当前位置:文档之家› 第6章 金属的应力腐蚀和氢脆断裂

第6章 金属的应力腐蚀和氢脆断裂

第6章金属的应力腐蚀和氢脆断裂

6.1 应力腐蚀

?应力腐蚀(stress corrosion cracking,SCC):?金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

6.1 应力腐蚀?应力腐蚀产生条件:

?应力——拉应力;

?化学介质——特定的;

?材料——合金。

6.1 应力腐蚀

应力腐蚀断裂机理——滑移-溶解理论

钝化

滑移

膜破

阳极溶解图6-1 应力腐蚀断裂过程示意图

?应力腐蚀断口形貌特征

6.1 应力腐蚀

图6-2 应力腐蚀裂纹的分叉现象图6-3 奥氏体不锈钢应力腐蚀断口

腐蚀坑、黑色或灰

黑色断口,脆性

分叉,呈枯树枝状

6.1 应力腐蚀

图6-4 典

型的应力

腐蚀照片

?应力腐蚀抗力指标

应力腐蚀门槛值:将试样放在特定化学介质中永

不断裂的最大应力场强度因子K

Iscc 。

6.1 应力腐蚀

当K

1初始≥K

1scc

时,

发生应力腐蚀断裂。

6.1 应力腐蚀

?防止应力腐蚀的措施

?合理选择金属材料;

?减少或消除机件中的残余拉应力;?改善化学介质;

?采用电化学保护。

6.1 应力腐蚀

?应力腐蚀特点:

①造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力;

②应力腐蚀造成的破坏是脆性断裂,没有明显的塑性变形。

③只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。

④应力腐蚀的裂纹扩展速率一般在10-9-10-6m/s,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。

6.1 应力腐蚀

?应力腐蚀特点:

⑤应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的传播途径常垂直于拉力轴。

⑥应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物,而疲劳断口的表面,如果是新鲜断口常常较光滑,有光泽。

⑦应力腐蚀的主裂纹扩展时常有分枝。但不要形成绝对化的概念,应力腐蚀裂纹并不总是分枝的。

⑧应力腐蚀引起的断裂可以是穿晶断裂,也可以是沿晶断裂。如果是穿晶断裂,其断口是解理或准解理的,其裂纹有似人字形或羽毛状的标记。

6.2 氢脆

?氢脆:由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象。

?按照氢脆的来源可将氢脆分为:

?内部氢脆;

?环境氢脆。

6.2 氢脆

?按照脆断机制不同将氢脆分为:

?氢蚀

?白点

?氢化物致脆

?氢致延滞断裂:由于固溶状态氢的作用,受应力作用缓慢发生的断裂。

6.2 氢脆

?氢致延滞断裂的机理

孕育阶段:氢进入晶格、迁移、偏聚,氢气团“钉扎”位错;

裂纹亚稳扩展阶段:在外力作用下,氢气团和位错一起运动,遇到障碍而塞积,形成裂纹;氢聚集在裂纹尖端塑性区与弹性区界面上,形成裂纹与原裂纹汇合,使裂纹扩展;

裂纹失稳扩展阶段

6.2 氢脆

?氢脆的位错理论能成功地解释以下几个重要实验结果:

?氢脆对温度和形变速率的依赖关系。

?氢脆的裂纹扩展特性。

6.2 氢脆

?氢脆和应力腐蚀相比,其特点表现在:

?(1)实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀,而当施加一小阴极电流,使开裂加速者则为氢脆。

?(2)在强度较低的材料中,或者虽为高强度材料但受力不大时,其断裂源在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。?(3)断裂的主裂纹没有分枝的情况,这和应力腐蚀的裂纹是截然不同的。

6.2 氢脆

?(4)氢脆断口上一般没有腐蚀产物或者其量极微。?(5)大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。形变速度愈大,氢脆的敏感性愈小,当形变速率大于某一临界值后,则氢脆完全消失。氢脆对材料的屈服强度影响较小,但对断面收缩率则影响较大。

6.2 氢脆

?防止氢脆的措施

?环境因素

?力学因素

?材质因素

总结

?应力腐蚀的特点

1.裂纹从表面开始;

2.裂纹分叉,有较多的二次裂纹;

3.裂纹源区有较多的腐蚀产物覆盖着;

4.裂纹源可能有一个或多个。不一定在应力集中处萌生裂纹源;

5.一般为沿晶断裂,也有穿晶解理断裂;

6.必定要有拉伸应力(或残余拉应力)作用;

7.只有合金中发生,纯金属不发生应力腐蚀;

8.一种合金只对少数特定化学介质敏感,浓度可以很低;

9.无应力时,合金对腐蚀环境可能是惰性的;

10.阴极保护能明显减缓应力腐蚀开裂。

总结

?氢脆的特点

1.裂纹从内部开始;

2.裂纹几乎不分叉,有二次裂纹;

3.腐蚀产物较少;

4.裂纹源可能是一个或多个。多在三向应力区萌生裂纹源;

5.多数为沿晶断裂,也可能出现穿晶解理或准解理断裂;

总结

6.内部氢脆不一定要有拉应力作用;

7.合金和纯金属均可能发生;

8.只要在含氢的环境或在能产生氢的情况(如酸洗、电镀)下都能发生;

9.必须含有氢,强度越高,所需的含氢量越低;

10.阴极保护反而促进高强钢的氢脆倾向。

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

航空材料与腐蚀防护讲义 (腐蚀与防护部分)

第一章绪论 1.1 材料腐蚀的基本概念 腐蚀是一种自发过程。 腐蚀是由于环境作用引起的材料的破坏和变质。 从这个定义可以看出,材料(或结构)是否会发生腐蚀破坏,既取决于材料本身的性质,也与环境有关。 导致材料发生腐蚀的环境因素构成了腐蚀环境。腐蚀环境包括总体环境(大气环境)和工作环境。 随着非金属材料(塑料、橡胶,以及树脂基复合材料等)越来越多地用作工程材料,非金属材料的环境破坏现象也越来越引起人们的重视。因此,腐蚀科学家们主张把腐蚀的定义扩展到所有材料(金属和非金属材料)。 环境因素可以是机械的、物理的或化学的。如载荷造成的断裂和磨损,光和热造成的老化,氧化剂造成的氧化等。从这个意义来说,所有的材料破坏都可认为是腐蚀。这是腐蚀的广义概念。 但由机械的或物理的因素造成的材料或结构破坏,以及某些材料的老化等破坏形式,有专门的研究方法。所以通常所说的腐蚀是指由于环境因素与材料之间发生化学反应造成的破坏。这是腐蚀的狭义概念。 本课程中将主要介绍金属材料由于环境中化学因素造成的腐蚀及其控制。 1.2 研究材料腐蚀的重要性 材料腐蚀问题遍及国民经济的各个领域。从日常生活到交通运输、机械、化工、冶金,从尖端科学技术到国防工业,凡是使用材料的地方,都不同程度地存在着腐蚀问题。腐蚀给社会带来巨大的经济损失,造成了灾难性事故,耗竭了宝贵的资源与能源,污染了环境,阻碍了高科技的正常发展。 一、腐蚀给国民经济带来巨大损失 以金属材料为例,每年由于腐蚀而造成的经济损失约占国民经济生产总值的2%~4%(表1.1)。这些损失中包含了腐蚀的直接损失和间接损失,包括了浪费的材料和能源、腐蚀引起的原材料或产品的流失或污染、因腐蚀失效而损失的设备和结构、腐蚀降低设备性能造成的损失、因腐蚀造成的误工停产、因腐蚀导致的维修费用、控制腐蚀带来的费用,和因腐蚀造成的毒害物质泄漏所污染环境的治理费用等等。 表1.1 腐蚀造成经济损失的统计数据 国家统计年份腐蚀造成的经济损失占当年国民生产总值的百分比 美国1975 700亿美元 4.2% 1982 1260亿美元-

金属的应力腐蚀和氢脆断裂

第六章金属的应力腐蚀和氢脆断裂 §6.1应力腐蚀 一、应力腐蚀及其产生条件 1、定义与特点 (1)定义 (2)特点 特定介质(表6-1) 低碳钢、低合金钢——碱脆、硝脆 不锈钢——氯脆 铜合金——氨脆 2、产生条件 应力:外应力、残余应力; 化学介质:一定材料对应一定的化学介质; 金属材料:化学成分、显微组织、强化程度等。 二、应力腐蚀 1、机理(图6-1) 滑移——溶解理论(钝化膜破坏理论)

a)应力作用下,滑移台阶露头且钝化膜破裂(在表面或裂纹面); b)电化学腐蚀(有钝化膜的金属为阴极,新鲜金属为阳极); c)应力集中,使阳极电极电位降低,加大腐蚀;d)若应力集中始终存在,则微电池反应不断进行,钝化膜不能恢复。则裂纹逐步向纵深扩展。(该理论只能很好地解释沿晶断裂的应力腐蚀)2、断口特征 宏观:有亚稳扩展区,最后瞬断区(与疲劳裂纹相似);断口呈黑色或灰色。 微观:显微裂纹呈枯树枝状;腐蚀坑;沿晶断裂和穿晶断裂。(见图6-2,和p2) 三、力学性能指标 1、临界应力场强度因子K ISCC 恒定载荷,特定介质,测K I~t f曲线。 将不发生应力腐蚀断裂的最大应力场强度因子,称为应力腐蚀临界应力场强度因子。 2、裂纹扩展速度da/dt K I>K ISCC,裂纹扩展,速率da/dt Da/dt~ K I|曲线上的三个阶段(初始、稳定、失稳)由(图6-7,P152)可以估算机件的剩余寿命。 四、防止应力腐蚀的措施 1、合理选材; 2、减少拉应力; 3、改善化学介

质;4、采用电化学保护,使金属远离电化学腐蚀区域。 §6-2 氢脆 由于氢和应力的共同作用,而导致金属材料产生脆性断裂的现象,称为氢脆断裂(简称氢脆) 一、氢在金属中存在的形式 内含的(冶炼和加工中带入的氢);外来的(工作中,吸H)。 间隙原子状,固溶在金属中; 分子状,气泡中; 化学物(氢化物)。 二、氢脆类型及其特征 1、氢蚀(或称气蚀) 高压气泡(对H,CH4) 宏观断口:呈氧化色,颗粒状(沿晶); 微观断口:晶界明显加宽,沿晶断裂。 2)白点(发裂) 氢的溶解度↓,形成气泡体积↑,将金属的局部胀裂。 宏观:断面呈圆形或椭圆形,颜色为银白色。甚至有白线。 3)氢化物 形成氢化物(凝固、热加工时形成);或(应力作用下,元素扩散而形成)。 氢化物很硬、脆,与基体结合不牢。

腐蚀疲劳与应力腐蚀开裂的关系

腐蚀疲劳与应力腐蚀开裂的关系 河南邦信防腐材料有限公司 2017年3月整理

尽管腐蚀疲劳和腐蚀开裂在许多不同的情况下都可能发生,但是在某种程度上,它们被认为具有很大的相关性。当这两者同时发生时,会在许多行业内造成不可估量的经济损失。 近一个世纪以来,工程材料(主要是金属材料)的腐蚀疲劳已成为全球最重要的研究主题之一。第一次世界大战期间,这种腐蚀疲劳失效现象首先是在英国皇家海军某个设备的电缆中观察到的。如今,腐蚀疲劳已被认为是研究最为广泛的腐蚀失效类型之一。而自1960年代初以来,应力腐蚀开裂(SCC)也逐渐引起了人们的广泛关注。尽管在许多不同情况下腐蚀疲劳和应力腐蚀开裂会单独发生,但它们仍然被认为具有很大的相关性。众所周知,当这两种现象同时发生时,会在许多行业中导致设备失效并带来巨大的经济损失。这些失效都是突发性的和灾难性的,是近年来人们进行广泛的科学和工程研究的重要主题。但是,要了解腐蚀疲劳和应力腐蚀开裂如何相互作用,必须首先了解每种腐蚀类型涉及的机理。 什么是应力腐蚀开裂? 应力腐蚀开裂(SCC)被定义为由于机械应力和腐蚀的相互作用而发生的开裂现象。造成应力腐蚀开裂有很多因素,但与其中任何一种单独作用的因素相比,腐蚀性环境这一因素在材料中引起的应力产生的破坏一般更大。尽管SCC最常见于金属中,但它也可以存在于一些其他材料中,例如聚合物和玻璃等。 SCC带来的结果通常被认为是灾难性的,因为材料的强度会因此发生降低,随后材料的结构也可能发生破坏。 通常情况下,细微的腐蚀裂纹仅在材料的晶界处形成,而其余的区域则不受破坏。因此,在临时检查中通常很难检测到SCC损伤现象,并且不容易预测损伤的程度。 导致SCC进一步发展的原因之一是某些金属的晶界缺乏钝性。由于杂质在这些位置的偏析现象改变了材料的微观结构,使材料的表面钝化难以在边界界面处发生。

4 (顾望平) 石化设备腐蚀与防腐-讲义

石化设备腐蚀与防腐 国家压力容器与管道安全工程技术研究中心 (合肥通用机械研究院) 顾望平 教授级高级工程师 2010-11-26 mmgwp@https://www.doczj.com/doc/7217909362.html, 2 我国炼油厂行业的现状 原料劣质化趋势严重 部分装置原设计不能满足原料劣质化要求 部分重点装置材质升级不彻底 装置长周期安全运转的要求 设计与建设遗留问题多 管理粗放 缺乏技术支持 人员变动大 2010-11-26 mmgwp@https://www.doczj.com/doc/7217909362.html, 3 2737 3470 3680 45325604 6537 6913 5000 100001500020000250002004200520062007200820092010 总量 高硫 中国石化2010年加工原油硫含量平均1.22%,酸0.65mgKOH/g,API 达到30.02。标志着全面进入劣质原油加工时代。 面临着原油进一步劣质化的趋势 2010-11-26 mmgwp@https://www.doczj.com/doc/7217909362.html, 4 0.50 1.63 0.51 0.25 0.00 0.50 1.001.50 2.00 金陵1# 茂名3# 设防值 超出值 平均硫含量长期超出设防值的有2家企业2套装置,占总套数的3.92%;月平均酸值长期超出设防的有5家企业5套装置,占总套数 的9.8%。 % 1.00 1.00 1.00 0.50 1.50 0.11 0.16 0.26 0.88 0.84 0.00 0.501.00 1.50 2.002.50 3.00武汉新2# 安庆1#九江1#金陵1#齐鲁1# 设防值 超出值 硫含量 酸 值 mgKOH/g 2010-11-26 mmgwp@https://www.doczj.com/doc/7217909362.html, 5 随着原油性质不断劣质化,因腐蚀引起的装置非计划停工 一度成为非计划停工的主要原因。 2005年~2009上半年因腐蚀引起的非计划停工 因腐蚀非计划停工 33 32 25 26 14 9 7 5 9 30 51015202530352005年 2006年2007年 2008年2009上半年 非计划停工次数 腐蚀引起的次数 2010-11-26 mmgwp@https://www.doczj.com/doc/7217909362.html, 6 原油劣质化后加剧了腐蚀 为了提高油田的产量与降低原油采购成本,原油的腐蚀性增加了,其中的腐蚀元素越来越复杂;原油中的腐蚀介质:氯化盐、氟化物、硫化物、有机酸、氧、氮化物,有机氯化物,重金属等;运输和生产中加入的助剂:减阻剂、原油脱硫剂、脱钙剂、破乳化剂、中和剂、缓蚀剂、氯化物、酸、碱、氢氟酸、糠醛、胺等;炼制过程生成的:硫化氢、二氧化碳、氰化物、氢、盐酸、氨、氯化氨、有机酸、连多硫酸、二硫化物、酚等;

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

关于抗氢致开裂开裂及抗硫化物应力腐蚀开裂试验R-HIC钢板的问答

通常抗氢致开裂HIC(Hydrogen Induced Crack)主要是针对低碳高强度结构钢制压力管线讲的( 现代管线钢属于低碳或超低碳的微合金化钢)。目前国内生产的此类专用钢(抗HIC专用钢)主要材料牌号有:16MnR(HIC),20R(HIC),SA516(HIC)。该类钢的碳当量可用 Ce=C+Mn6+(Cr+Mo+V)5+(Ni+Cu)15计算。 质保书中C:0.022,Mn:1.05,Cr:18.20,Ni:8.32材料成分大致符合不锈钢00Cr19Ni10(GBT1220—1992)主要元素成分要求。提供的是00Cr19Ni10或类似材质,应该没有太大问题。 参考资料: 关于提高提高管线钢抗HIC能力的措施 提高管线钢抗HIC能力的措施有成份设计、冶炼控制、连铸工艺、控轧控冷等四个方面。展开来说,主要有三点: 提高钢的线纯净度。采用精料及高效铁水预处理(三脱)及复合炉外精炼,达到S≤0.001%,P≤0.010%,[O]≤20ppm,[H]≤1.3ppm。同时采用Ca处理。②晶粒细化。主要通过微合金化和控轧工艺使晶粒充分细化,提高成分和组织的均匀性。为此,钢水和连铸过程要电磁搅拌;连铸过程采用轻压下技术;多阶段控制轧制及强制加速冷却工艺;Tio处理,使得钢获得优良的显微组织和超细晶粒,最终组织状态是没有带状珠光体的针状铁素体或贝氏体。③昼降低含C量(C ≤0.06%),控制Mn含量,并添加Cu和Ni。从炼钢来看,宝钢、

武钢、鞍钢、攀钢、太钢等企业能生产不同等级的管线钢种,目前国内能生产X42、X52、X60、X65、X70等,X70目前在试用。管线钢国产化程度大幅度提高,产品质量有了显著的改进,产品的成份控制、强度、韧性、晶粒度、焊接性能等均已接近或达到国外同类产品的水平。 高S原油加工过程中硫腐蚀及防护选材准 则 https://www.doczj.com/doc/7217909362.html,thread-4029-1-1.html (作者前言):2001年1月,中国石化科技开发部邀请英国壳牌石油公司材料专家霍普金申(音译)在南京就“高S原油加工过程中硫腐蚀及防护选材准则”做了讲座。由于国情不同和国外专家有所保留,这篇资料的有些内容不太全面。我将在写完全文以后把我自己的看法拿出来,请大家指点。 注:问----中石化各公司代表提问答----霍普金申 问1:精馏塔顶腐蚀的解决方法? 答:1.塔顶选用耐腐蚀材料。2.为了防止原油中的氯离子腐蚀,在原油中加NaOH中和;3.塔顶注入缓蚀剂。 问2:关于茂名石化精馏塔塔盘选用Monel(蒙耐尔)材料,你有什么看法? 答:日本解决的方法是用钛材,价格太高。蒙耐尔[便宜一些。另外可采用脱S的办法。原油中S含量要达到20磅千桶需要脱S。在原

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

铝合金应力腐蚀开裂ASTM G139(中文翻译版)

用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(等同采用ASTM G139-05(R2011))(中文翻译版) 编制: 日期: 审核: 日期: 批准: 日期: 修订历史 修订序号对应的条号修订内容修改人批准人日期

1. 目的Purpose 本标准试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 2. 范围Scope 本标准试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 3. 职责Responsibility 程序执行:实验室授权制样人员 程序监督:实验室技术负责人及相关责任人 4. 原理Principle 4.1本试验方法描述了使用暴露于腐蚀环境后的残余强度评估热处理铝合金产品形式(如板材、板材、挤压件、锻件和棒材)的应力腐蚀开裂敏感性的程序。这些产品通常在板材的长横方向、板材、挤压件和锻件的短横方向以及棒材和棒材的横方向上最易发生应力腐蚀开裂。在本试验中,根据规程G49制备的拉伸钢筋或直接拉伸板试样暴露于3.5重量%的氯化钠水溶液(规程G44)中,在其失效前移除,并进行拉伸试验,以确定已发生的腐蚀损伤量。然后计算平均剩余强度,并使用Box-Cox变换对结果进行统计分析。 4.2该程序要求暴露无应力试样,用于排除点蚀、晶间腐蚀和一般腐蚀的影响。这些现象会降低残余强度,但不

GB-151-1999-讲义-管壳式换热器

管壳式换热器 GB151-1999 一.适用范围 1.型式 固定——P t 、P S 大,△t 小 浮头、U 形——P t 大,△t 大 * 一般不用于MPa P D 5.2>,易燃爆,有毒,易挥发和贵重介质。 结构型式:外填料函式、滑动管板填料函、双填料函式(径向双道) 2.参数 41075.1,35,2600X PN DN MPa P mm D N N ≤?≤≤。参数超出时参照执行。 D N :板卷按内径,管制按外径。 3.管束精度等级——仅对CS ,LAS 冷拔换热管 Ⅰ级——采用较高级,高级精度(通常用于无相变和易产生振动的场合) Ⅱ级——采用普通级精度 (通常用于再沸,冷凝和无振动场合) 不同精度等级管束在换热器设计中涉及管板管孔,折流板管孔的加工公差。 GB13296不锈钢换热管,一种精度,相当Ⅰ级;有色金属按相应标准。 4.不适用范围 受直接火焰加热、受核辐射、要求疲劳分析、已有其它行业标准(制冷、造纸等)P D <0.1MPa 或真空度<0.02MPa

+ 二.引用标准 1.压力容器安全技术监察规程——监察范围,类别划分*等 *按管、壳程的各自条件划类,以其中类别高的为准,制造技术可分别要求。 *壳程容积不扣除换热管占据容积计,管程容积=管箱容积+换热管内部容积。壳程容积=内径截面积X管板内侧间长度。 2. GB150-1998《钢制压力容器》——设计界限、载荷、材料及许用应力、 各受压元件的结构和强度计算。 3.有关材料标准。管材、板材、锻件等 4.有关零部件标准。封头、法兰(容器法兰、管法兰)紧固件、垫片、膨胀 节、支座等 三.设计参数 1.有关定义同GB150 2.设计压力Mpa 分别按管、壳程设计压力,并取最苛刻的压力组合(一侧为零或真空)。 管板压差设计仅适用确能保证管、壳程同时升降压,如1)自换热 2)P t P s 均较高,操作又能绝对保证同时升降压。 3.设计温度℃ 0℃以上,设计温度≥最高金属温度。 0℃以下,设计温度≤最低金属温度。 (一般可参照HG20580《设计基础》)

不锈钢材料基本知识讲义

不锈钢材料基本知识讲义 不锈钢专业名词 通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成,这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多,按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。 奥氏体不锈钢:在常温下具有奥氏体组织的不锈钢。钢中含Cr 约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni 钢和在此基础上增加Cr、Ni 含量

并加入Mo、Cu、Si、Nb、Ti 等元素发展起辀的高Cr-Ni 系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S、Ca、Se、Te 等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu 等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。 铁素体不锈钢:在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb 等元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了它的应用。炉外精炼技术(AOD 或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。 奥氏体--铁素体双相不锈钢:是奥氏体和铁素体组织各约占一半的不锈钢。在含C 较低的情况下,Cr 含量在18%~28%,Ni 含量在3%~10%,有些钢还含有Mo、Cu、Si、Nb、Ti、N 等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有

应力腐蚀断裂

一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且

工程材料作业第五、六章

第五章金属材料的主要性能 1 金属材料的力学性能指的是什么性能?常用的力学性能包括哪些方面的内容? 答:金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。 主要包括:强度、塑性、硬度、冲击韧度和疲劳等。 2 衡量金属材料强度、塑性及韧性常用哪些性能指标?各用什么符号和单位表示? 答:衡量金属材料的强度指标为:比例极限σp、弹性极限σe、弹性模量E、屈服 强度σs、抗拉强度σb、屈强比σs/σb。 衡量金属材料的塑性指标为:延伸率δ、断面收缩率ψ。 衡量金属材料的韧性指标为:冲击韧性指标:冲击吸收功Ak;断裂韧性指标:断裂韧度。 3、硬度是否为金属材料独立的性能指标?它反映金属材料的什么性能?有5种材料其硬度分别为449HV、80HRB 、291HBS 、77HRA 、62 HRC,试比较五种材料硬度高低。答:硬度不是金属材料的独立性能(它与金属抗拉强度成正比),是反映材料软硬程度的指标,表征材料表面抵抗外物压入时所引起局部塑性变形的能力。 80HRB<291HBS<449HV<77HRA <62HRC。 4、为什么说金属材料的力学性能是个可变化的性能指标? 答:(1)温度的改变会影响金属的塑性,而塑性与韧性和强度、硬度有关,则改变 温度会导致力学性能改变; (2)不同的承载情况会改变材料的力学性能,如很小的交变载荷也可使钢丝折断;不同的加工工艺也会改变材料的力学性能(为了使材料有不同的性能来满足我们的需要,就用了回火、淬火、正火等加工工艺)。 5、金属材料的焊接性能包括哪些内容?常用什么指标估算金属材料的焊接性能? 答:金属的焊接性能:①接合性能:金属材料在一定焊接工艺条件下,形成焊接缺 陷的敏感性。②使用性能:某金属材料在一定的焊接工艺条件下其焊接接头对使用要求的适应性,也就是焊接接头承受载荷的能力。 金属的焊接性能指标:碳当量、冷裂纹敏感系数。 6、如何表示金属材料耐腐蚀性能的高低? 答:金属的耐腐蚀性能通过材料遭腐蚀后,其质量、厚度、力学性能、组织结构及电极过程等的变化程度来衡量。 第六章、过程装备失效与材料的关系 1、名词解释 失效:装备在使用过程中,由于应力、时间、温度和环境介质等因素的作用,失去其原有功

附录H-应力腐蚀开裂技术模式

附录H-应力腐蚀开裂技术模块 H.1 范围 本模块为其破坏机理造成应力腐蚀开裂(SCC)的工艺设备建立一套技术模块次因子(可能的失效修正系数)。碱腐蚀开裂、胺腐蚀开裂、硫化物应力腐蚀开裂(SSC)、氢致开裂(HIC)、应力取向氢致开裂(SOHIC)、碳酸盐腐蚀开裂、连多硫酸腐蚀开裂(PTA)和氯化物腐蚀开裂(ClSCC)都在本模块范围内。有关造成应力腐蚀开裂的特定破坏机理的敏感性估计的技术补遗也包含在本模块中。专家的建议也可用于确定应力腐蚀开裂的敏感性。 H.2 技术模块筛选问题 没有可避开应力腐蚀开裂技术模块的筛选问题,所有设备都应输入此模块。 H.2.1必需数据 表H-1中列出了确定应力腐蚀开裂技术模块次因子必备的最少基本数据。 H.2.2附加数据 附加数据要求用于回答表H-2中列出的应力腐蚀(SCC)机理的筛选问题。各种SCC机理所需的更多数据列在各补遗基本数据表的开始部分。 H.3 基本假设 本技术模块假设每种SCC机理的敏感性均可由本模块中适用的章节确定。根据工艺、材料、制造参数将敏感性分为高、中、低三种等级。可确定“严重度指数”,它是设备/管道对裂纹(或萌生裂纹的可能性)的敏感性和一个裂纹导致泄漏的可能性的乘积。 本技术模块还以一种简单的方式处理已知的裂纹。由于某一特定裂纹或裂纹组引起的设备/管道损失效的可能性应通过使用更为先进的方法或合于使用评估进行进一步评估。 H.4 技术模块次因子(TMSF)的确定 确定技术模块次因子的流程图见图H-1A和H-1B。各个步骤及所需的表格在下面进行讨论。 H.4.1技术补遗的筛选问题 表H-2列出的的筛选问题,用于选择适用的SCC机理。 H.4.2确定每种潜在SCC机理的敏感性 关于每一SCC机理的各章节将确定该设备中可能的敏感性。 H.4.2.1存在裂纹的调整 如果设备中已经检测到SCC,那么其敏感性则认为是“高”。如果检测到的SCC的机理是已知的,则其敏感性应提升为“高”。如果检测到的SCC的机理是未知的,则所有潜在机理的开裂敏感性都应升为“高”。 H.4.3确定严重度指数 将各种SCC机理的敏感性输入表H-3,确定每种潜在/已有SCC机理严重度指数。 没有进行过检验的设备的严重度指数,将在下面每种应力腐蚀开裂机理中概述。 H.4.3.1最大严重度指数 249

应力腐蚀

第二节应力腐蚀开裂 (此处缺内容) 应力腐蚀开裂是危害性最大的局部腐蚀形态破坏形式之一,在腐蚀过程中,若有微裂纹形成,其扩展速度比其它类型的局部腐蚀速度要快几个数量级,SCC是一种“灾难性的腐蚀”如桥梁坍塌,飞机失事,油罐爆炸,管道泄漏都造成了巨大的生命和财产损失。此外,如核电站,船只,锅炉,石油化工也都发生过应力腐蚀断裂的事故。 二,应力腐蚀开裂的特征。 (一)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1,工作状态下构件所承受的外加载荷形成的抗应力。 2,加工,制造,热处理引起的内应力。 3,装配,安装形成的内应力。 4,温差引起的热应力。 5,裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (二)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。 而且介质中的有害物质浓度往往很低,如大气中微量的H2S和NH3可分别引起钢和铜合金的应力腐蚀开裂。空气中少量的NH3是鼻子嗅不到的,却能引起黄铜的氨脆。19世纪下半叶,英军在印度生产的弹壳每到雨季就会发生破裂。由于不了解真正的原因,当时给了个不恰当的名字叫“季脆”(原因是黄铜弹壳(1)应力加上印度大气中含有微量NH3)。再如奥氏体不锈钢在含有几个ppm氯离子的高纯水中就会出现应力腐蚀开裂。再如低碳钢在硝酸盐溶液中的“硝脆”,碳钢在强碱溶液中的“碱脆”都是给定材料和特定环境介质结合

后发生的破坏。氯离子能引起不锈钢的应力腐蚀开裂,而硝酸根离子对不锈钢不起作用,反之,硝酸根离子能引起低碳钢的应力腐蚀开裂,而氯离子对低碳钢不起作用。 (三)应力腐蚀开裂是材料在应力和环境介质共同作用下经过一段时间后,萌生裂纹,裂纹扩展到临界尺寸,此时由于裂纹尖端的应力强度因子K1达到材料的断裂韧性K1c,发生失稳断裂。即应力腐蚀开裂过程分为三个阶段:裂纹萌生,裂纹扩展,失稳断裂。 1,裂纹的萌生。 裂纹源多在保护膜破裂处,而膜的破裂可能与金属受力时应力集中与应变集中有关,此外,金属中存在孔蚀,缝隙腐蚀,晶间腐蚀也往往是SCC 裂纹萌生处。萌生期长短,少则几天,长达几年,几十年,主要取决于环境特征与应力大小。 2,裂纹扩展。 应力腐蚀开裂的裂纹扩展过程有三种方式。应力腐蚀开裂裂纹的扩展速率 d a/d t与裂纹尖端的应力强度因子K1的 关系具有图示的三个阶段特征。在第一 阶段da/dt随K1降低而急剧减少。当 K1降到Kiscc以下时应力腐蚀开裂裂纹 不再扩展,因此Kiscc时评定材料应力 腐蚀开裂倾向的指标之一。在第二阶 段,裂纹扩展与应力强度因子K1大小无 关,主要受介质控制。在这阶段裂纹出 现宏观和微观分枝(图)。但在宏观上, 裂纹走向与抗应力方向是垂直的。第三 阶段为失稳断裂,纯粹由力学因素K1 控制,da/dt随K1增大迅速增加直至断 裂。 (四)应力腐蚀开裂属于脆性断裂。即使塑性很高的材料也是如此。其断口呈多种形貌。有沿晶断,准解理,韧(2)等。 三,应力腐蚀开裂机制。 应力腐蚀开裂现象很多,目前尚未有统一的见解,不同学派的观点可能从电化学,断裂力学,物理冶金进行研究而强调了它们的作用。 (一)电化学理论。 1,活性通道理论。 该理论认为,在金属或合金中有一条易于腐蚀的基本上是连续的通 道,沿着这条活性通道优先发生阳极溶解。活性通道可以是晶界,亚 晶界或由于塑性变形引起的阳极区等。电化学腐蚀就沿着这条通道进 行,形成很窄的裂缝裂纹,而外加应力使裂纹尖端发生应力集中,引 起表面膜破裂,裸露的金属成为新的阳极,而裂纹两侧仍有保护膜为 阴极,电解质靠毛细管作用渗入到裂纹尖端,使其在高电流密度下加 速裂尖阳极溶解。该理论强调了在拉应力作用下保护膜的破裂与电化 学活化溶解的联合作用。 2,快速溶解理论。

相关主题
文本预览
相关文档 最新文档