稳定性、理想控制器特性、零稳态偏差特性等优良特征。

内模控制器设计可分为两个阶段:首先,设计一个稳定的理想控制器,而不考虑系统的鲁棒性和约束;其次,引进滤波器,通过调整滤波器的结构和参数来获得期望的动态品质和鲁棒性。

2.2 预测控制应用及其优缺点

预测控制控制效果好、鲁棒性强,适用于控制不易建立精确数学模型,且比较复杂的工艺过程,并已在许多不同的控制对象中取得了成功的应用,如电力、化工、冶金、机器人手臂、投资决策、医疗、飞机自动驾驶仪、船舶自动舵、故障诊断等[7]。

目前,常用的预测控制应用于变化比较缓慢的生产过程或对象时,一般能取得较好的结果,而对于变化迅速而复杂的过程或对象,由于模型不精确、控制算法复杂和运算量大,往往难以实现在线实时控制。因此,寻找算法简单,建模容易,控制迅速而有效的方法一直是人们努力的方向。将智能技术引入控制系统是控制学科发展的必然趋势,对于大滞后过程来说,由于当前施加的控制作用,需要经过较长的时间才会在输出中反映出来,可见实现大滞后过程控制的关键在于对系统输出的预测。二十世纪70年代末从实践中发展起来的预测控制算法为大滞后系统的控制提供了一种方法。但现有的一些预测方法,如史密斯预估法,模型算法控制,

动态矩阵预报控制等,()

D s

都需要较精确的系统数学模型,因此建模成了预测控制发展的一个瓶颈。

目前,预测控制系统的研究方向,不仅先进预测控制和智能预测控制的研究备受人们关注,预测函数控制、多速率采样预测控制、多模型切换预测控制和有约束预测控制的研究也使很多专家学者产生了浓厚的兴趣,并且在这些方面的研究也取得了不少有意义的研究成果。

预测控制是基于模型的算法,而复杂时变的非线性系统难以用常规的方法来建立模型,致使常规的预测控制算法难以实现,其次预测控制算法中不可避免的存在着大量大矩阵的相乘、求逆等运算,计算周期过长,不适合于那些动态过程比较快的对象实时控制要求。还有由于预测控制采用以大范围输出预测为基础的在线滚动优化控制策略,使得预测控制闭环输入输出方程非常复杂,其主要设计参数都是以蕴含的方式出现在闭环传递函数中,而难以用解析表示式表示出各参数变化对闭环系统动静态特性、稳定性和鲁棒性的影响,难以给出设计参数变化的选择准则。这表明现有的理论研究仍远远落后于工业生产实际。

因此,突破现状解决预测控制中存在的问题,对促进这类富有生命力的新型计算机控制算法的进一步发展具有重要意义。

3.PID控制

PID控制策略是应用的最广泛的一种算法,它无论在模拟调节或数字控制中,都得到了广泛的应用。这种控制方法具有一系列特性:(1)PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,而且其配置几乎最优。利用比例P、积分I及微分D的上适当的配合,可使动态过程快速、平稳、准确,收到了良好的效果。(2) PID 控制适应性好,有较强的鲁棒性。(3)PID算法以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

3.1 PID控制介绍

①比例环节

成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。P 参数越小比例作用越强,动态响应越快,消除误差的能力越强。但实际系统是有惯性的,控制输出变化后,实际y(t)值变化还需等待一段时间才会缓慢变化。由于实际系统是有惯性的,比例作用不宜太强,比例作用太强会引起系统振荡不稳定。P参数的大小应在以上定量计算的基础上根据系统响应情况,现场调试决定,通常将P参数由大向小调,以能达到最快响应又无超调(或无大的超调)为最佳参数。优点:调整系统的开环比例系数,提高系统的稳态精度,减低系统的惰性,加快响应速度。缺点:仅用P 控制器,过大的开环比例系数不仅会使系统的超调量增大,而且会使系统稳定裕度变小,甚至不稳定。

②积分环节

控制器的输出与输入误差信号的积分成正比关系。主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数T,T越大,积分作用越弱,反之则越强。比例作用的输出与误差的大小成正比,误差越大,输出越大,误差越小,输出越小,误差为零,输出为零。由于没有误差时输出为零,因此比例调节不可能完全消除误差,不可能使被控的PV值达到给定值。必须存在一个稳定的误差,以维持一个稳定的输出,才能使系统的PV值保持稳定。这就是通常所说的比例作用是有差调节,是有静差的,加强比例作用只能减少静差,不能消除静差(静差:即静态误差,也称稳态误差)。为了消除静差必须引入积分作用,积分作用可以消除静差,以使被控的y(t)值最后与给定值一致。引进积分作用的目的也就是为了消除静差,使y(t)值达到给定值,并保持一致。积分作用消除静差的原理是,只要有误差存在,就对误差进行积分,使输出继续增大或减小,一直到误差为零,积分停止,输出不再变化,系统的PV值保持稳定,y(t)值等于u(t)值,达到无差调节的效果。但由于实际系统是有惯性的,输出变化后,y(t)值不会马上变化,须等待一段时间才缓慢变化,因此积分的快慢必须与实际系统的惯性相匹配,惯性大、积分作用就应该弱,积分时间I就应该大些,反之而然。如果积分作用太强,积分输出变化过快,就会引起积分过头的现象,产生积分超调和振荡。通常I参数也是由大往小调,即积分作用由小往大调,观察系统响应以能达到快速消除误差,达到给定值,又不引起振荡为准。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。PI控制器不但保持了积分控制器消除稳态误差的“记忆功能”,而且克服了单独使用积分控制消除误差时反应不灵敏的缺点。优点:消除稳态误差。缺点:积分控制器的加入会影响系统的稳定性,使系统的稳定裕度减小。

③微分环节

反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

3.2 PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID 控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。PID调试一般原则:

a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数T

i

c.在输出不振荡时,增大微分时间常数T

d

PID调试一般步骤

a.确定比例增益P:确定比例增益P时,首先去掉PID的积分项和微分项,一般是令

T i =0、T

d

=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允

许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID 的比例增益P为当前值的60%~70%。比例增益P调试完成。

b.确定积分时间常数T

i :比例增益P确定后,设定一个较大的积分时间常数T

i

的初值,

然后逐渐减小T

i ,直至系统出现振荡,之后在反过来,逐渐加大T

i

,直至系统振荡消

失。记录此时的T

i ,设定PID的积分时间常数T

i

为当前值的150%~180%。积分时间常

数T

i

调试完成。

c.确定积分时间常数T

d

:积分时间常数Td一般不用设定,为0即可。若要设定,与确

定P和T

i

的方法相同,取不振荡时的30%。

d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。变速积分的基本思想是,设法改变积分项的累加速度,使其与偏差大小相对应:偏差越大,积分越慢;反之则越快,有利于提高系统品质。

4 总结

在今后一段时间内,相对简单的反馈、前馈和其他成熟的控制技术仍将继续显示出其优点。由此,自适应控制和预测控制必须有新的突破性进展,在工程应用中才有可能对PID控制等传统方法取得压倒性优势,结合神经网络、模糊逻辑、知识库和专家系统等人工智能技术是最终实现这一远景的可能途径。

先进制造技术知识点总结

概述第一章先进制造技术的特点:先进性、广泛性、实用性、集成性、系统性、动态性。1、先进制造技术分为三个技术群:主体技术群、支撑技术群、制造技术环境。2、主体技术:面向制造的设计技术群(1)产品、工艺设计、 3 (2)快速成形技术(3)并行工程 制造工艺技术群:(1)材料生产工艺(2)加工工艺(3)连接与装配 (4)测试和检测(5)环保技术(6)维修技术(7)其他 支撑技术:(1)信息技术(2)标准和框架(3)机床和工具技术 (4)传感器和控制技术 4、先进制造技术研究的四大领域: (1)现代设计技术 (2)先进制造工艺技术 (3)制造自动化技术 (4)系统管理技术 4、美国的先进制造技术发展概况P10 美国先进制造技术发展概况:美国政府在20 世纪90 年代初提出了一系列制造业的振兴计划,其中包括“先进制造技术计划”和“制造技术中心计划”。

先进制造技术计划 美国的发展目标: 1、为美国人创造更过高技术、高工资的就业机会,促进美国经济增长。 不断提高能源效益,减少污染,创造更加清洁的环境。、2. 3、使美国的私人制造业在世界市场上更具有竞争力,保持美国的竞争地位。 4、使教育系统对每位学生进行更有挑战性的教育。 5、鼓励科技界把确保国家安全以及提高全民生活质量作为核心目标 三个重点领域的研究: 1、成为下一代的“智能”制造系统 2、为产品、工艺过程和整个企业的设计提供集成的工具 3、基础设施建设 第二章柔性制造系统(FMS)技术 1、柔性制造系统(FMS)的特点: (1)主要特点:柔性和自动化 (2)设备利用率高,占地面积小 (3)减少直接劳动工人数 (4)产品质量高而稳定

工厂电气控制技术复习资料及答案

工厂电气控制技术复习资料 、单选题 1. 某调速系统调速范围为150 —1500转/分,要求静差率为 0.02,此时该系统的静态转 速降是(A )。 = 1500 n max、 150 10n(仁) n 二n max、二1500 0.02 _ 3 n ~ D(1 —、)一10(1-0.02)一3 A. 3 B . 5 C . 10 D . 30 2. 某直流调速系统最高理想转速为 1450转/分,最低理想空载转速 250转/分,额定负载 静态速降为50转/分,该系统调速范围为( C )。 A . 3 B . 6 C . 7 D . 8 6-n N - n02 50 150 二 0.2 D n max6 n N (1450-50) 0.2 二7 n n N(1-、) 50(1-0.2) 3.某直流调速系统额定最高转速为1450转/分, 该系统调速范围为10,静差率为0.1 , 额疋负载时转速降洛为(C )。 A . 5.11 B .10.11 C .16.11 D .20.11 n 二n max、_ D(1-、) 1450 0.1 - 10(1-0.1) 16.1 1 4 ?双闭环调速系统在启动过程中调节作用主要靠( D )的作用。 A. P调节器 B . I调节器 C .速度调节器 D .电流调节器 5 .采用晶闸管通断控制法的交流电路( B )。 A .存在高次谐波 B .不存在高次谐波 C .存在少量的高次谐 D .有时存在高次谐波有时不存在高次谐波 6 .晶闸管调速系统中,PI调节器中的电容元件发生短路就会出现( A )。 A .调速性能下降 B .超速运行 C .无法调速 D .低速运行 7 .异步电机串级调速采用的电路是( B )电路。 A .无源逆变 B .有源逆变 C .普通逆变 D .整流 8 .为了保持小容量调速系统晶闸管不受冲击电流的损坏,在系统中应采用( D )。 A .电压反馈 B .电流正反馈 C .转速负反馈 D .电流截止负反馈 9.转速负反馈调速系统在稳定运行过程中,转速反馈线突然断开,电动机的转速会(A )。D

先进过程控制及其应用期末课程总结论文

先进控制技术及其应用 随着工业生产过程控制系统日趋复杂化和大型化,以及对生产过程的产品质量、生产效率、安全性等的控制要求越来越严格,常规的PID控制已经很难解决这些具有多变量、强非线性、高耦合性、时变和大时滞等特性的复杂生产过程的控制问题[]。 自上世纪50年代逐渐发展起来的先进控制技术解决了常规PID控制效果不佳或无法控制的复杂工业过程的控制问题。它的设计思想是以多变量预估为核心,采用过程模型预测未来时刻的输出,用实际对象输出与模型预测输出的差值来修正过程模型,从而把若干个控制变量控制在期望的工控点上,使系统达到最佳运行状态。目前先进控制技术不但在理论上不断创新,在实际生产中也取得了令人瞩目的成就。下面就软测量技术、内模控制和预测控制做简要阐述。 1.软测量技术 在生产过程中,为了确保生产装置安全、高效的运行,需要对与系统的稳定及产品质量密切相关的重要过程变量进行实时控制。然而在许多生产过程中,出于技术或经济上的原因,存在着很多无法通过传感器测量的变量,如石油产品中的组分、聚合反应中分子量和熔融指数、化学反应器反应物浓度以及结晶过程中晶体粒直径等。 在实际生产过程中,为了对这类变了进行实施监控,通常运用两种方法: 1).质量指标控制方法:对与质量变量相关的其他可测的变量进行控制,以达到间接控制质量的目的,但是控制精度很难保证。 2).直接测量法:利用在线分析仪表直接测量所需要的参数并对其进行控制。缺点是在线仪表价格昂贵,维护成本高,测量延迟大,从而使得调节品质不理想。 软测量的提出正是为了解决上述矛盾。 软测量技术的理论根源是20世纪70年代Brosilow提出的推断控制,其基本思想是采集过程中比较容易测量的辅助变量(也称二次变量),通过构造推断器来估计并克服扰动和测量噪声对主导过程主导变量的影响。因此,推断估计器的设计是设计整个控制系统的关键。 软测量器的设计主要包括以下几个方面: 1)机理分析和辅助变量的选择。 首先是明确软测量的任务,确定主导变量。在此基础上深入了解和熟悉软测量对象及有关装置的工艺流程,通过分析确定辅助变量。 2)数据采集和预处理 采集被估计变量和原始辅助变量的历史数据包含了工业对象的大量相关信息,因此数据采集越多越好。但是为了保证软测量精度和数据的正确性以及可靠性,采集的数据必须进行处理,包括显著误差检测和数据协调,及时剔除无效的数据。 3)软测量建模 软测量模型是建立是软测量技术的核心。软测量建模的方法多种多样,一般可分为:机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学和现代非线性系统信息处理技术等。 此外还有混合模型,如图1所示的软测量模型就是结合了BP网络、RBF网络和部分最小二乘法建立的混合模型[5]。 4)软测量模型的在线校正 图1 软测量模型

工厂电气控制技术测试题

工厂电气控制技术测试题 1电磁机构的吸力特性与反力特性的配合关系是()。 A、反力特性曲线应在吸力特性曲线的下方且被此靠近; B、反力特性曲线应在吸力特性曲线的上方且彼此靠近; C、反力特性曲线应在远离吸力特性曲线的下方; D、反力特性曲线应在远离吸力特性曲线的上方。正确答案:A 2关于接触电阻,下列说法中不正确的是()。 A、由于接触电阻的存在,会导致电压损失 B、由于接触电阻的存在,触点的温度降低 C、由于接触电阻的存在,触点容易产生熔焊现象 D、由接触电阻的存在,触点工作不可靠 正确答案:B 3为了减小接触电阻,下列做法中不正确的是()。 A、在静铁芯的表面上嵌有短路环; B、加一个触点弹簧; C、接触面xx; D、在触点上镶一块纯银块 正确答案:A 4由于电弧的存在,将导致()。 A、电路的分断时间加长; B、电路的分断时间缩短; C、电路的分断时间不变;

D、电路的分断能力提高 正确答案:A 5在接触器的铭牌上常见到AC3 AC4等字样,它们代表()。 A、生产厂家代号 B、使用类别代号; C、国标代号; D、名称代号。 正确答案:B 6电压继电器的线圈与电流继电器的线圈相比,具有的特点是( A、电压继电器的线圈匝数多、导线细、电阻小; B、电压继电器的线圈匝数多、导线细、电阻大; C、电压继电器的线圈匝数少、导线粗、电阻小; D、电压继电器的线圈匝数少,导线粗,电阻大。 正确答案:B 7增大电压继电器的返回系数,应采的办法是()。 A、减小非磁性垫片的厚度; B、增大非磁性垫片的厚度; C、减小衔铁吸合后的气隙; D、增大衔铁释放后的气隙。)。正确答案:B 8在延时精度要求不高,电源电压波动较大的场合,应选用()

通用运动控制技术现状、发展及其应用

作者:蒋仕龙吴宏吕恕龚小云(固高科技(深圳)有限公司深圳518057 )摘要:运动控制技术的发展是制造自动化前进的旋律,是推动新的产业革命的关键技术。运动控制器已经从以单片机或微处理器作为核心的运动控制器和以专用芯片(ASIC)作为核心处理器的运动控制器,发展到了基于PC 总线的以DSP 和FPGA 作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的先进运动控制技术。基于网络的开放式结构和嵌入式结构的通用运动控制器逐步成为自动化控制领域里的主导产品之一。高速、高精度始终是运动控制技术追求的目标。充分利用DSP 的计算能力,进行复杂的运动规划、高速实时多轴插补、误差补偿和更复杂的运动学、动力学计算,使得运动控制精度更高、速度更快、运动更加平稳;充分利用DSP 和FPGA 技术,使系统的结构更加开放,根据用户的应用要求进行客制化的重组,设计出个性化的运动控制器将成为市场应用的两大方向。关键词:运动控制技术,运动控制器,点位控制,连续轨迹控制,同步控制 1 通用运动控制技术的发展现状运动控制起源于早期的伺服控制(Servomechanism)。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控(CNC)技术、机器人技术(Robotics)和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC 方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。由国家组织的开放式运动控制系统的研究始于1987 年,美国空军在美国政府资助下发表了著名的“NGC(下一代控制器)研究计划”,该计划首先提出了开放体系结构控制器的概念,这个计划的重要内容之一便是提出了“开放系统体系结构标准规格(OSACA)”。自1996年开始,美国几个大的科研机构对NGC 计划分别发表了相应的研究内容[3],如在美国海军支持下,美国国际标准研究院提出了“EMC(增强型机床控制器)”;由美国通用、福特和克莱斯勒三大汽车公司提出和研制了“O MAC(开放式、模块化体系结构控制器)”,其目的是用更开放、更加模块化的控制结构使制造系统更加具有柔性、更加敏捷。该计划启动后不久便公布了一个名为“OMAC APT”的规范,并促成了一系列相关研究项目的运行。通用运动控制技术作为自动化技术的一个重要分支,在20 世纪90 年代,国际上发达国家,例如美国进入快速发展的阶段。由于有强劲市场需求的推动,通用运动控制技术发展迅速,应用广泛。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的产业领域接受,并且它已经达到一个引人瞩目的市场规模。根据ARC 近期的一份研究,世界通用运动控制(General MotionControl GMC)市场已超过40 亿美元,并且有望在未来5 年内综合增长率达到6.3%。目前,通用运动控制器从结构上主要分为如下三大类:⑴基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。⑵Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

电气系统概述

第一章电气系统概述 脱硫电气系统通常包括:供配电系统、电气控制与保护、照明及检修系统、接地防雷系统、通讯系统、电缆和电缆构筑物、电气设备布置等系统。 一、供配电系统 脱硫10kV设备电源分别取自主厂房10kV公用A段、B段。 脱硫系统低压采用380/220V供电方式,按炉分段,设有脱硫PC A、B段,两段之间设联络开关,每段分别由一台干式低压脱硫变压器供电,2台脱硫变互为备用,负担脱硫岛内全部低压负荷。脱硫PCA、B段之间设联络开关,手动切换。 低压380/220V系统采用PC<动力中心),MCC<电动机控制中心)两级供电方式。除设置脱硫PC A、B段外,在本项目中负荷比较集中的地方设置了脱硫工艺楼公用MCC段。MCC段采用双电源供电,电源分别引自脱硫PC A、B段,两电源手动切换。 380/220V厂用电系统为中性点直接接地系统,75kW及以上的电动机回路、所有MCC电源回路、100kW及以上的馈线回路、热工电源及I类电动机由PC供电,其余负荷由就近的MCC供电。75kW及以上的电动机回路、接于PC上的馈线回路采用空气断路器,75kW以下的电动机回路、MCC 上的馈线回路采用塑壳断路器。 为了使机组安全停机,本项目380V保安段采用双电源供电方式,正常情况下脱硫保安电源由本岛380V PC A,B段供电,PC段失电后由,由主机保安段继续供电。 为满足热工自动化装置对交流电的特殊要求,独立设置一套交流不停电电源系统

先进制造技术论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx 目录 概述 3 一、先进的工程设计技术 3 二、先进制造工艺技术 3 三、制造自动化技术(又可说成计算机控制自动化技术) 4 四、先进生产管理技术、制造哲理与生产模式 5 五、发展7 主要参考文献9 概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面: 先进的工程设计技术 先进制造工艺技术 制造自动化技术 先进生产管理技术、制造哲理与生产模式 发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等;

工厂电气控制技术课程标准.

烟台汽车工程职业学院 <<工厂电气控制>> 课程标准 专业带头人:杜俊贤 系主任:林治熙 教学中心:信息自动化教研室 批准日期:二〇一一年八月 二〇一一年八月

目录 一、课程概述 (1) (一)课程性质.............................................................. 错误!未定义书签。(二)课程基本理念...................................................... 错误!未定义书签。(三)课程设计思路...................................................... 错误!未定义书签。 二、课程目标..................................................................... 错误!未定义书签。(一)总体目标.............................................................. 错误!未定义书签。(二)具体目标.............................................................. 错误!未定义书签。 三、内容标准 (4) (一)学习目标 (4) (二)活动安排 (4) (三)知识要点 (9) (四)技能要点 (9) 四、实施建议 (10) (一)教学建议 (10) (二)考核评价建议 (10) (三)教材编写建议 (11) (四)实验实训设备配置建议 (12) (五)课程资源开发与利用建议 (18) 五、其它说明 (19)

计算机控制技术论文

计算机控制技术综述 自动化1206班张鹏程0909122829 计算机控制技术是利用计算机知识在不同的行业领域进行自动化生产,近年来,随着国民经济的发展,计算机信息技术被应用到各行各业中,计算机技术也在科技信息技术迅速发展的背景下有了很大程度的提升。 一计算机控制系统概述 计算机控制系统就是利用计算机来实现生产过程自动控制的系统。所谓自动控制,就是在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。下图为自动控制系统原理框图 二计算机控制系统发展概况 在生产过程控制中采用数字计算机的思想出现在20世纪50年代中期,TRW 公司的开创性工作为计算机控制技术的发展奠定了基础,从此计算机控制技术获得了迅速的发展。其发展过程分为以下四个阶段: 1 开创时期(1955-1962) 早期的计算机使用电子管。 2 直接数字控制时期(1962-1967) 计算机直接控制过程变量,完全取代了原来的模拟控制。 3 小型计算机时期(1967-1972) 出现了各种类型的适合工业控制的小型计算机。 4 微型计算机时期(1972至今) 微电子学的发展促进出现了各种计算机系统。 三计算机控制系统的工作原理 从本质上看,计算机系统的工作原理可归纳为以下三个步骤: 1 实时数据采集:对来自测量变送装置的被控量的瞬时值进行检测和输入。 2 实时控制决策:对采集到的被控量进行分析和处理,并按已定的控制规律,决定将要采取的控制行为。 3 实时控制输出:根据控制决策,适时地对执行机构发出控制信号,完成控制任务。下图给出了典型的计算机控制系统原理框图

四计算机控制技术的应用及发展 计算机控制技术在当今社会中应用十分广泛,尤其是在工农业生产中的应用,更是逐步提升优化,为企业节省了物资,人力,提高了工作效率,提升产品质量,节约成本,减少能源以及原材料的消耗。计算机控制技术以计算机技术为基础,用计算机数据系统代替传统操作系统,对一个生产设备的动向进行全程操控,是替代企业常规生产系统的一个新的发展方向。计算机控制系统改变了人们对自动化生产的认识,是企业生产中的一种革新。 计算机控制技术在生产线上应用的现状 在传统的工业生产或者是资源开发工作中都是以人力劳动为主。有些比较危险的工作,例如,石油、煤矿开采等安全隐患较大的工作,由于计算机信息技术的落后,无法实现自动化管理,常常导致意外事故的发生。随着科技的发展,企业的自动化生产设备逐步的更新,越来越多的工业生产逐渐减少原始劳动力。自动化生产中的最普遍最广泛采用的就是计算机总线技术。现场总线技术可以连接自动控制和机械设备,使自动化生产过程中的信息沟通更加的方便,是现代计算机技术控制自动化技术发展的主流。计算机技术依靠自身特有的灵活、通用的特点,很大程度上帮助自动化生产提高了工作效率,降低了企业的生产成本,提高了工业生产的质量。 计算机控制技术在生产线上的应用举例 1 在机器人自动化冲压生产线上的应用 在计算机技术比较发达,自动化管理技术应用比较普遍的今天,我们可以运用机器人下井采煤挖油等一些比较危险的工作,可以利用计算机技术对自动化装置设备进行全程监督和控制,利用总线技术对各个环节进行检测,对各个过程可能发生异常的环节进行有效的检测和预防。机器人自动化冲压生产线示意图如图所示。

先进控制技术及应用

先进控制技术及应用 1.前言 工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。 2、控制系统设计方案 2.1 动态矩阵控制(DMC)方案设计图 动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示: 图2-1 动态矩阵控制原理结构图 2.2 模型算法控制(MAC)方案设计图 模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示: 图2-2 模型算法控制原理结构图 3、模型建立 3.1被控对象模型及其稳定性分析 被控对象模型为 (1) 化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象 适用于DMC 算法和MAC 算法。 3.2 MAC 算法仿真 3.2.1 预测模型 该被控对象是一个渐近稳定的对象,预测模型表示为: )()1()(?)(?1j k j k u z g j k y m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内 部模型。(2)式也可写成矩阵形式为: )1()()1(?-+=+k FU k GU k Y m 4 1 11 8351.012713.0)(-----=z z z z G

PWM控制技术实现方法综述

PWM控制技术实现方法综述 引言 采样控制理论采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲脉冲加在具有惯性的环节上时,其效果基本相同。PWMPWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM 控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1 相电压控制PWM 1.1 等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2 随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3 SPWM法 SPWM(Sinusoidal PWM)法是一种比较成熟的、目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种方案。 1.3.1 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

过程控制综述报告

过程控制系统及工程综述报告 摘要:本文主要介绍了过程控制的发展史,回顾了计算机过程控制的发展状况以及未来的发展趋势,并且对过程控制和现代控制理论做了详细的论述 关键词: 过程控制、控制理论、控制工程、鲁棒控制等 1.过程控制的发展史 1.1 前沿 过程控制是工业自动化的重要分支。几十年来,工业过程控制取得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。 1.2 发展过程 在现代工业控制中, 过程控制技术是一历史较为久远的分支。在本世纪30 年代就已有应用。过程控制技术发展至今天, 在控制方式上经历了从人工控制到自动控制两个发展时期。在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。 从过程控制采用的理论与技术手段来看,可以粗略地把它划为三个阶段:开始到70 年代为第一阶段,70 年代至90 年代初为第二阶段,90 年代初为第三阶段开始。其中70 年代既是古典控制应用发展的鼎盛时期,又是现代控制应用发展的初期,90 年代初既是现代控制应用发展的繁荣时期,又是高级控制发展的初期。第一阶段是初级阶段,包括人工控制,以古典控制理论为主要基础,采用常规气动、液动和电动仪表,对生产过程中的温度、流量、压力和液位进行控制,在诸多控制系统中,以单回路结构、PID 策略为主,同时针对不同的对象与要求,创造了一些专门的控制系统,如:使物料按比例配制的比值控制,克服大滞后的Smith 预估器,克服干扰的前馈控制和串级控制等等,这阶段的主要任务是稳定系统,实现定值控制。这与当时生产水平是相适应的。 第二阶段是发展阶段,以现代控制理论为主要基础,以微型计算机和高档仪表为工具,对较复杂的工业过程进行控制。这阶段的建模理论、在线辨识和实时控制已突破前期的形式,继而涌现了大量的先进控制系统和高级控制策略,如克服对象特性时变和环境干扰等不确定影响的自适应控制,消除因模型失配而产生不良影响的预测控制等。这阶段的主要任务是克服干扰和模型变化,满足复杂的工艺要求,提高控制质量。1975 年,世界上第一台分散控制系统在美国Honeywell 公司问世,从而揭开了过程控制崭新的一页。分散控制系统也叫集散控制系统,它综合了计算机技术、控制技术、通信技术和显示技术,采用多层分级的结构形式,按总体分散、管理集中的原则,完成对工业过程的操作、监视、控制。由于采用了分散的结构和冗余等技术,使系统的可靠性极高,再加上硬件方面的开放式框架和软件方面的模块化形式,使得它组态、扩展极为方便,还有众多的控制算法(几十至上百种) 、较好的人—机界面和故障检测报告功能。经过20 多年的发展,它已日臻完善,在众多的控制系统中,显示出出类拔萃的风范,因此,可以毫不夸张地说,分散控制系统是过程控制发展史上的一个里程碑。第三阶段是高级阶段,目前正在来到。 1.3 过程控制策略与算法进度 几十年来,过程控制策略与算法出现了三种类型:简单控制、复杂控制与先进控制。 通常将单回路PID控制称为简单控制。它一直是过程控制的主要手段。PID控制以经典控制理论为基础,主要用频域方法对控制系统进行分析与综合。目前,PID控制仍然得到

智能控制技术综述

网络高等教育 本科生毕业论文(设计)需要完整版请点击屏幕右上的“文档贡献者” 题目:智能控制技术综述

20世纪20年代,在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步,许多新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。在智能控制技术比较的基础上,较详细地阐述了智能控制技术主要方式的特点及优化算法,并举例说明。智能控制技术将不断地发展和充实。 关键词:自动化;智能控制;应用

摘要............................................................. I 1 绪论.. (1) 1.1 智能控制技术简介 (1) 1.2 智能控制技术研究的领域及应用 (1) 1.2.1模糊逻辑控制 (1) 1.2.2神经网络控制 (1) 1.3 智能控制技术的应用现状 (1) 1.4 本论文的主要工作 (1) 2 智能控制理论概述 (2) 2.1 智能控制的基本概念 (2) 2.2 智能控制技术的主要方法 (2) 2.2.1 模糊控制 (2) 2.2.2 专家控制 (2) 2.2.3 神经网络控制 (3) 2.2.4 集成智能控制 (3) 2.3 智能控制技术常用的优化算法 (3) 2.3.1 遗传算法 (3) 2.3.2 蚁群算法 (3) 3 模糊控制及其应用 (4) 3.1 模糊控制理论提出 (4) 3.1.1 模糊控制理论的概念 (4) 3.1.2 模糊控制理论与传统控制相比的优势 (4) 3.2 模糊控制理论在制冷领域的应用情况 (4) 3.3 模糊控制理论在磨煤机控制系统领域的应用情况 (4) 4 神经网络控制及其应用 (5) 4.1 神经网络控制理论提出 (5) 4.1.1 神经网络控制理论的概念 (5) 4.1.2 神经网络控制理论与传统控制相比的优势 (5)

工厂电气控制技术概述

概述 电器与电气的区别 计划授课时间:2013.9.10 电器 泛指所有用电的器具,比如:电视机、电冰箱、风扇、电脑,从专业角度上来讲,主要指用于对电路进行接通、分断,对电路参数进行变换,以实现对电路或用电设备的控制、调节、切换、检测和保护等作用的电工装置、设备和元件。 按工作原理分类。 1)电磁式电器依据电磁感应原理来工作,如接触器、各种类型的电磁式继电器等。 2)非电量控制电器依靠外力或某种非电物理量的变化而动作的电器,如刀开关、行程开关、按钮、速度继电器、温度继电器等。 按动作原理分类 (1)手动电器用手或依靠机械力进行操作的电器,如手动开关、控制按钮、行程开关等主令电器。 (2)自动电器借助于电磁力或某个物理量的变化自动进行操作的电器,如接触器、各种类型的继电器、电磁阀等。 电气 电气就是以电能、电气设备和电气技术为手段来创造、维持与改善限定空间和环境的一门科学,涵盖电能的转换、利用和研究三方面,包括基础理论,应用技术,设施设备等。 电气含义 电气是以电能、电气设备和电气技术为手段来创造的/维持于改善限制空间空间和环境的一门科学,叫“电气”只要是以电能传输以及使用的途径只要有两种:一是直接的电的联系,每个电压等级内的所有用电设备,通过导线、断路器或者隔离开关等,均有电的直接联系。二是没有电的直接联系,而是通过气隙内的磁场进行能量交换(传输),比如说变压器的各绕组之间,就是通过气隙联系的。比如电机定子之间也都是通过气隙来联系的。 电气是指电气工程的弱电部分,只要研究信息的处理、变换;电子又可分为两块:电子电路和电子系统。电子电器(电子原件:制作电路板和电子设计的电子零部件,如二极管、三极管、硅类、LED灯。电子器件:有单个和多个电路板组成的一个电子功能器件),电子系统:由电子设备组成的一个系统即——弱电工程系统 电气之于电器,该怎么理解呢?电气/电气工程(EE),其外延涵盖了微电子,光子学,以及微机应用技术。但似乎又与我们谈论的电气有所偏差。但,可以肯定一点,大家所认同的是,电器是具体的物体形象,电气是不可触摸的分类概念!电气包含电器。“电气”者,外文翻译之词也,盖西方工业之初,动力机械均由蒸汽轮机驱动,后来则有了电,故“电气”者,开始泛指工业动力者也,然现在也无蒸汽轮机了,故干脆以电气泛指电了。 电气:根据字面的含义,感觉就是不可触摸的东西而有些却是能看到摸不着的,上面提到的以前的蒸汽机驱动,还有以前的蒸汽机火车。 从字面上的意思我认为电气在汽车上所包括的:汽车空调系统、汽车气囊、以及汽车上的一些辅助设备,空气净化器等一些设备原件。还包括一些用空气来来连接的一些开关。 电气:电气是以电能、电气设备和电气技术为手段来创造、维持与改善限定空间和环境的一门科学。电气设备指的是使用强电的设备,电子设备指的是使用弱电的设备。 电器:凡是根据外界特定的信号和要求,自动或手动接通或断开电路,继续或连续地改变电路参数,实现对电路的切换、控制、保护、检测及调节的电气设备均称为电器。 电器的范围要狭隘一些,而电气更为宽泛,与电有关的一切相关事物都可用电气表述,而电器一般是指保证用电设备与电网接通或关断的开关器件。电器侧重于个体,是元件和设备,而电气则涉及到整个系统或者系统集成。电气是广义词,指一种行业,一种专业,不具体指某种产品。电气也指一种技术,比如电气自动化专业,包括工厂电气(如变压器,供电线路)、建筑电气等;电器是实物词,指有具体的物质,比如电视机,空调等。 低压电器的作用与分类 控制电器按其工作电压的高低,以交流1200V、直流1500V为界,可划分为高压控制电器和低压控制电器两大类。

相关主题
文本预览
相关文档 最新文档