当前位置:文档之家› 抗硫管硫化物应力腐蚀开裂试验方法探讨

抗硫管硫化物应力腐蚀开裂试验方法探讨

抗硫管硫化物应力腐蚀开裂试验方法探讨
抗硫管硫化物应力腐蚀开裂试验方法探讨

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

应力腐蚀试验操作规程

文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位:

编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章: 目录

1.岗位职责及权限……………………………………………………………………(3 ) 2.主要设备参数及工装………………………………………………………………(3 ) 3.作业流程与操作规程………………………………………………………………(3~6)试样制备和要求………………………………………………………………( 3 ) 试验溶液………………………………………………………………………( 4 ) 推荐的试验装置………………………………………………………………( 4 ) 试验条件与步骤………………………………………………………………(4~5) RCC-M氯化镁应力腐蚀试验…………………………………………………(6 )结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………(6 ) 5.质量记录……………………………………………………………………………(6 ) 6.修訂記錄……………………………………………………………………………(7 ) 7.附件…………………………………………………………………………………(7 )

1.岗位职责与权限 岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责范围内的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 权限 1.2.1对职权范围内的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦%、双目显微镜 3.作业流程与操作规程 试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 中规定的水砂纸依次磨到W40号。然后用适当溶剂除油、洗净。 3.1.2 ASTM

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

腐蚀疲劳与应力腐蚀开裂的关系

腐蚀疲劳与应力腐蚀开裂的关系 河南邦信防腐材料有限公司 2017年3月整理

尽管腐蚀疲劳和腐蚀开裂在许多不同的情况下都可能发生,但是在某种程度上,它们被认为具有很大的相关性。当这两者同时发生时,会在许多行业内造成不可估量的经济损失。 近一个世纪以来,工程材料(主要是金属材料)的腐蚀疲劳已成为全球最重要的研究主题之一。第一次世界大战期间,这种腐蚀疲劳失效现象首先是在英国皇家海军某个设备的电缆中观察到的。如今,腐蚀疲劳已被认为是研究最为广泛的腐蚀失效类型之一。而自1960年代初以来,应力腐蚀开裂(SCC)也逐渐引起了人们的广泛关注。尽管在许多不同情况下腐蚀疲劳和应力腐蚀开裂会单独发生,但它们仍然被认为具有很大的相关性。众所周知,当这两种现象同时发生时,会在许多行业中导致设备失效并带来巨大的经济损失。这些失效都是突发性的和灾难性的,是近年来人们进行广泛的科学和工程研究的重要主题。但是,要了解腐蚀疲劳和应力腐蚀开裂如何相互作用,必须首先了解每种腐蚀类型涉及的机理。 什么是应力腐蚀开裂? 应力腐蚀开裂(SCC)被定义为由于机械应力和腐蚀的相互作用而发生的开裂现象。造成应力腐蚀开裂有很多因素,但与其中任何一种单独作用的因素相比,腐蚀性环境这一因素在材料中引起的应力产生的破坏一般更大。尽管SCC最常见于金属中,但它也可以存在于一些其他材料中,例如聚合物和玻璃等。 SCC带来的结果通常被认为是灾难性的,因为材料的强度会因此发生降低,随后材料的结构也可能发生破坏。 通常情况下,细微的腐蚀裂纹仅在材料的晶界处形成,而其余的区域则不受破坏。因此,在临时检查中通常很难检测到SCC损伤现象,并且不容易预测损伤的程度。 导致SCC进一步发展的原因之一是某些金属的晶界缺乏钝性。由于杂质在这些位置的偏析现象改变了材料的微观结构,使材料的表面钝化难以在边界界面处发生。

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

关于抗氢致开裂开裂及抗硫化物应力腐蚀开裂试验R-HIC钢板的问答

通常抗氢致开裂HIC(Hydrogen Induced Crack)主要是针对低碳高强度结构钢制压力管线讲的( 现代管线钢属于低碳或超低碳的微合金化钢)。目前国内生产的此类专用钢(抗HIC专用钢)主要材料牌号有:16MnR(HIC),20R(HIC),SA516(HIC)。该类钢的碳当量可用 Ce=C+Mn6+(Cr+Mo+V)5+(Ni+Cu)15计算。 质保书中C:0.022,Mn:1.05,Cr:18.20,Ni:8.32材料成分大致符合不锈钢00Cr19Ni10(GBT1220—1992)主要元素成分要求。提供的是00Cr19Ni10或类似材质,应该没有太大问题。 参考资料: 关于提高提高管线钢抗HIC能力的措施 提高管线钢抗HIC能力的措施有成份设计、冶炼控制、连铸工艺、控轧控冷等四个方面。展开来说,主要有三点: 提高钢的线纯净度。采用精料及高效铁水预处理(三脱)及复合炉外精炼,达到S≤0.001%,P≤0.010%,[O]≤20ppm,[H]≤1.3ppm。同时采用Ca处理。②晶粒细化。主要通过微合金化和控轧工艺使晶粒充分细化,提高成分和组织的均匀性。为此,钢水和连铸过程要电磁搅拌;连铸过程采用轻压下技术;多阶段控制轧制及强制加速冷却工艺;Tio处理,使得钢获得优良的显微组织和超细晶粒,最终组织状态是没有带状珠光体的针状铁素体或贝氏体。③昼降低含C量(C ≤0.06%),控制Mn含量,并添加Cu和Ni。从炼钢来看,宝钢、

武钢、鞍钢、攀钢、太钢等企业能生产不同等级的管线钢种,目前国内能生产X42、X52、X60、X65、X70等,X70目前在试用。管线钢国产化程度大幅度提高,产品质量有了显著的改进,产品的成份控制、强度、韧性、晶粒度、焊接性能等均已接近或达到国外同类产品的水平。 高S原油加工过程中硫腐蚀及防护选材准 则 https://www.doczj.com/doc/7f10543936.html,thread-4029-1-1.html (作者前言):2001年1月,中国石化科技开发部邀请英国壳牌石油公司材料专家霍普金申(音译)在南京就“高S原油加工过程中硫腐蚀及防护选材准则”做了讲座。由于国情不同和国外专家有所保留,这篇资料的有些内容不太全面。我将在写完全文以后把我自己的看法拿出来,请大家指点。 注:问----中石化各公司代表提问答----霍普金申 问1:精馏塔顶腐蚀的解决方法? 答:1.塔顶选用耐腐蚀材料。2.为了防止原油中的氯离子腐蚀,在原油中加NaOH中和;3.塔顶注入缓蚀剂。 问2:关于茂名石化精馏塔塔盘选用Monel(蒙耐尔)材料,你有什么看法? 答:日本解决的方法是用钛材,价格太高。蒙耐尔[便宜一些。另外可采用脱S的办法。原油中S含量要达到20磅千桶需要脱S。在原

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

第_7_章_应力腐蚀

7.1应力腐蚀断裂7.1应力腐蚀断裂 7.2 金属的氢脆和氢损伤7.2 金属的氢脆和氢损伤 7.4 腐蚀疲劳7.4 腐蚀疲劳 7.5 腐蚀磨损7.5 腐蚀磨损 7.3 晶须增强铝复合材料应力腐蚀行为的研究7.3 晶须增强铝复合材料应力腐蚀行为的研究

7.1 应力腐蚀断裂 7.1 应力腐蚀断裂 应力腐蚀-普遍而历史悠久的现象 古代波斯王国青铜少女头像上具有 黄铜弹壳开裂、黄铜冷凝管 蒸汽机车锅炉碱脆 铝合金在潮湿大气中的SCC 奥氏体不锈钢的SCC; 含S的油、气设备出现的SCC 航空技术中出现的钛合金的 腐蚀领域研究最多的课题-应力腐蚀开裂

一. 应力腐蚀断裂产生的条件及特征 1.必须有应力,拉伸应力越大,则断裂所需的时间越短。断裂所需应力,一般低于材料的屈服强度 2.腐蚀介质是特定的,只有某些金属-介质的组合,才会发生应力腐蚀断裂 3.断裂速度介于无应力时的腐蚀速度及单纯力学因素引起的断裂速度拉伸应力来源: 1.残余应力-加工、冶炼、装配过程中产生的 2.外应力及工作所承受的载荷 3.体积效应所造成的不均匀应力 7.1 应力腐蚀断裂7.1 应力腐蚀断裂 应力-力学因素

应力应力在特定破裂体系中起以下作用 应力引起塑性变形; 应力使腐蚀产生的裂纹向纵深扩展 应力使能量集中于局部 工作应力 应力-力学因素 7.1 应力腐蚀断裂7.1 应力腐蚀断裂

腐蚀-电化学因素 凡是能促使钝化膜不稳定的电势区域,都易产生应力腐蚀断裂 在活化-钝化以及钝化-再活化过渡区的很窄电位区内容易发生应力腐蚀 金属断裂-金属学因素 1.晶界吸附-晶界偏聚 2.晶界沉淀-过饱和固溶体脱溶沉淀时,在晶界择优不均匀长大 3.位错与金属结构交互作用 4.表面膜对位错运动的影响

黄铜制成品应力腐蚀试验方法

《黄铜制成品应力腐蚀试验方法》 编制说明 1.任务来源 鉴于环保要求,当今世界上无铅黄铜新材料研发方兴未艾,黄铜的特点之一是会产生应力腐蚀开裂,因此新材料研发及产品应用必须经过应力腐蚀试验验证。黄铜制成品除残余应力外,还可能受到安装应力的作用,而且不能通过热处理方法消除,故必须进行模拟安装使用状态下的应力腐蚀试验,但这正是现行的国家标准所欠缺的。国家标准GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》仅适用于黄铜加工材,不适用黄铜制成品。因此,很有必要制定《黄铜制成品应力腐蚀试验方法》的全国性通用标准。 根据工业和信息化部工信厅科[2010]74号文《关于印发2010年第一批行业标准制修订计划的通知》精神,全国有色金属标准化技术委员会以有色标委[2010] 21号文下达了制定《黄铜制成品应力腐蚀试验方法》行业标准的项目计划(计划号2010-0426T-YS),由路达(厦门)工业有限公司、中铝洛阳铜业有限公司负责起草标准,并要求在2011年完成标准制定工作。 2.起草过程 标准起草单位首先查阅了国内外有关黄铜应力腐蚀试验方法的标准和资料。国内标准有GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》。国外同类标准主要有:国际标准ISO 6957-1988《铜合金抗应力腐蚀的氨熏试验》、欧盟标准EN 14977-2006《铜及铜合金拉应力检测 5%氨水试验》(在英、法、德等国普遍使用)、美国标准ASTM B 858-06《检测铜合金应力腐蚀破裂敏感性的氨熏试验方法》和日本标准JIS H 3250-2006《铜及铜合金棒》。 本着起草通用试验新标准应积极采用国际标准和国外先进标准,且技术水平应不低于相应国际标准的原则,标准起草单位对ISO 6957-1988等国外同类标准进行正确翻译和认真解读。然后,根据正交实验原理,对多元因子分别选择多种水平,对典型产品在各种不同使用工况条件下进行了试验研究,掌握了大量的试验数据。通过对试验结果进行深入分析和比较,对国内外相关标准的技术水平有

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

铝合金应力腐蚀开裂ASTM G139(中文翻译版)

用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(等同采用ASTM G139-05(R2011))(中文翻译版) 编制: 日期: 审核: 日期: 批准: 日期: 修订历史 修订序号对应的条号修订内容修改人批准人日期

1. 目的Purpose 本标准试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 2. 范围Scope 本标准试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 3. 职责Responsibility 程序执行:实验室授权制样人员 程序监督:实验室技术负责人及相关责任人 4. 原理Principle 4.1本试验方法描述了使用暴露于腐蚀环境后的残余强度评估热处理铝合金产品形式(如板材、板材、挤压件、锻件和棒材)的应力腐蚀开裂敏感性的程序。这些产品通常在板材的长横方向、板材、挤压件和锻件的短横方向以及棒材和棒材的横方向上最易发生应力腐蚀开裂。在本试验中,根据规程G49制备的拉伸钢筋或直接拉伸板试样暴露于3.5重量%的氯化钠水溶液(规程G44)中,在其失效前移除,并进行拉伸试验,以确定已发生的腐蚀损伤量。然后计算平均剩余强度,并使用Box-Cox变换对结果进行统计分析。 4.2该程序要求暴露无应力试样,用于排除点蚀、晶间腐蚀和一般腐蚀的影响。这些现象会降低残余强度,但不

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

ASTM G139-05用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版)

ASTM G139-05(R2011) ASTM G139-05(R2015)最新 用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版) 1本试验方法由ASTM金属腐蚀委员会G01管辖,并由环境辅助开裂小组委员会G01.06直接负责。 当前版本于2011年9月1日批准。2011年9月出版。最初于2005年批准。上一版于2005年批准为G139-05。DOI: 10.1520/G0139-05R11。 本标准以固定名称G139发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。括号中的数字表示上次重新批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑性更改。 1、范围 1.1本试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。 1.2本试验方法包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 1.3本试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构(1,2)2相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 2括号中的黑体数字是指本标准末尾的参考文献列表。 1.4本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全和健康实践,并确定法规限制的适用性。 2、参考文件 2.1 ASTM标准:3 3有关参考的ASTM标准,请访问ASTM网站https://www.doczj.com/doc/7f10543936.html,,或通过Service@https://www.doczj.com/doc/7f10543936.html,联系ASTM客户服务。有关ASTM标准年鉴卷信息,请参阅ASTM网站上的标准文件摘要页。E8金属材料拉伸试验的试验方法 E691进行实验室间研究以确定试验方法精度的实施规程 G44在中性3.5%氯化钠溶液中交替浸入金属和合金的暴露规程 G47测定2XXX和7XXX铝合金产品应力腐蚀开裂敏感性的试验方法 G49直接拉伸应力腐蚀试样的制备和使用规程 G64热处理铝合金抗应力腐蚀开裂分类

硫化物应力腐蚀破裂的特点

硫化物应力腐蚀破裂的特点 在H2S腐蚀引起的破坏中,应力腐蚀破裂占很大比例,造成的破坏也最大。在天然气、石油钻采中出现油气管、套管、阀门等硫化物应力腐蚀破裂(以下称SSCC)事故调查中,发现SSCC具有许多特点: (1)在比预想低得多的载荷下断裂; (2)一般材料经短暂暴露后就出现破坏,以一星期到三个月的情况为多。但也有例外,例如合金钢制的气体钢瓶发生SSCC所经历的时间从开始充气后的24小时至5年; (3) SSCC的发生一般很难预测,事故往往是突发性的; (4)材料呈脆性断状态,断口平整; (5)碳钢和低合金钢断口上明显地覆盖着硫化物腐蚀产物,而不锈钢表面及断口往往无明显腐蚀迹象,腐蚀产物极少; (6)破裂源通常位于薄弱部位,这些部位包括应力集中点、机械伤痕(如刻痕、铲痕、打硬度痕迹等)、蚀孔、蚀坑、焊接热影响区、焊缝缺陷、冷加工、淬硬组织等; (7)裂纹粗,无分枝或少分支,多为穿晶型,也有晶间型或混和型; (8)对材料的强度与硬度依赖性很强,高强度、高硬度的材料对SSCC十分敏感;(9)未回火马氏体组织对SSCC特别敏感。 硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度

【精品】应力腐蚀试验机

【关键字】精品 《YF-C1型(铝合金C环)应力周浸腐蚀试验机》一、概述 YF-C1型(铝合金C环)试样周期浸润应力腐蚀试验机适用于测量铝合金厚板、挤压件和锻件在高向(短横向)上的应力腐蚀试验。主要应用于铝合金C环试样在一定应力情况下置于周期浸润腐蚀试验箱内进行的应力腐蚀试验等。本产品能模拟户外自然大气腐蚀条件,通过对铝合金C环试样及其焊接材料的耐大气腐蚀的人工气候应力腐蚀加速试验,来评价其耐户外大气腐蚀的质量性能,可供各种科研机构、厂矿中心试验室及航空、航天、机械、电子领域等对产品试样进行浸润腐蚀试验用。 二、满足规范 HB 5259-83 《铝合金C环试样应力腐蚀试验方法》 GB/T 15970.5-1998 《金属和合金的腐蚀应力腐蚀试验》 TB/T2375-93 《铁路用耐侯钢周期浸润腐蚀试验方法》 HB5194-1981 《周期浸润腐蚀试验方法》 GB/T 19746-2005 《金属和合金的腐蚀盐溶液周浸试验》 三、技术指标 1、试验机工作室内尺寸:1200 X 650 X 900( L×D×H); 2、试验机外尺寸:1600 X 800 X 1500 ( L×W×H); 3、腐蚀溶液槽内尺寸:550×250×120 ( L×W×H); 4、试验温度控制范围:室温~ ; 5、湿度控制范围:40%~70%RH; 6、试验温度控制基本点:+和35+; 7、湿度控制基本点:≯45%+5%RH ; 8、温度波动度:≯+; 9、湿度波动度:≯+5%RH; 10、浸润周期时间设定范围:1—9999分钟/小时(任意设定); 11、枯燥周期时间设定范围:1—9999分钟/小时(任意设定); 12、试验时间定时控制:1—9999小时/分钟(任意设定); 13、周浸轮速度调节:无极调速,转速误差≯0.5%;

硫化物应力腐蚀开裂(SSC)

H.7硫化物应力腐蚀开裂(SSC) H.7.1概述 对SCC的敏感性与渗透到钢材内的氢的量有关,这主要与pH值和水中的H2S含量这两个环境因素有关。典型地,人们发现钢中的氢溶解量在pH值接近中性的溶液中最低,而在pH值较低和较高的溶液中较高。在较低pH值中的腐蚀原因是因为H2S,反之在高pH值中腐蚀是因为高浓度的二价硫离子。若高pH值溶液中存在氰化物能够加剧氢渗透到钢材中。目前已知钢材对SCC的敏感性随H2S含量(例如H2S在气相中的分压,或液相中的H2S含量)的增加而增大。H2S含量为1ppm这样小浓度的水中也发现对SCC有敏感性。 对SCC的敏感性主要与材料两种物理参数有关硬度和应力水平。随着硬度的增加钢对SCC的敏感性也增加。通常对用于湿硫化氢环境的碳钢压力容器和管道不考虑SCC,因为它们具有较低的硬度(强度)。然而,焊接后的焊缝熔合区和热影响区具有高的残余应力。高的残余拉应力与焊缝结合增加了钢对SCC的敏感性。焊后热处理能够有效地减少残余应力,焊缝熔合区和热影响区的回火(软化)处理也有同样的效果。对每英寸厚度在大约1150℉(621℃)下保温一小时(最少一小时)的热处理方法被证明是一种对碳钢有效的防止腐蚀性开裂的消除应力热处理方法。对低合金钢有时需要更高的温度。控制硬度和减少残余应力被认为是防止SCC的方法,在NACE RP 0472中有详细描叙。 H.7.2基础数据 表H-8中列出了确定碳钢和低合金铁素体钢设备和管线对硫化物应力腐蚀开裂敏感性所需的基础数据。如果无法确定准确的工艺参数,则需咨询知识丰富的工艺工程师来进行预测。 H.7.3确定环境苛刻度 如果没有水存在,则认为设备和管线对SCC没有敏感性。如果有水存在,则用从表H-8中得出的有关水中的H2S含量和它的pH值的基础数据再从表H-9中估计环境苛刻度(潜在的氢溶解量)。 H.7.4确定对SCC的敏感性 用在表H-9中确定的环境苛刻度以及在表H-8中得到的有关最大布氏硬度和焊件焊后热处理的基础数据,从表H-10中确定对SCC的敏感性。按图H-5中流程来确定硫化物应力腐蚀的敏感性。

相关主题
文本预览
相关文档 最新文档