当前位置:文档之家› Computational principles of learning in the neocortex and hippocampus

Computational principles of learning in the neocortex and hippocampus

Computational principles of learning in the neocortex and hippocampus
Computational principles of learning in the neocortex and hippocampus

Computational Principles of Learning in the Neocortex and Hippocampus

Randall C.O’Reilly&Jerry W.Rudy

Department of Psychology

University of Colorado Boulder

Campus Box345

Boulder,CO80309

oreilly@https://www.doczj.com/doc/7a17498827.html,

11th October2000

Published in Hippocampus,2000,vol10,p.389-397

Abstract

We present an overview of our computational approach towards understanding the different contributions of the neo-cortex and hippocampus in learning and memory.The approach is based on a set of principles derived from converging biological,psychological,and computational constraints.The most central principles are that the neocortex employs a slow learning rate and overlapping distributed representations to extract the general statistical structure of the envi-ronment,while the hippocampus learns rapidly using separated representations to encode the details of speci?c events while suffering minimal interference.Additional principles concern the nature of learning(error-driven and Hebbian), and recall of information via pattern completion.We summarize the results of applying these principles to a wide range of phenomena in conditioning,habituation,contextual learning,recognition memory,recall,and retrograde amnesia, and point to directions of current development.

2Computational Principles of Learning

Introduction

This paper presents a computational approach to-wards understanding the different contributions of the neocortex and hippocampus in learning and memory. This approach uses basic principles of computational neural network learning mechanisms to understand both what is different about the way these two neural systems learn,and why they should have these differences.Thus, the computational approach can go beyond mere descrip-tion towards understanding the deeper principles under-lying the organization of the cognitive system.These principles are based on an convergence of biological, psychological,and computational constraints,and serve to bridge between these different levels of analysis.

The set of principles discussed in this paper were?rst developed in McClelland,McNaughton,and O’Reilly (1995),and have been re?ned several times since then (O’Reilly,Norman,&McClelland,1998;O’Reilly& Rudy,1999,in press).The computational principles have been applied to a wide range of learning and memory phenomena across several species(rats,monkeys and hu-mans).For example,they can account for impaired and preserved learning capacities with hippocampal lesions in conditioning,habituation,contextual learning,recog-nition memory,recall,and retrograde amnesia.This pa-per provides a concise summary of the previous work, and a discussion of current and future directions.

The Principles

There are several levels of principles that can be dis-tinguished by their degree of speci?city in characteriz-ing the nature of the underlying mechanisms.We be-gin with the most basic principles and proceed towards greater speci?city.

Learning Rate,Overlap,and Interference The most basic set of principles can be motivated by considering how subsequent learning can interfere with prior learning.A classic example of this kind of interfer-ence can be found in the associative learning task(e.g.,Barnes&Underwood,1959).The repre-sents one set of words that are associated with two dif-ferent sets of other words,and.For example,the word window will be associated with the word reason in the list,and associated with locomotive on the list.After studying the list of associates,subjects are tested by asking them to give the appropriate associate for each of the words.Then,subjects study the

list(often over multiple iterations),and are subsequently tested on both lists for recall of the associates after each

Learning Trials on AC List

25

50

75

100

%

C

o

r

r

e

c

t

Learning Trials on AC List

25

50

75

100

a) AB?AC List Learning in Humans b) AB?AC List Learning in Model

Figure1:Human and model data for AB-AC list learning.

a)Humans show some interference for the AB list items as a function of new learning on the AC list items.b)Model shows a catastrophic level of interference.(data reproduced from Mc-Closkey&Cohen,1989).

iteration of learning the list.Subjects exhibit some level of interference on the initially learned asso-ciations as a result of learning the list,but they still remember a reasonable percentage(see Figure1a for rep-resentative data).

The?rst set of principles concern the effects of over-lapping representations(i.e.,shared units between two different distributed representations)and rate of learn-ing on the ability to rapidly learn new information with a level of interference characteristic of human subjects: Overlapping representations lead to interference (conversely,separated representations prevent inter-ference).

A faster learning rate causes more interference

(conversely,a slower learning rate causes less in-terference).

The mechanistic basis for these principles within a neural network perspective is straightforward.Interference is caused when weights used to encode one association are disturbed by the encoding of another(Figure2a).Over-lapping patterns share more weights,and therefore lead to greater amounts of interference.Clearly,if entirely separate representations are used to encode two different associations,then there will be no interference whatso-ever(Figure2b).The story with learning rate is simi-larly straightforward.Faster learning rates lead to more weight change,and thus greater interference(Figure3). However,a fast learning rate is necessary for rapid learn-ing.

Integration and Extracting Statistical Structure Figure3shows the?ip side of the interference story, integration.If the learning rate is low,then the weights will integrate over many experiences,re?ecting the un-derlying statistics of the environment(White,1989;Mc-Clelland et al.,1995).Furthermore,overlapping repre-sentations facilitate this integration process,because the

O’Reilly 3

A

B

List 1: A?>B

A

B

C

List 2: A?>C

B

A1

B C

A1A2

List 1: A?>B List 2: A?>C a) Remembering specifics using same representations causes interference.b) Separated (conjunctive) represen?tations and fast weight changes enable rapid learning of specifics without interference.

Figure 2:Interference as a function of overlapping (same)

representations versus separated representations.a)Using the same representation to encode two different associations (and )causes interference —the subsequent learning

of

interferes with the prior learning of because the stimulus must have stronger weights to than to for the second association,as is re?ected in the weights.b)A sepa-rated representation,where is encoded separated for the ?rst list ()versus the second list ()prevents interference.

0?

0.2? 0.4? 0.6? 0.8? 1?

Figure 3:Weight value learning about a single input unit that

is either active or not.The weight increases when the input is on,and decrease when it is off,in proportion to the size of the learning rate.The input has an overall probability of be-ing active of https://www.doczj.com/doc/7a17498827.html,rger learning rates (.1or 1)lead to more interference on prior learning,resulting in a weight value that bounces around substantially with each training example.In the extreme case of a learning rate of 1,the weight only re?ects what happened on the previous trial,retaining no memory for prior events at all.As the learning rate gets smaller (.005),the weight smoothly averages over individual events and re?ects the overall statistical probability of the input being active.

same weights need to be reused across many different experiences to enable the integration produced by a slow learning rate.This leads to the next principle:

Integration across experiences to extract underlying statistical structure requires a slow learning rate and overlapping representations.

Episodic Memory and Generalization:Incom-patible Functions

Thus,focusing only on pattern overlap for the mo-ment,we can see that networks can be optimized for two different,and incompatible,functions:avoiding interfer-ence or integrating across experiences to extract general-ities.Avoiding interference requires separated represen-tations,while integration requires overlapping represen-tations.These two functions each have clear functional advantages,leading to a further set of principles:

Interference avoidance is essential for episodic memory,which requires learning about the speci?cs of individual events and keeping them separate from other events.

Integration is essential for encoding the general statistical structure of the environment,abstracted away from the speci?cs of individual events,which enables generalization to novel situations.

The incompatibility between these functions is fur-ther evident in these descriptions (i.e.,encoding speci?cs versus abstracting away from them).Also,episodic memory requires relatively rapid learning —an event must be encoded as it happens,and does not typically re-peat itself for further learning opportunities.This com-pletes a pattern of opposition between these functions:episodic learning requires rapid learning while integra-tion and generalization requires slow learning.This is summarized in the following principle:

Episodic memory and extracting generalities are in opposition.Episodic memory requires rapid learn-ing and separated patterns,while extracting gener-alities requires slow learning and overlapping pat-terns.

Applying the Principles to the Hippocampus and Neocortex

Armed with these principles,the ?nding that neural network models that have highly overlapping represen-tations exhibit catastrophic levels of interference (Mc-Closkey &Cohen,1989,Figure 1b)should not be sur-prising.A number of researchers showed that this in-terference can be reduced by introducing various factors

4Computational Principles of Learning

that result in less pattern overlap(e.g.,Kortge,1993;

French,1992;Sloman&Rumelhart,1992;McRae& Hetherington,1993).Thus,instead of concluding that all neural networks are fundamentally?awed,as Mc-

Closkey and Cohen(1989)argued(and a number of oth-ers have uncritically accepted),McClelland et al.(1995)

argued that this catastrophic failure serves as an impor-tant clue into the structure of the human brain.

Speci?cally,we argued that because of the funda-mental incompatibility between episodic memory and extracting generalities,the brain should employ two sep-

arate systems that each optimize these two objectives in-dividually,instead of having a single system that tries

to strike an inferior compromise.This line of reasoning provides a strikingly good?t to the known properties of the hippocampus and neocortex,respectively.The de-

tails of this?t in various contexts is the substance of the remainder of the paper,but the general idea is that: The hippocampus rapidly binds together informa-tion using pattern-separated representations to min-

imize interference.

The neocortex slowly learns about the general sta-tistical structure of the environment using overlap-ping distributed representations.

(see also Sherry&Schacter,1987for a similar conclu-

sion).Before discussing the details,a few more princi-ples need to be developed?rst.

Conjunctive Representations and Nonlinear

Discrimination Learning

The conjunctive or con?gural representations the-ory provides a converging line of thinking about the na-ture of hippocampal function(Sutherland&Rudy,1989; Rudy&Sutherland,1995;Wickelgren,1979;O’Reilly& Rudy,1999).A conjunctive/con?gural representation is one that binds together(conjoins or con?gures)multi-ple elements into a novel unitary representation.This is consistent with the description of hippocampal func-tion given above,based on the need to separate patterns to avoid interference.Indeed,it is clear that pattern separation and conjunctive representations are two sides of the same coin,and that both are caused by the use of sparse representations(having relatively few active neurons)that are a known property of the hippocampus (O’Reilly&McClelland,1994;O’Reilly&Rudy,1999). To summarize:

Sparse hippocampal representations lead to pattern separation(to avoid interference)and conjunctive representations(to bind together features into a uni-tary representation).

One important application of the conjunctive rep-

resentations idea has been to nonlinear discrimination problems.These problems require conjunctive represen-tations to solve because each of the individual stimuli is

ambiguous(equally often rewarded and not rewarded). The negative patterning problem is a good example.It

involves two stimuli,and(e.g.,a light and a tone), which are associated with reward(indicated by)or not().Three different trial types are trained:, ,.Thus,the conjunction of the two stimuli ()must be treated differently from the two stim-uli separately(,).A conjunctive representa-

tion that forms a novel encoding of the two stimuli to-gether can facilitate this form of learning.Therefore, the fact that hippocampal damage impairs learning the negative patterning problem(Alvarado&Rudy,1995; Rudy&Sutherland,1995;McDonald,Murphy,Guar-raci,Gortler,White,&Baker,1997)would appear to support the idea that the hippocampus employs pattern separated,conjunctive representations.However,it is now clear that a number of other nonlinear discrimina-tion learning problems are unimpaired by hippocampal damage(Rudy&Sutherland,1995).The next set of prin-ciples help to make sense of these data so that they can be reconciled with our interference-based principles of con-junctive pattern separation,as discussed in a subsequent section.

Pattern Completion:Recalling a Conjunction

Pattern completion is required for recalling informa-tion from conjunctive hippocampal representations,yet it con?icts with the process of pattern separation that forms these representations in the?rst place(O’Reilly& McClelland,1994).Pattern completion occurs when a partial input cue drives the hippocampus to complete to an entire previously-encoded set of features that were bound together in a conjunctive representation.For a given input pattern,a decision must be made to recog-nize it as a retrieval cue for a previous memory and per-form pattern completion,or to perform pattern separa-tion and store the input as a new memory.This deci-sion is often dif?cult given noisy inputs and degraded memories.The hippocampus implements this decision as the effects of a set of basic mechanisms operating on input patterns(O’Reilly&McClelland,1994;Has-selmo&Wyble,1997),and it does not always do what would seem to be the right thing to do from an omniscient perspective knowing all the relevant task factors—this can complicate the involvement of the hippocampus in nonlinear discrimination problems.

O’Reilly5

Learning Mechanisms:Hebbian and Error Driven

To more fully explain the roles of the hippocampus and neocortex we need to understand how learning works in these systems(the basic principles just described do not depend on the detailed nature of the learning mech-anisms;White,1989).There are two basic mechanisms that have been discussed in the literature,Hebbian and error-driven learning(e.g.,Marr,1971;McNaughton& Morris,1987;Gluck&Myers,1993;Schmajuk&Di-Carlo,1992).Brie?y,Hebbian learning(Hebb,1949) works by increasing weights between co-active neurons (and usually decreasing weights when a receiver is ac-tive and the sender is not),which is a well-established property of biological synaptic modi?cation mechanisms (e.g.,Collingridge&Bliss,1987).Hebbian learning is useful for binding together features active at the same time(e.g.,within the same episode),and has therefore been widely suggested as a hippocampal learning mech-anism(e.g.,Marr,1971;McNaughton&Morris,1987).

Error-driven learning works by adjusting weights to minimize the errors in a network’s performance,with the best example of this being the error backpropaga-tion algorithm(Rumelhart,Hinton,&Williams,1986). Error-driven learning is sensitive to task demands in a way that Hebbian learning is not,and this makes it a much more capable form of learning for actually achiev-ing a desired input/output mapping.Thus,it is natural to associate this form of learning with the kind of pro-cedural or task-driven learning that the neocortex is of-ten thought to specialize in(e.g.,because amnesics with hippocampal damage have preserved procedural learning abilities).Although the backpropagation mechanism has been widely challenged as biologically implausible(e.g., Crick,1989;Zipser&Andersen,1988),a recent analysis shows that simple biologically-based mechanisms can be used to implement this mechanism(O’Reilly,1996),so that it is quite reasonable to assume that the cortex de-pends on this kind of learning.

Although the association of Hebbian learning with the hippocampus and error-driven learning with the cor-tex is appealing in some ways,it turns out that both kinds of learning play important roles in both systems (O’Reilly&Rudy,1999;O’Reilly&Munakata,2000; O’Reilly,1998).Thus,the speci?c learning principles adopted here are that both forms of learning operate in both systems:

Hebbian learning binds together co-occurring fea-tures(in the hippocampus)and generally learns about the co-occurrence statistics in the environ-ment across many different patterns(in neocortex).

Error-driven learning shapes learning according to

speci?c task demands(shifting the balance of pat-tern separation and completion in the hippocampus, and developing task-appropriate representations in the neocortex).

It is the existence of this task-driven learning that com-plicates the picture for nonlinear discrimination learning problems.

A Summary of Principles

The above principles can be summarized with the fol-lowing three general statements of neocortical and hip-pocampal learning properties(O’Reilly&Rudy,1999): Learning rate.The cortical system typically learns slowly,while the hippocampal system typically learns rapidly.

Conjunctive bias.The cortical system has a bias to-wards integrating over speci?c instances to extract generalities.The hippocampal system is biased by its intrinsic sparseness to develop conjunctive repre-sentations of speci?c instances of environmental in-puts.However,this conjunctive bias trades-off with the countervailing process of pattern completion,so the hippocampus does not always develop new con-junctive representations(sometimes it completes to existing ones).

Learning mechanisms.Both cortex and hippocampus use error-driven and Hebbian learning.The error-driven aspect responds to task demands,and will cause the network to learn to represent whatever is needed to achieve goals or ends.Thus,the cortex can overcome its bias and develop speci?c,conjunc-tive representations if the task demands require this.

Also,error-driven learning can shift the hippocam-pus from performing pattern separation to perform-ing pattern completion,or vice-versa,as dictated by the task.Hebbian learning is constantly operating, and reinforcing the representations that are activated in the two systems.

These principles are focused on distinguishing neo-cortex and hippocampus—we have also articulated a more complete set of principles that are largely common to both systems(O’Reilly,1998;O’Reilly&Munakata, 2000).Models incorporating these principles have been extensively applied to a wide range of different cortical phenomena,including perception,language,and higher-level cognition.In the next section,we highlight the ap-plication of the principles presented here to learning and memory phenomena involving both the cortex and hip-pocampus.

6Computational Principles of Learning

Applications of the Principles

The principles just developed have been applied to a number of different domains,as summarized in the following sections.In most cases,the same neural network model developed according to these principles

(O’Reilly&Rudy,1999)was used to simulate the em-pirical data,providing a compelling demonstration that the principles are suf?cient to account for a wide range of?ndings.

Conjunctions and Nonlinear Discrimination Learning

We?rst apply the above principles to the puzzling pattern of hippocampal involvement in nonlinear dis-crimination learning problems.The general statement of the issue is that although we think the hippocampus is specialized for encoding conjunctive bindings of stimuli (and keeping these separated from each other to mini-mize interference),apparently direct tests of this idea in the form of nonlinear discrimination learning problems have not provided clear support.Speci?cally,rats with hippocampal lesions can learn a number of these non-linear discrimination problems just like intact rats.The general explanation of these results according to the full set of principles outlined above is that:

The explicit task demands present in a nonlinear discrimination learning problem cause the cortex alone(with a lesioned hippocampus)to learn the task via error-driven learning.

Nonlinear discrimination problems take many trials to learn even in intact animals,allowing the slow cortical learning to accumulate a solution.

The absence of hippocampal learning speed advan-tages in normal rats,despite the more rapid hip-pocampal learning rate,can be explained by the fact that the hippocampus is engaging in pattern comple-tion in these problems,instead of pattern separation.

We substantiated this verbal account by running com-putational neural network simulations that embodied the principles developed above(O’Reilly&Rudy,1999; Figure4).These simulations showed that in many—but not all—cases,removing the hippocampal compo-nent did not signi?cantly impair learning performance on nonlinear discrimination learning problems,matching the empirical data.Figure5shows one speci?c example, where the negative patterning problem discussed previ-ously(,,)is impaired with hippocampal lesions,but performance is not impaired on a very simi-lar ambiguous feature problem,,,,,

H

i

p

p

o

c

a

m

p

u

s

C

o

r

t

e

x

EC_in

Figure4:The O’Reilly and Rudy(1999)model,showing both cortical and hippocampal components.The cortex has12dif-ferent input dimensions(sensory pathways),with4different values per dimension.These are represented separately in the elemental cortex(Elem).Higher level association cortex(As-soc)can form conjunctive representations of these elements,if demanded by the task.The interface to the hippocampus is via the entorhinal cortex,which contains a one-to-one mapping of the elemental,association,and output cortical representations. The hippocampus can reinstate a pattern of activity over the cortex via the EC.

(Gallagher&Holland,1992).See O’Reilly and Rudy (1999)for a detailed discussion of the differential per-formance on these tasks.

To summarize,this work showed that it is essential to go beyond a simple conjunctive story and include a more complete set of principles in understanding hippocampal and cortical function.Because this more complete set of principles,implemented in an explicit computational model,accounts for the empirical data,this data provides support for these principles.

Rapid Incidental Conjunctive Learning Tasks

A consideration of the full set of principles suggests that another class of tasks might provide a much better measure of hippocampal learning compared to the non-linear discrimination problems suggested by Sutherland and Rudy(1989).As we just saw,the very fact that non-linear discrimination problems require conjunctive rep-resentations is what drives the cortex alone to be able to solve them via error-driven learning.Therefore,we suggest that incidental conjunctive learning tasks,where conjunctive representations are not forced by speci?c

O’Reilly 7

100200300

T o t a l E r r o r s

100200300

T o t a l E r r o r s

a)b)c)

d)

5101520

25

A B ? E r r o r s

5101520

25

A B ? E r r o r s

Figure 5:Results for the negative patterning (left column)and ambiguous feature (

,,,;right column)prob-lems.The top row shows data from rats from Alvarado and Rudy (1995),and the bottom row shows data from the model.Intact is

intact rats/networks,and HL is rats/networks with hippocampal lesions.N=40different random initializations for the model.The hippocampally-lesioned system is able to learn the problems,and all conditions require many trials (i.e.,large number of errors).Negative patterning is differentially impaired with a hippocampal lesion.Data from O’Reilly and Rudy (1999).

task demands,may provide a much better index of hip-pocampal function (O’Reilly &Rudy,1999).Further-more,the task should only allow for a relatively brief period of learning,which will emphasize the rapid learn-ing of the hippocampus as compared to the slow learning of the cortex.Thus,we characterize these tasks as rapid,incidental conjunctive learning tasks .

There are several recent studies of tasks that ?t the rapid,incidental conjunctive characterizations.In these tasks,subjects are exposed to a set of features in a partic-ular con?guration,and then the features are rearranged.Subjects are then tested to determine if they can detect the rearrangement.If the test indicates that the rearrange-ment was detected,then one can infer the subject learned a conjunctive representation of the original con?gura-tion.The literature indicates that the incidental learning of stimulus conjunctions,unlike many nonlinear discrim-ination problems,is dependent on the hippocampus.

Perhaps the simplest demonstration comes from the study of the role of the hippocampal formation in ex-ploratory behavior.Control rats and rats with damage to the dorsal hippocampus were repeatedly exposed to a set of objects that were arranged on a circular platform in a ?xed con?guration relative to a large and distinct visual cue (Save,Poucet,Foreman,&Buhot,1992).Af-ter the exploratory behavior of both sets of rats habitu-ated,the same objects were rearranged into a different con?guration.This rearrangement reinstated exploratory behavior in the control rats but not in the rats with dam-

age to the hippocampus.In a third phase of the study,a new object was introduced into the mix.This manipula-tion reinstated exploratory behavior in both sets of rats.This pattern of data suggests that both control rats and rats with damage to the hippocampus encode representa-tions of the individual objects and can discriminate them from novel objects.However,only the control rats en-coded the conjunctions necessary to represent the spatial arrangement of the objects,even though this was not in any way a requirement of the task.Several other stud-ies of this general form have found similar results in rats (Honey,Watt,&Good,1998;Honey &Good,1993;Good &Bannerman,1997;Hall &Honey,1990;Honey,Willis,&Hall,1990).In humans,the well established incidental context effects on memory (e.g.,Godden &Baddeley,1975)have been shown to be hippocampal-dependent (Mayes,MacDonald,Donlan,&Pears,1992).Other hippocampal incidental conjunctive learning ef-fects have also been demonstrated in humans (Chun &Phelps,1999).

We have shown that the same neural network model constructed according to our principles and tested on the nonlinear discrimination learning problems as described above exhibits a clear hippocampal sensitivity in these rapid incidental conjunctive learning tasks (O’Reilly &Rudy,1999).

8Computational Principles of Learning

Contextual Fear Conditioning

Evidence for the involvement of the hippocampal for-mation in the incidental learning of stimulus conjunc-tions has also emerged in the contextual fear condition-ing literature.This example also provides a simple ex-ample of the widely-discussed role of the hippocampus in spatial learning(e.g.,O’Keefe&Nadel,1978;Mc-Naughton&Nadel,1990).Rats with damage to the hippocampal formation do not express fear to a con-text or place where shock occurred,but will express fear to an explicit cue(e.g.,a tone)paired with shock (Kim&Fanselow,1992;Phillips&LeDoux,1994;but see Maren,Aharonov,&Fanselow,1997).Rudy and O’Reilly(1999)recently provided speci?c evidence that, in intact rats,the context representations are conjunc-tive in nature,which has been widely assumed(e.g., Fanselow,1990;Kiernan&Westbrook,1993;Rudy& Sutherland,1994).For example,we compared the ef-fects of preexposure to the conditioning context with the effects of preexposure to the separate features that made up the context.Only preexposure to the intact context facilitated contextual fear conditioning,suggesting that conjunctive representations across the context features were necessary.We also showed that pattern completion of hippocampal conjunctive representations can lead to generalized fear conditioning.

We have simulated the incidental learning of con-junctive context representations in fear conditioning us-ing the same principles as described above(O’Reilly& Rudy,1999).For example,Figure6shows the rat and model data for the separate versus intact context fea-tures experiment from Rudy and O’Reilly(1999),with the model providing a speci?c prediction regarding the effects of hippocampal lesions,which has yet to be tested empirically.

Transitivity and Flexibility

Whereas the previous examples concern the learn-ing of conjunctive representations,this next example is concerned with the?exible use of learned information. Several theorists have described memories encoded by the hippocampus as being?exible,meaning that(a)such memories can be applied inferentially in novel situations (Eichenbaum,1992;O’Keefe&Nadel,1978)or(b)that they are available to multiple response systems(Squire, 1992).Although the term?exibility provides a useful de-scription of certain behaviors,it does not provide a mech-anistic understanding of how this?exibility arises from the properties of the hippocampus.

We have shown that hippocampal pattern completion plays an important role in producing this?exible behav-ior(O’Reilly&Rudy,1999).Speci?cally,we showed

a)

b)

20

40

60

P

e

r

c

e

n

t

F

r

e

e

z

i

n

g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F

e

a

r

R

e

s

p

o

n

s

e

Figure6:Effects of exposure to the features separately com-pared to exposure to the entire context on level of fear response in a)rats(data from Rudy and O’Reilly(1999))and the model. The immediate shock condition(Immed)is included as a con-trol condition for the model.Intact rats and the intact model show a signi?cant effect of being exposed to the entire con-text together compared to the features separately,while the hip-pocampally lesioned model exhibits slightly more responding in the separate condition,possibly because of the greater over-all number of training trials in this case.Simulation data from O’Reilly and Rudy(1999).

that the transitivity studies of Bunsey and Eichenbaum (1996)and Dusek and Eichenbaum(1997)can be sim-ulated using the same model as in all of the previous examples,with pattern completion playing a key role. Interestingly,the model shows that the training parame-ters employed in these studies interact signi?cantly with the pattern completion mechanism to produce the ob-served transitivity effects.We are able to make a number of novel empirical predictions that are inconsistent with a simple logical-reasoning mechanism by manipulating these factors(O’Reilly&Rudy,1999).

Dual-Process Memory Models

The dual mechanisms of neocortex and hippocampus provide a natural?t with dual-process models of recogni-tion memory(Jacoby,Yonelinas,&Jennings,1997;Ag-gleton&Shaw,1996;Aggleton&Brown,1999;Vargha-Khadem,Gadian,Watkins,Connelly,Van Paesschen,&

O’Reilly9

Mishkin,1997;Holdstock,Mayes,Roberts,Cezayirli, Isaac,O’Reilly,&Norman,in press;O’Reilly et al., 1998).These models hold that recognition can be sub-served by two different processes,a recollection process and a familiarity process.Recollection involves the re-call of speci?c episodic details about the item,and thus ?ts well with the hippocampal principles developed here. Indeed,we have simulated distinctive aspects of recol-lection using essentially the same model(O’Reilly et al., 1998).Familiarity is a non-speci?c sense that the item has been seen recently—we argue that this can be sub-served by the small weight changes produced by slow cortical learning.Current simulation work has shown that a simple cortical model can account for a number of distinctive properties of the familiarity signal(Norman, O’Reilly,&Huber,2000).

One speci?c and somewhat counter-intuitive predic-tion of our principles has recently been con?rmed em-pirically in experiments on a patient with selective hip-pocampal damage(Holdstock et al.,in press).This patient showed intact recognition memory for studied items compared to similar lures when tested in a two-alternative forced-choice procedure(2AFC),but was sig-ni?cantly impaired relative to controls for the same kinds of stimuli using a single item yes-no(YN)procedure. We argue that because the cortex uses overlapping dis-tributed representations,the strong similarity of the lures to the studied items produces a strong familiarity sig-nal for these lures(as a function of this overlap).When tested in a YN procedure,this strong familiarity of the lures produces a large number of false alarms,as was ob-served in the patient.However,because the studied item has a small but reliably stronger familiarity signal than the similar lure,this strength difference can be detected in the2AFC version,resulting in normal recognition per-formance in this condition.The normal controls,in con-trast,have an intact hippocampus which performs pattern separation and is able to distinguish the studied items and similar lures,regardless of the testing format. Retrograde Amnesia

Several lines of empirical evidence suggest that there is a retrograde gradient for memory loss as a function of hippocampal damage,with the most recent memo-ries being the most severely affected,while older mem-ories are relatively intact(e.g.,Squire,1992;Winocur, 1990;Kim&Fanselow,1992;Zola-Morgan&Squire, 1990).Theoretically,this phenomenon can be under-stood in terms of the cortex gradually acquiring hip-pocampal information(e.g.,McClelland et al.,1995; Alvarez&Squire,1994).However,this account has been called into question recently,both from failures to replicate the retrograde?ndings(Sutherland,Weisend,Mumby,Astur,Hanlon,Koerner,&Thomas,in press), and reinterpretations of the existing?ndings in ways that do not require that the cortex acquires information from the hippocampus(e.g.,the“multiple hippocampal trace”theory of Nadel&Moscovitch,1997).

Our computational principles suggest that to the ex-tent there are opportunities for the hippocampus to reac-tivate cortical patterns of activity,the consequent cortical learning will necessarily produce a consolidation-like ef-fect.We were able to?t a number of different retro-grade amnesia gradients using these principles(McClel-land et al.,1995).

Comparison with Other Approaches

A number of other approaches to understanding cor-tical and hippocampal function share important similari-ties with our approach,including for example the use of Hebbian learning and pattern separation(e.g.,Hasselmo, 1997;McNaughton&Nadel,1990;Touretzky&Redish, 1996;Burgess&O’Keefe,1996;Wu,Baxter,&Levy, 1996;Treves&Rolls,1994;Moll&Miikkulainen,1997; Alvarez&Squire,1994).These other approaches all of-fer other important principles,many of which would be complementary to those discussed here so that it would be possible to add them to a larger,more complete model.

Perhaps the largest area of disagreement is in terms of the relative independence of the cortical learning mechanisms from the hippocampus.There are several computationally-explicit models that propose the neocor-tex is incapable of powerful learning without the help of the hippocampus(Gluck&Myers,1993;Schmajuk& DiCarlo,1992;Rolls,1990),and other more general the-oretical views that express a similar notion of limited cor-tical learning with hippocampal damage(Glisky,Schac-ter,&Tulving,1986;Squire,1992;Cohen&Eichen-baum,1993;Wickelgren,1979;Sutherland&Rudy, 1989).In contrast,our principles hold that the cortex alone is a highly capable learning system,that can for ex-ample learn complex conjunctive representations in the service of nonlinear discrimination learning problems.

Empirically,the data that appears to support the lim-ited cortical learning view tends to be based on larger lesions of the medial temporal lobe.With the advent of selective lesion techniques in rats and monkeys,and the study of people with highly selective hippocampal lesions,it is becoming clear that the cortex is capable of quite substantial learning on its own.Perhaps the most dramatic evidence comes from a group of human amnesics who suffered bilateral selective hippocampal damage at relatively young ages(Vargha-Khadem et al., 1997).Despite having signi?cantly impaired hippocam-pal function(as was supported by brain scans and very

10Computational Principles of Learning

poor performance on recall tests),these individuals had acquired normal or nearly normal levels of cognitive functioning in language,semantic knowledge,and had normal or nearly-normal IQs.Although it is dif?cult to completely rule out the idea that this preserved semantic learning is the result of residual hippocampal functioning (as advocated by Squire&Zola,1998),this seems some-what implausible in the face of the patient’s signi?cant recall impairments and the brain scan evidence.

One important conclusion from this line of reasoning is that the cortical regions surrounding the hippocampus in the medial temporal lobes are particularly important for many kinds of learning and memory.We suggest that this is because of a signi?cant convergence of other cor-tical association areas in these regions(O’Reilly&Rudy, 1999;Mishkin,Suzuki,Gadian,&Vargha-Khadem, 1997;Mishkin,Vargha-Khadem,&Gadian,1998).

Summary

We have shown that a small set of computationally-motivated principles can account for a wide range of em-pirical?ndings regarding the differential properties of the neocortex and hippocampus in learning and memory. In addition,these principles make a large number of em-pirical predictions that will be tested in future research.

References

Aggleton,J.P.,&Brown,M.W.(1999).Episodic mem-ory,amnesia,and the hippocampal-anterior thalamic axis.Behavioral and Brain Sciences,22,425–490. Aggleton,J.P.,&Shaw,C.(1996).Amnesia and recog-nition memory:a re-analysis of psychometric data.

Neuropsychologia,34,51.

Alvarado,M.C.,&Rudy,J.W.(1995).A compari-son of kainic acid plus colchicine and ibotenic acid induced hippocampal formation damage on four con-?gural tasks in rats.Behavioral Neuroscience,109, 1052–1062.

Alvarez,P.,&Squire,L.R.(1994).Memory consolida-tion and the medial temporal lobe:A simple network model.Proceedings of the National Academy of Sci-ences,USA,91,7041–7045.

Barnes,J.M.,&Underwood,B.J.(1959).Fate of?rst-list associations in transfer theory.Journal of Experi-mental Psychology,58,97–105.

Bunsey,M.,&Eichenbaum,H.(1996).Conservation of hippocampal memory function in rats and humans.

Nature,379,255.

Burgess,N.,&O’Keefe,J.(1996).Neuronal computa-tions underlying the?ring of place cells and their role in navigation.Hippocampus,6,749–762.

Chun,M.M.,&Phelps, E. A.(1999).Memory de?cits for implicit contextual information in amnesic subjects with hippocampal damage.Nature Neuro-science,2(9),844–847.

Cohen,N.J.,&Eichenbaum,H.(1993).Memory,am-nesia,and the hippocampal system.Cambridge,MA: MIT Press.

Collingridge,G.L.,&Bliss,T.V.P.(1987).NMDA receptors-their role in long-term potentiation.Trends in Neurosciences,10,288–293.

Crick,F.H.C.(1989).The recent excitement about neu-ral networks.Nature,337,129–132.

Dusek,J.A.,&Eichenbaum,H.(1997).The hippocam-pus and memory for orderly stimulus relations.Pro-ceedings of the National Academy of Sciences,94, 7109–7114.

Eichenbaum,H.(1992).The hippocampal system and declarative memory in animals.Journal of Cognitive Neuroscience,4(3),217–231.

Fanselow,M.S.(1990).Factors governing one-trial con-textual conditioning.Animal Learning and Behavior, 18,264–270.

O’Reilly11

French,R.M.(1992).Semi-distributed representations and catastrophic forgetting in connectionist networks.

Connection Science,4,365–377.

Gallagher,M.,&Holland,P.C.(1992).Preserved con-?gural learning and spatial learning impairment in rats with hippocampal damage.Hippocampus,2,81–88. Glisky,E.L.,Schacter,D.L.,&Tulving,E.(1986).

Computer learning by memory-impaired patients: Acquisition and retention of complex knowledge.

Neuropsychologia,24,313–328.

Gluck,M.A.,&Myers,C.E.(1993).Hippocampal me-diation of stimulus representation:A computational theory.Hippocampus,3,491–516.

Godden,D.R.,&Baddeley,A.D.(1975).Context-dependent memory in two natural environments:On land and under water.British Journal of Psychology, 66,325–331.

Good,M.,&Bannerman,D.(1997).Differential effects of ibotenic acid lesions of the hippocampus and block-ade of n-methyl-d-aspartate receptor-dependent long-term potentiation on contextual processing in rats.Be-havioral Neuroscience,111,1171.

Hall,G.,&Honey,R.C.(1990).Context-speci?c con-ditioning in the conditioned-emtional-response proce-dure.Journal of Experimental Psychology:Animal Behavior Processes,16,271–278.

Hasselmo,M.E.(1997).euromodulation and cortical function:Modeling the physiological basis of behav-ior.Behavioural Brain Research,67,1–27. Hasselmo,M.E.,&Wyble,B.(1997).Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function.Behavioural Brain Research,67,1–27. Hebb,D.O.(1949).The organization of behavior.New York:Wiley.

Holdstock,J.S.,Mayes,A.R.,Roberts,N.,Cezayirli,

E.,Isaac,C.L.,O’Reilly,R.C.,&Norman,K.A.(in

press).Memory dissociations following human hip-pocampal damage.Hippocampus.

Honey,R.C.,&Good,M.(1993).Selective hippocam-pal lesions abolish the contextual speci?city of la-tent inhibition and conditioning.Behavioral Neuro-science,107,23–33.

Honey,R.C.,Watt,A.,&Good,M.(1998).Hippocam-pal lesions disrupt an associative mismatch process.

Journal of Neuroscience,18,2226.

Honey,R.C.,Willis,A.,&Hall,G.(1990).Context speci?city in pigeon autoshaping.Learning and Mo-tivation,21,125–136.Jacoby,L.L.,Yonelinas,A.P.,&Jennings,J.M.(1997).

The relation between conscious and unconscious(au-tomatic)in?uences:A declaration of independence.

In J.D.Cohen,&J.W.Schooler(Eds.),Scienti?c ap-proaches to consciousness(pp.13–47).Mahway,NJ: Lawrence Erlbaum Associates.

Kiernan,M.J.,&Westbrook,R.F.(1993).Effects of ex-posure to a to-be-shocked environment upon the rat’s freezing response:Evidence for facilitation,latent in-hibition,and perceptual learning.Quarterly Journal of Psychology,46B,271–288.

Kim,J.J.,&Fanselow,M.S.(1992).Modality-speci?c retrograde amnesia of fear.Science,256,675–677. Kortge,C.A.(1993).Episodic memory in connectionist networks.Proceedings of the Twelfth Annual Confer-ence of the Cognitive Science Society(pp.764–771).

Hillsdale,NJ:Erlbaum.

Maren,S.,Aharonov,G.,&Fanselow,M.S.(1997).

Neurotoxic lesions of the dorsal hippocampus and pavlovian fear conditioning.Behavioural Brain Re-search,88,261–274.

Marr,D.(1971).Simple memory:A theory for archicor-tex.Philosophical Transactions of the Royal Society (London)B,262,23–81.

Mayes,A.R.,MacDonald,C.,Donlan,L.,&Pears, J.(1992).Amnesics have a disproportionately se-vere memory de?cit for interactive context.Quarterly Journal of Experimental Psychology,45A,265–297. McClelland,J.L.,McNaughton,B.L.,&O’Reilly,R.C.

(1995).Why there are complementary learning sys-tems in the hippocampus and neocortex:Insights from the successes and failures of connectionst models of learning and memory.Psychological Review,102, 419–457.

McCloskey,M.,&Cohen,N.J.(1989).Catastrophic in-terference in connectionist networks:The sequential learning problem.In G.H.Bower(Ed.),The psychol-ogy of learning and motivation,vol.24(pp.109–164).

San Diego,CA:Academic Press,Inc. McDonald,R.J.,Murphy,R.A.,Guarraci,F.A.,Gortler, J.R.,White,&Baker,A.G.(1997).Systemic com-parison of the effects of hippocampal and fornix-?mbria lesions on the acquisition of three con?gural discriminations.Hippocampus,7,371–388. McNaughton, B.L.,&Morris,R.G.M.(1987).

Hippocampal synaptic enhancement and information storage within a distributed memory system.Trends in Neurosciences,10(10),408–415. McNaughton,B.L.,&Nadel,L.(1990).Hebb-marr networks and the neurobiological representation of

12Computational Principles of Learning

action in space.In M.A.Gluck,&D.E.Rumel-hart(Eds.),Neuroscience and connectionist theory (Chap.1,pp.1–63).Hillsdale,NJ:Lawrence Erlbaum Associates.

McRae,K.,&Hetherington,P.A.(1993).Catastrophic interference is eliminated in pretrained networks.Pro-ceedings of the Fifteenth Annual Conference of the Cognitive Science Society(pp.723–728).Hillsdale, NJ:Erlbaum.

Mishkin,M.,Suzuki,W.,Gadian,D.G.,&Vargha-Khadem,F.(1997).Hierarchical organization of cog-nitive memory.Philosophical Transactions of the Royal Society,London,B,352,1461–1467. Mishkin,M.,Vargha-Khadem,F.,&Gadian, D.G.

(1998).Amnesia and the organization of the hip-pocampal system.Hippocampus,8,212–216. Moll,M.,&Miikkulainen,R.(1997).Convergence-zone episodic memory:Analysis and simulations.Neural Networks,10,1017.

Nadel,L.,&Moscovitch,M.(1997).Memory consoli-dation,retrograde amnesia and the hippocampal com-plex.Current Opinion in Neurobiology,7,217. Norman,K. A.,O’Reilly,R. C.,&Huber, D. E.

(2000).Modeling neocortical contributions to recog-nition memory.The Cognitive Neuroscience Meeting, 2000.

O’Keefe,J.,&Nadel,L.(1978).The hippocampus as a cognitive map.Oxford:Oxford University Press. O’Reilly,R.C.(1996).Biologically plausible error-driven learning using local activation differences:The generalized recirculation algorithm.Neural Computa-tion,8(5),895–938.

O’Reilly,R.C.(1998).Six principles for biologically-based computational models of cortical cognition.

Trends in Cognitive Sciences,2(11),455–462.

O’Reilly,R.C.,&McClelland,J.L.(1994).Hippocam-pal conjunctive encoding,storage,and recall:Avoid-ing a tradeoff.Hippocampus,4(6),661–682.

O’Reilly,R.C.,&Munakata,Y.(2000).Computational explorations in cognitive neuroscience:Understand-ing the mind by simulating the brain.Cambridge, MA:MIT Press.

O’Reilly,R.C.,Norman,K.A.,&McClelland,J.L.

(1998).A hippocampal model of recognition memory.

In M.I.Jordan,M.J.Kearns,&S.A.Solla(Eds.),Ad-vances in neural information processing systems10 (pp.73–79).Cambridge,MA:MIT Press.

O’Reilly,R.C.,&Rudy,J.W.(1999).Conjunctive rep-resentations in learning and memory:Principles of

cortical and hippocampal function(Institute of Cog-nitive Science TR99-01).Boulder:University of Col-orado Boulder.

O’Reilly,R.C.,&Rudy,J.W.(in press).Conjunctive representations in learning and memory:Principles of cortical and hippocampal function.Psychological Re-view.

Phillips,R.G.,&LeDoux,J.E.(1994).Lesions of the dorsal hippocampal formation interfere with back-ground but not foreground contextual fear condition-ing.Learning and Memory,1,34–44.

Rolls,E.T.(1990).Principles underlying the representa-tion and storage of information in neuronal networks in the primate hippocampus and cerebral cortex.In S.F.Zornetzer,J.L.Davis,&https://www.doczj.com/doc/7a17498827.html,u(Eds.),An in-troduction to neural and electronic networks(pp.73–

90).San Diego,CA:Academic Press.

Rudy,J.W.,&O’Reilly,R.C.(1999).Contextual fear conditioning,conjunctive representations,pattern completion,and the hippocampus.Behavioral Neuro-science,113,867–880.

Rudy,J.W.,&Sutherland,R.J.(1994).The memory coherence problem,con?gural associations,and the hippocampal system.In D.L.Schacter,&E.Tulving (Eds.),Memory systems1994(pp.119–146).Cam-bridge,MA:MIT Press.

Rudy,J.W.,&Sutherland,R.W.(1995).Con?gural as-sociation theory and the hippocampal formation:An appraisal and recon?guration.Hippocampus,5,375–389.

Rumelhart,D.E.,Hinton,G.E.,&Williams,R.J.

(1986).Learning representations by back-propagating errors.Nature,323,533–536.

Save,E.,Poucet,B.,Foreman,N.,&Buhot,N.(1992).

Object exploration and reactions to spatial and non-spatial changes in hooded rats following damage to parietal cortex or hippocampal formation.Behavioral Neuroscience,106,447–456.

Schmajuk,N.A.,&DiCarlo,J.J.(1992).Stimulus con?guration,classical conditioning,and hippocam-pal function.Psychological Review,99(2),268–305. Sherry,D.F.,&Schacter,D.L.(1987).The evolution of multiple memory systems.Psychological Review, 94(4),439–454.

Sloman,S.A.,&Rumelhart,D.E.(1992).Reducing interference in distributed memories through episodic gating.In A.Healy,S.Kosslyn,&R.Shiffrin(Eds.), Essays in honor of W.K.Estes(pp.227–248).Hills-dale,NJ:Erlbaum.

O’Reilly13 Squire,L.R.(1992).Memory and the hippocampus:A

synthesis from?ndings with rats,monkeys,and hu-

mans.Psychological Review,99,195–231.

Squire,L.R.,&Zola,S.M.(1998).Episodic mem-

ory,semantic memory,and amnesia.Hippocampus,

8,205–211.

Sutherland,R.J.,&Rudy,J.W.(1989).Con?gural asso-

ciation theory:The role of the hippocampal formation

in learning,memory,and amnesia.Psychobiology,

17(2),129–144.

Sutherland,R.J.,Weisend,M.P.,Mumby,D.,Astur,

R.S.,Hanlon,F.M.,Koerner,A.,&Thomas,M.J.(in

press).Retrograde amnesia after hippocampal dam-

age:Recent vs.remote memories in several tasks.

Hippocampus.

Touretzky,D.S.,&Redish,A.D.(1996).A theory of

rodent navigation based on interacting representations

of space.Hippocampus,6,247–270.

Treves,A.,&Rolls,E.T.(1994).A computational anal-

ysis of the role of the hippocampus in memory.Hip-

pocampus,4,374–392.

Vargha-Khadem,F.,Gadian,D.G.,Watkins,K.E.,Con-

nelly,A.,Van Paesschen,W.,&Mishkin,M.(1997).

Differential effects of early hippocampal pathology on

episodic and semantic memory.Science,277,376.

White,H.(1989).Learning in arti?cial neural networks:

A statistical perspective.Neural Computation,1,

425–464.

Wickelgren,W.A.(1979).Chunking and consolidation:

A theoretical synthesis of semantic networks,con?g-

uring in conditioning,S-R versus cognitive learning,

normal forgetting,the amnesic syndrome,and the hip-

pocampal arousal system.Psychological Review,86,

44–60.

Winocur,G.(1990).Anterograde and retrograde amnesia

in rats with dorsal hippocampal or dorsomedial thala-

mic lesions.Behavioural Brain Research,38,145–

154.

Wu,X.,Baxter,R.A.,&Levy,W.B.(1996).Context

codes and the effect of noisy learning on a simpli?ed

hippocampal CA3model.Biological Cybernetics,74,

159.

Zipser,D.,&Andersen,R.A.(1988).A backpropa-

gation programmed network that simulates response

properties of a subset of posterior parietal neurons.

Nature,331,679–684.

Zola-Morgan,S.,&Squire,L.R.(1990).The primate

hippocampal formation:Evidence for a time-limited

role in memory storage.Science,250,288–290.

九年级课文翻译完整版

九年级课文翻译 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

人教版初中英语九年级U n i t3课文翻译 SectionA2d 何伟:这是欢乐时光公园——我所在城市最大的游乐园! 艾丽斯:要尝试一些乘骑项目,我好兴奋呀! 何伟:我们应该从哪里开始玩呢?有太空世界、水上世界、动物世界…… 艾丽斯:哦,你能先告诉我哪儿有洗手间吗? 何伟:什么休息室你想要休息吗但是我们还没有开始玩呢! 艾丽斯:哦,不是,我的意思不是休息间。我的意思是……你知道的,卫生间或盥洗室。何伟:嗯……那么你是指……厕所? 艾丽斯:正是!对不起,也许“洗手间”一词在中国不常用。 何伟:对,我们通常说“厕所”或“卫生间”。就在那边。 艾丽斯:好的,我会很快的!我想知道公园今天何时关门。 何伟:九点三十,你不必着急! SectionA3a 欢乐时光公园——永远快乐的时光 [艾丽斯和何伟在太空世界。] 艾丽斯:我想知道我们接下来应该去哪里? 何伟:那边那个新项目怎么样? 艾丽斯:好吧……看起来蛮吓人的。 何伟:快来吧!我保证它将激动人心!如果你害怕,只要大叫或者抓住我的手。 [云霄飞车之后……] 艾丽斯:你是对的!太有趣了!起初我好害怕,但大声喊叫还蛮管用的。 何伟:瞧,那玩意并不糟糕,对吧?某些东西你不去尝试,就绝不会知道。 艾丽斯:对,我很高兴我试过了! 何伟:你现在想去水上世界么? 艾丽斯:好,但我很饿。你知道我们在哪里能吃到好的快餐? 何伟:当然!我建议在水上世界的水城餐馆,那里有美味可口的食物。 艾丽斯:好极了!我们走! [在前往水城餐馆途中,艾丽斯和何伟经过鲍勃叔叔餐馆。] 艾丽斯:看!这家餐馆看起来蛮有趣的。这招牌上说这儿每晚有摇滚乐队演出。

招投标评标原则

招投标评标原则 (1)公平、公正、科学、择优 《招标投标法》第5条规定:“招标投标活动应当遵循公开、公平、公正和诚实信用的原则。”《评标委员会和评标方法暂行规定》第3条规定:“评标活动遵循公平、公正、科学、择优的原则。”第17条规定:“招标文件中规定的评标标准和评标方法应当合理,不得含有倾向或者排斥潜在投标人的内容,不得妨碍或者限制投标人之间的竞争。”为了体现“公平”和“公正”的原则,招标人和招标代理机构应在制作招标文件时,依法选择科学的评标方法和标准;招标人应依法组建合格的评标委员会;评标委员会应依法评审所有投标文件,择优推荐为中标候选人。 (2)严格保密 严格保密的措施涉及多方面,包括:评标地点保密;评标委员会成员的名单在中标结果确定之前保密;评标委员会成员在封闭状态下开展评标工作,评标期间不得与外界有任何接触,对评标情况承担保密义务;招标人、招标代理机构或相关主管部门等参与评标现场工作的人员,均应承担保密义务。 (3)独立评审 评标是评标委员会受招标人委托,由评标委员会成员依法运用其知识和技能,根据法律规定和招标文件的要求,独立对所有投标文件进行评审和比较,以评标委员会的名义出具评标报告,推荐中标候选人的活动。评标委员会虽然由招标人组建并受其委托评标,但是,

一经组建并开始评标工作,评标委员会即应依法独立开展评审工作。不论是招标人,还是有关主管部门,均不得非法干预、影响或改变评标过程和结果。 (4)严格遵守评标方法 《招标投标法》第40条规定:“评标委员会应当按照招标文件确定的评标标准和方法,对投标文件进行评审和比较;设有标底的,应当参考标底。”《评标委员会和评标方法暂行规定》第17条规定:“评标委员会应当根据招标文件规定的评标标准和方法,对投标文件进行系统地评审和比较。招标文件中没有规定的标准和方法不得作为评标的依据。”评标工作虽然在严格保密的情况下,由评标委员会独立评审,但是,评标委员会应严格遵守招标文件中确定的评标标准和方法。

杂志刊登广告合同(二)标准样本

合同编号:WU-PO-556-46 杂志刊登广告合同(二)标准样本 In Order T o Protect The Legitimate Rights And Interests Of Each Party, The Cooperative Parties Reach An Agreement Through Common Consultation And Fix The Responsibilities Of Each Party, So As T o Achieve The Effect Of Restricting All Parties 甲方:_________________________ 乙方:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

杂志刊登广告合同(二)标准样本 使用说明:本合同资料适用于协作的当事人为保障各自的合法权益,经过共同协商达成一致意见并把各方所承担的责任固定下来,从而实现制约各方的效果。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 广告刊出单位:《___________》杂志社(简称甲方) 广告客户单位:______________(简称乙方) 1.乙方须持营业执照,凡标明质量标准、获奖、优质产品称号、专利权、注册商标的产品应提交有关证明,实施生产许可证的产品应提交生产许可证。 2.乙方所刊登的广告内容要符合《广告法》,要实事求是,不得欺骗用户、弄虚作假。如因广告内容不当而造成不良后果的,应由乙方负全部责任。 3.乙方可对广告刊登版面和日期等提出要求

九年级英语unit课文翻译

九年级英语u n i t课文 翻译 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

unit3 Could you please tell me where the restroom are ? sectionA 2d 何伟:这就是欢乐时代公园——我们这座城市最大的游乐园。 爱丽丝:就要玩各种游乐项目了,我好兴奋呀! 何伟:我们先玩那样呢?有太空世界、水世界、动物世界…. 爱丽丝:在我们决定前,麻烦你先告诉我哪儿有洗手间吗? 何伟:什么?休息室?你想要休息了?我们可还没有开始玩呢! 爱丽丝:不是的,我不是指休息的地方。我是说…..你知 道,一间洗手间或卫生间。 何伟:嗯….那么你是指….卫生间吗? 爱丽丝:对啦!不好意思,也许中国人说英语不常用 restroom这个词。 何伟:就是的,我们常说toilets 或washroom 。不过,厕所在哪里。 爱丽丝:知道了,我一会儿就好! 何伟:没问题,你不必赶的。 Section A 3a 欢乐时代公园————总是欢乐时光 [ 爱丽丝和何伟在太空世界] 爱丽丝:我不知道我们接下来该去哪里。

何伟:去玩玩那边那个新项目怎样? 爱丽丝:啊…..看上去挺吓人的。 何伟:勇敢些!我保证会很好玩!如果害怕就喊出来或抓住我的手。 【乘坐后…..】 爱丽丝:你是对的,这真好玩!我起先有些害怕,但喊叫真管用。何伟:瞧:这并不糟糕,对吧?你需要去尝试,否则永远不会知道你能行。 爱丽丝:是这样的,我真高兴自己尝试了这个项目。 何伟:现在你想去水世界吗? 爱丽丝:当然,但我饿了。你知道哪里有又好吃又快的地方? 何伟:当然知道!我建议去水世界的水城餐馆他们做得很好吃。爱丽丝:太好了,我们去吧! 何伟:[在去水城餐馆的路上,爱丽丝与何伟路过鲍勃叔叔的餐厅]爱丽丝:你瞧!这间餐厅看上去很有意思。牌子上写着有个摇滚乐队每晚在演奏。 何伟:我们为何不回头过来在这吃晚饭?咱们去问一下乐队演出几点开始。 【爱丽丝和何伟向门口的员工走去】 爱丽丝:劳驾,请问你们乐队今天晚上何时开始演奏? 何伟:八点。那时人总是很多,所以得来早一点才有桌子。 爱丽丝:好的,谢谢!

评标应遵循的原则

评标应遵循的原则 作者:来源:本站原创文章点击数: 226 评标办法应当体现《招标投标法》规定的招标投标活动应当遵循的公开、公平和公正原则以及《评标委员会和评标方法暂行规定》规定的评标活动应当遵循的公平、公正、科学、择优原则。 一、公开性原则。 公开性原则是“三公“原则中最基础、最重要的原则,没有公开性原则,公正和公平即是无本之木。评标办法的公开性原则主要体现在: (一)评标委员会构成、来源、产生方式和权责的公开; (二)评标方法的公开。也即明确是采用综合评估法,还是经评审的最低投标价法; (三)对投标文件的要求以及投标文件有效性判定标准和废标条件的公开。例如,招标文件的实质性要求应当明确给予规定并以醒目方式标示; (四)评审内容的公开,不管采用何种评标办法,均应明确评标活动需要完成的评审工作内容; (五)评标程序的公开。例如,当要求相关技术标投标文件以“暗标”形式递交时,如何规定符合性及完整性评审、技术标评审和商务标评审的评审程序; (六)评审标准和条件的公开。采用综合定量评分的,关于技术标与商务标评审项目及其具体评分值、技术标和商务标之评分值的权重比例等均应在评标办法中明确;采用经评审的最低投标价法时,投标人证明其投标价格合理性的证明材料、评标委员会对投标价格各个组成要素进行分析评判的标准、对投标价格是否低于个别成本的评判方法和标准均应在评标办法中明确;允许备选方案的,对备选方案进行评审和采纳的标准和条件的公开。最重要的是,所有标准和条件都必须清晰准确,最理想的状况是达到招标人、投标人、评标委员会成员和招标投标监管人员能够形成唯一的理解,不能存在涵义不清、摸棱两可,以避免投标人对评标结论产生争议; (七)评标委员会确定中标候选人或中标人的原则公开。采用综合评估法的招标项目,综合评分值最高的前多少位(最多不超过三名)投标人为评标委员会推荐给招标人的中标候选人,或是否由评标委员会直接确定排名第一的投标人为中标人。如果评分结果出现并列的情形,体现择优原则以便排序的附加条件也属于应当在评标办法中事先明确的内容; (八)招标人从中标候选人中选择中标人的规则公开。除非出现符合现行有关法律法规规定的情形,依法应当招标的施工项目均应选择排名第一的中标侯选人作为中标人; (九)对评标活动存有疑义或者争议且取得有关证据或有效线索的投标人可以寻求投诉等救济途径的公

杂志刊登广告合同协议书范本模板

杂志刊登广告合同 甲方: 法定代表人: 乙方: 法定代表人: 上述各方经平等自愿协商,签订本合同以共同遵守。 第1条乙方须持营业执照,凡标明质量标准、获奖、优质产品称号、专利权、注册商标的产品应提交有关证明,实施生产许可证的产品应提交生产许可证。第2条乙方所刊登的广告内容要符合《广告法》,要实事求是,不得欺骗用户、弄虚作假。如因广告内容不当而造成不良后果的,应由乙方负全部责任。 第3条乙方可对广告刊登版面和日期等提出要求,由甲方参考乙方意见,根据来稿先后、版面情况及预付款等统一安排。 第4条乙方在上刊登广告的要求如下: 刊出时间版面版面费制版费设计费等合计 ¥元年/期 ¥元年/期 ¥元年/期 ¥元年/期 ¥元年/期 总计人民币(大写)(¥元)。 第5条广告刊出后,如发生影响效果的差错系原稿的错误,由乙方负责;系甲方差错,甲方负责用文字更正一次,但不予重登广告,原已刊出的广告,费用照收。

第6条广告设计、摄影、发排制版后,如乙方要求变更合同,则须付相应的设计费、摄影费、制版费以及赔偿有关损失。 第7条乙方在签订合同后,应及时付广告费。甲方将优先安排已有合同单、刊登资料和已付清广告费的客户。 第8条本合同一式两份,各方各执一份,具有同等法律效力。 第9条因本合同引起的或与本合同有关的任何争议,由合同各方协商解决,也可由有关部门调解。协商或调解不成的,按下列第种方式解决: (1)提交位于(地点)的仲裁委员会仲裁。仲裁裁决是终局的,对各方均有约束力; (2)依法向所在地有管辖权的人民法院起诉。 签约地点:市区 签约时间:年月日 甲方单位: 联系人: 电话: 传真: 开户行: 帐号: 乙方单位: 联系人: 电话:

开标、评标注意事项

开标、评标中应注意的问题 1.招标人如何进行开标? 开标应当在招标文件确定的提交投标文件截止时间的同一时间公开进行;开标地点应当为招标文件中预先确定的地点。 开标由招标人主持,邀请所有投标人参加。 开标时,由投标人或者其推选的代表检查投标文件的密封情况,也可以由招标人委托的公证机构检查交公证;经确认无误后,由工作人员当众拆封,宣读投标人名称、投标价格和投标文件的其他主要内容。 招标人在招标文件要求提交投标文件的截止时间前收到的所有投标文件,开标时都应当当众予以拆封、宣读。 开标过程应当记录,并存档备查。 2.招标人如何进行评标? 评标由招标人依法组建的评标委员会负责。 依法必须进行招标的项目其评标委员会由招标人的代表和有关技术、经济等方面的专家组成,成员人数为5人以上单数,其中技术、经济等方面的专家不得少于成总数的2/3。一般招标项目可以采取随机抽取方式,特殊招标项目可以由招标人直接确定。与投标人有利害关系的人不得进行相关项目的评标委员会;已经进入的应当更换。评标委员会成员的名单在中标结果确定前应保密。招标人应当采取必要的措施,保证评标在严格保密的情

况下进行。任何单位和个人不得非法干预、影响评标的过程和结果。在确定中标人前,招标不得与投标人就投标价格、投标方案等实质性内容进行谈判。 3.成为评标委员会专家有哪些条件? 评标委员会专家应当从事相关领域工作满8年交具有高级职称或者具有同等专业水平,由招标人从国务院有关部门或者省、自冶区、直辖市人民政府有关部门提供的专家名册或者招标代理机构的专家库内的相关专业的专家名单中确定。 4.评标委员会如何进行评标? 评标委员会可以要求投标人对投标文件中含义不明确的内容作必要的澄清或者说明,但是澄清或者说明不得超出投标文件的范围或者改变投标文件的实质性内容。 评标委员会应当按照招标文件确定的评标标准和方法,对投标文件进行评审和比较;设有标底的,应当参考标底。评标委员会完成评标后,应当向招标人提出书面评标报告,并推荐合格的中标候选人。 招标人根据评标委员提出的书面评标报告和推荐的中标候选人确定中标人。招标人也可以授权评标委员会直接确定中标人。 国务院对特定招标项目的评标有特别规定的,从其规定。 5.中标人的投标应当符合哪些条件?

杂志广告合同样本

杂志广告合同样本 :)甲方(广告刊户地址: 邮编: 电话: 代表人: 职务: 开户行: 帐户名称: 帐号: 乙方: 地址: 邮编: 电话: 代表人: 职务: 开户行: 帐户名称: 帐号: 甲乙双方根据国务院《中华人民共和国广告法》及有关规定,签订本合同,并共同遵守。. 1. 甲方委托乙方于____年____月____日至____年____月____日期间在《应用科技》杂志发布标题为__________广告。广告规格为__________.广告单价____ 元,加急费____ 元,其他费用____ 元,扣除优惠____ 元,刊登次数____.总计 ________元,大写:__________. 2. 甲方须向乙方的证明材料: 1)盖有本单位公章的营业执照复印件、产品生产许可证及产品经营许可证; 2)专利或技术成果转让须提供专利证书或成果鉴定证书; 3. 广告采用样稿,样稿由__________提供,并经__________同意,发布后如需 改动应经__________同意。 4. 乙方有权审查广告内容和表现形式,对不符合法律、法规的广告内容和表现 形式,乙方可要求甲方作出修改,甲方作出修改前,乙方有权拒绝发布。 5. 广告样稿为合同附件,为本合同不可分割的部分,与本合同一并保存。 6. 甲方应在____ 年____月____日前将广告发布费付给乙方,付款方式为甲方将款项汇至乙方帐户。 7. 违约责任 1)任何一方未履行本协议项下的任何一项条款均视为违约。违约方应承担因自己的违约行为而给守约方造成的经济损失。 2)甲方应按期支付费用,如延期付款,甲方应向乙方支付相当于迟延金额百分之

英语新课标九年级课文翻译Unit9-14

英语新课标九年级课文翻译Unit9-14 Unit9 I like music that I can dance to. SectionA 2d 吉尔:斯科特,周末你打算干什么呢? 斯科特:没什么事,我估计就是听听我新买的激光唱片吧. 吉尔:哦?是什么激光唱片? 斯科特:嗯,全是音乐的,没有歌曲。我喜欢听舒缓的音乐来放松自己,尤其是在工作了漫长的一周以后。 吉尔:听起来不错啊。嗯,如果你有空,愿意和我一起去看部电影吗?(电影的)导演很有名。 斯科特:嗯,那要看什么电影。我只喜欢有趣的电影,我只想笑一笑不想费脑筋,你懂我的意思吧? 吉尔:哦,那样的话,我还是去邀请喜欢看严肃电影的人吧. 斯科特:(你说的)电影是关于什么的? 吉尔:是关于第二次世界大战的。我喜欢能让我思考的电影。 section A, 3a 今天你想看什么(电影)呢? 虽然一些人坚持只看一种电影,但是我喜欢看不同种类的电影,(具体)由当时盼心情决定。 当我情绪低落或感到疲惫的时候,我更喜欢能让我开心的影片。比如,像《黑衣人》那样的喜剧片或像《功夫熊猫》这类的动画片,通常都有滑稽的对话和一个愉快的结局。影片中的人物不一定完美,但是他们都会尽力去解决问题,看了这样的电影,我所面对的许多问题突然间会显得不那么严重,我也会感觉好多了。两个小时的欢笑是一种很好的放松方式。 当我伤心或劳累的时候,我不看剧情片或纪录片。像《泰坦尼克号》这样的剧情片只会让我更伤心。像《帝企鹅日记》这样的纪录片,(通常)会针对某个特定话题提供丰富的信息,(内容)也很有趣,但是当我累的时候,我不想思考太多。当我太累不想思考时,我不介意看像《蜘蛛侠》这样的动作电影。我只想屏蔽我的大脑,坐在那里观看一个令人兴奋的超级英雄,他总是能在关键时刻挽救世界。 偶尔我会喜欢看恐怖片。虽然它们很有意思,但是我会因为太害怕而不敢独自一人看,我总会带上一位不怕这些类型的电影的朋友(一起看),这样就觉得没那么可怕了。 Secton B 2b 凄美 昨晚我的一个中国朋友带我去听了一场中国民间音乐会。其中有一首二胡曲令我特别感动。音乐出奇的美,但是在那美的背后,我感受到悲伤和痛苦。这首曲子有个简单的名字,《二泉映月》,但它是我听到过的最感人的曲子之一。二胡(的声音)听起来那么悲伤,以至于我在听的时候也几乎随着它哭了。后来我查阅了《二泉映月》的历史,开始理解音乐中蕴含的伤感。 这首曲子由一位民间音乐家阿炳写成,他于1893年出生在无锡市。在他还很小的时候,他的母亲就去世了。阿炳的父亲教他弹奏各种乐器,如鼓、笛子和二胡。到了十七岁,阿炳就以他的音乐天赋闻名。然而,他的父亲去世后,阿炳的生活变得更糟糕。他很穷,还得了很严重的疾病,眼睛瞎了。好些年他都没有家,他住在大街上,以弹奏音乐来谋生。即使在他结了婚有了家以后,他还是继续在街道上唱歌、弹曲,他以这种方式表演了好多年。 阿炳惊人的音乐技能让他在有生之年就非常出名。到他临终前,他已会弹六百多首曲子,大部分是他自己写的。遗憾的是,一共只有六首曲子被录了下来得以传世,但时至今日,他(的作品)依旧颇受人们喜爱。今天,阿炳的《二泉映月》成 了所有伟大的二胡演奏家弹奏和赞赏的曲子。它已成了中国文化魁宝之一。它的凄美不仅描绘出阿炳自己的生活,而且也让人们回想起自身的悲苦体验和最深的的痛。

评标原则和评标办法

评标原则和评标办法 本办法经评标委员会于2014年XX月XX日讨论通过后生效,在评标过程中不作任何修改,严格执行。 一、评标依据 1、《招标投标法》、《招标投标法实施条例》、七部委第27号令、七部委第12号令和内蒙古自治区的有关规定。 2、本次招标项目的招标公告、招标文件、补充和答疑文件。 3、各投标单位的投标文件。 二、评标机构及原则 1、招标人依法组建包括专家及招标单位代表在内的评标委员会(X人),其中招标单位代表X人,从自治区建设工程评标专家库随机抽取的技术、经济专家X人。评标委员会设主任委员1人,根据本办法组织评标。评标委员会对各投标单位的评审结果进行排序,出具由各评委签字的书面报告。 2、评标委员会遵循公平、公正、科学、择优的原则,逐一对各投标单位的投标文件进行投标报价和技术的评审,按百分制综合评标,评委打分(去掉一个最高分和去掉一个最低分)的算术平均值即为各投标单位的综合得分。评标委员会根据各投标单位的综合得分进行排序,并将排序前三名作为中标候选人推荐给招标人,中标单位由招标人依法确定。 三、综合评分办法 评标采用百分制综合评分办法(评委打分小数点后保留一位,汇总计算小数点后保留两位),其中投标报价60分,技术部分40分。 (一)投标报价(满分60分) 1、本次招标设有最高投标限价,超出最高投标限价范围的投标报价均为无效报价,不参与评审。 2、评标基准价的确定:有效投标报价的算术平均值下浮1%至5%。开标前,

招标人预备5套评标基准价的计算方式【①有效投标报价的算术平均值下浮1%; ②有效投标报价的算术平均值下浮2%;③有效投标报价的算术平均值下浮3%; ④有效投标报价的算术平均值下浮4%;⑤有效投标报价的算术平均值下浮5%】。在公开、公平、公正的条件下,开标现场采取随机抽取的方式,确定评标基准价的计算方式。 3、计算方法:投标报价与评标基准价相比,每增加0.1%扣0.07分,每减少0.1%扣0.05分,最多扣15分。(小数点后保留两位) (二)技术部分(满分40分) 1、技术水平(7分) 1.1 设计研发:基础分1分;企业的设计软件、设计图纸均为自主研发,并拥有数项针对投标产品的质量提升起到重要作用的发明专利和实用新型专利的,最多得4分。 1.2 同类业绩:基础分1分;企业具有较高设备制造能力和可靠运行业绩的,最多得3分。 2、资源实力(13分) 2.1 制造装备:基础分2分;企业工装设备的品种、数量和精度全部优于制造能力需要,并具有加工中心或高精度数控机床的,最多得5分。 2.2 工艺方法:基础分1分;企业的生产线及其工艺流程科学、先进,针对关键工序节点的制造保障设备、措施设定及设计管控科学、有效的,最多得3分。 2.3 检验检测:基础分1分;企业的设备先进,方法科学、规范,具备全部型式试验项目试验能力的,并取得高标准检验机构的检验报告的,最多得3分。 2.4 制造环境:基础分1分;企业具有封闭厂房和净化车间,生产环境的温度、湿度、照明和降尘量等全部优于国家或行业规程规定的,最多得2分。 3、组件材料(20分) 3.1 关键组件:基础分3分;按照招标文件选用的主要组件材料为知名优质

世界名著英文名

《堂·吉诃德》DON QUIXOTE 米盖尔·台·塞万提斯Cervantes, Miguel de 《欧也妮·葛朗台》EUGENIE GRANDET 奥诺瑞·德·巴尔扎克Balzac,Honore de 《包法利夫人》MADAME BOV ARY 居斯塔夫·福楼拜Flaubert,Gustave 《福尔摩斯回忆录》MEMOIRS OF SHERLOCK HOLMES 阿瑟·柯南道尔Doyle,Sir Arthur Conan 《巴黎圣母院》THE HUNCHBACK OF NOTRE DAME 维克多·雨果Hugo, Victor 《汤姆·索耶历险记》THE ADVENTURES OF TOM SAWYER 马克·吐温Twain,Mark 《神秘岛》THE MYSTERIOUS ISLAND 儒勒·凡尔纳V erne,Jules 《浮士德》FAUSTUS 歌德Johann,Wolfgang,von,Goethe 《红与黑》BLACK AND RED 司汤达Stendhal 《战争与和平》W AR AND PEACE 列夫·托尔斯泰Tolstoy,Leo 《呼啸山庄》WUTHERING HEIGHTS 艾米莉·勃朗特Bronte,Emily 《三个火枪手》THE THREE MUSKETEERS 大仲马Dumas, Alexandre, pere 《仲夏夜之梦》A MIDSUMMER NIGHT'S DREAM 威廉·莎士比亚Shakespeare,William 《威尼斯商人》THE MERCHANT OF VENICE 威廉·莎士比亚Shakespeare,William 《灰姑娘》CINDERELLA 格林兄弟Grimm Brothers 《小红帽》LITTLE RED -CAP 格林兄弟Grimm Brothers 《白雪公主》LITTLE SNOW-WHITE 格林兄弟Grimm Brothers 《皇帝的新装》THE EMPEROR'S NEW SUIT 汉斯·C·安徒生Andersen, Hans C. 《青蛙王子》THE FROG KING,OR IRON HENRY 格林兄弟Grimm Brothers 《卖火柴的小女孩》THE LITTLE MATCH-SELLER 汉斯·C·安徒生Andersen, Hans C. 《小美人鱼》THE LITTLE MERMAID 汉斯·C·安徒生Andersen, Hans C.

九年级英语课文翻译,帮忙

7楼 迪士尼乐园是个娱乐的公园,但我们也可以叫它“主题公园”。它拥有你在其他公园可以找到的所有的娱乐设施,但是它有一个主题。当然,这个主题就是迪士尼电影和迪士尼人物。比如说,在其他一些公园你可以看到到摩天轮,但是在迪士尼乐园,摩天轮就有了“迪士尼人物”的主题。这意味着你可以在摩天轮的任何地方看到迪士尼人物。同样,你也可以看有关迪士尼的电影,在迪士尼餐厅就餐,买迪士尼礼物。你还随时可以看到迪士尼乐园里来回走动的迪士尼人物! 你听说过“迪士尼航行”吗?那是同样有迪士尼主题的巨大的船。你可以在船上航行几天,还可以在甲板上吃东西睡觉。和迪士尼乐园一样,甲板上也有许多吸引人的地方。你可以购物,参加迪士尼的聚会,和米老鼠一起吃晚餐。这些船有几条不同的航线,但最终都会抵达同样的地方。那就是属于迪士尼乐园的小岛。 在迪士尼乐园的乐趣简直太多了! 9. p72 UNIT 9 3a: Come to the Hilltop Language School and change your life. 来到Hilltop语言学校,改变你的人生! 第一篇:这里是两名同学讲述关于我校的事情 当我还是个小女孩,我就梦想着去旅行,因而我选择了个最佳的方式—从事空中乘务员.我做这个行业已有两年了,它的确是份有趣的工作,我能游遍世界各地,但也我发现说好英语对我来说是件多么重要的事,正因如此早在当空乘之前我就在Hilltop语言学校学习五年了,我以一口流利的口语赢得了这份工作,谢谢, Hilltop语言学校! Mei Shan 第二篇: 我渴望当一名导游,事实上,这是我一直都很想要从事的事业.我渴望旅行,特别是英语国家,像是美国,澳大利亚.不论如何我知道我必须提高我的英语能力,于是我来到Hilltop语言学校进行口语学习, Hilltop语言学校对我的学习有很大的帮助,我已经在这里学满一年了,非常热爱这个地方.或许当我要离开这个学校的时候,我开始想做一名英语教师的热情会大过于想做一名导游! David Feng 9. p74 UNIT 9 3a: Have you ever been to Singapore?翻译! 你去过新加坡吗? 对于很多中国旅游者来说,这个位于东南亚的小岛是个度假的好去处。一方面,超过四分之

评标定标原则和办法

第二章评标定标原则和办法(三十五)评标原则 评标活动遵循公平、公正、科学、择优的原则 (三十六)评标委员会 1、评标委员会由招标人依法组建,负责评标活动。 2、评标委员会成员人数为5人,由技术、经济等方面专家组成。 3、评标委员会的专家成员,由招标单位从评委专家库的专家名册内相关专业的专家库中随机抽取产生。 (三十七)评标程序 评标按两阶段进行:资格后审,初步评审和详细评审。 资格后审不合格的不进入下一步评审。 (一)初步评审 1、符合性评审,评标委员会审查每一投标文件是否对招标文件提出的所有实质性要求和条件做出响应,有无显著的差异或保留。未能在实质上响应的投标,作废标处理 投标文件有下列情形之一的视为符合性评审不合格: (1)没有按照招标文件要求提供投标担保或者所提供的投标担保有瑕疵的; (2)投标文件中的投标函未加盖投标人公章及法定代表人印章(签字),或法人代表人委托代理人没有合法、有效的委托书原件及委托代理人印章(签字)的; (3)投标文件载明的招标项目完成期限超过招标文件规定的期限的;

(4)明显不符合招标文件规定的技术要求和标准的; (5)未按规定格式填写,内容不全或关键字迹模糊、无法辨认的; (6)投标人递交两份或多份内容不同的投标文件,或在一份投标文件中对同一项报有两个或多个报价,且未声明哪一个更有效的,按招标文件规定提交备选方案的除外; (7)投标人名称或组织机构与资格预审时不一致的; (8)投标文件附有招标人不能接受的条件,或者对合同中约定的招标人的权利和投标人的义务方面造成重大限制的; (9)不符合招标文件中规定的其它实质性要求的。 2、在评标过程中,评标委员会发现投标人以他人的名义投标、串通投标或以其它弄虚作假方式投标的,该投标人的投标作废标处理。 3、在评标过程中,评标委员会发现投标人的报价明显低于其他投标报价或者明显低于标底,使得其投标报价可能低于其个别成本的,应当要求该投标人作出书面说明并提供相关证明材料。投标人不能合理说明或者不能提供相关证明材料的,由评标委员会认定该投标人以低于成本报价竞标,其投标应作废标处理。 4、评标委员会可以用书面方式要求投标人对投标文件中含义不明确、对同类问题表述不一致或者有明显文字和计算错误的内容作必要的澄清、说明或者补正。澄清、说明或者补正应以书面方式进行并不得超出投标文件的范围或者改变投标文件的实质性内容。

杂志刊登广告合同四示范文本

杂志刊登广告合同四示范 文本 In Order To Protect Their Legitimate Rights And Interests, The Cooperative Parties Reach A Consensus Through Consultation And Sign Into Documents, So As To Solve And Prevent Disputes And Achieve The Effect Of Common Interests 某某管理中心 XX年XX月

杂志刊登广告合同四示范文本 使用指引:此合同资料应用在协作多方为保障各自的合法权益,经过共同商量最终得出一致意见,特意签订成为文书材料,从而达到解决和预防纠纷实现共同利益的效果,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 合同编号:___________ 甲方:_________ 乙方:_________杂志社有限公司 签订日期: 甲、乙双方严格遵守中华人民共和国《广告法》及 《合同法》,就广告刊登具体事项签订以下条款: 一、广告刊登方式 二、广告发布内容 _________________ 三、广告采用由甲方提供的(□菲林□光盘□电子文档□照 片、文字□印刷品□样品□其它)。 四、甲方在提供广告资料的同时,提供相应的企业营

业执照、专利证书等证件的复印件,对广告内容自负法律责任。乙方有权审查广告内容和表现形式,对不符合法律、法规的广告内容和表现形式,乙方应要求甲方作出修改,甲方未作出修改前,乙方有权拒绝发布。 五、付款方式 _________________ 六、双方发生经济合同纠纷协商解决不成功时,提请经济仲裁委员会仲裁。 七、本合同一式贰份,甲、乙双方各执一份,自合同签订之日起合同即时生效。 甲方名称:(章)_________ 乙方名称:(章)_________ 法定代表:_______________代表:____________ 委托代理人:_____________地址:____________ 单位地址:_______________邮编:____________ 邮编:____________

人教版九年级英语课文全册翻译

人教版九年级英语课文翻译 一单元 SECTION A 1a 我通过制作抽认卡来学习。通过和朋友一起学习。通过听磁带。通过做抽认卡。通过向老师求助。通过读课本。通过制作单词本。 1c A:你怎么为考试而学习。B:我通过参加学习小组来学习。 2a 1、你是通过看英文录像学英语的吗? 2、你曾和朋友们练习过对话吗? 3、听磁带怎么样? 4、大声朗读以练习发音怎么样?5、我曾经通过参加学习小组的方式学习过吗? 2b A是的,我通过那种学习方式学到了很多。B、哦,是的,它提高了我说英语的能力。C、有时那样做。我觉得他有用。D、不。(通过看英语录像学习)太难了,无法理解录像中的人所说的话。 2c A你曾经通过参加学习小组来学习吗?B、是的,我参加赤字,通过那种方式我学到了很多。 Grammer Focus 你怎么为准备一场考试而学习?我靠听磁带。你怎样学习英语?我通过参加学习小组来学习。你通过大声朗读来学习英语吗?是的,我是。你曾和朋友们练习过对话吗?哦,是的,他提高了我说英语的能力。你曾经通过参加学习?小组来学习吗?是的,我参加过。通过那种方式我学习到了很多。 3a如何才能学得最好 这星期我们询问了新星高中的同学关于学习更多英语的最佳方法的问题。许多同学说他们通过使用英语为学习它,一些还有很特别的建议。比如,李莉莲说学习新单词的最好的方法是阅读英语杂志。她说记忆浒音乐的歌词也有一些作用。当我们问及学习语法的问题时,她说:“我从不学习语法。它太枯燥了。” 魏明有不同的看法。他学习英语已经6年了,并且确实喜欢英语。他认为学习语法是学习一门语言的一种好方法。他还认为观看英语电影也不错,国灰他可以看到演员说话的情形。但是,有时候他发现看英语电影是件很头痛的事情,因为那些演员说话太快了。 刘畅说加入学校英语俱乐部是提高英语最好的方法。学生有很多练习的机会并且他们也有很多乐趣。她补充说和朋友练习会话一点用处也没有。“我们会因为某件事变得很激动,最后用汉语来讲,”她说。 3b A:我正在作一个关于学习英语的调查。我能问你一些问题吗?B:当然。A:太好了!你叫什么名字?B:魏明。A:那么你是怎样学习英语的,魏明?B:…… 4 A:你列词汇表吗?B:噢,是的。我常那样做。 SECTION B 1a我不会发其中一些单词的音。我不会拼写一些英语单词。我听不懂英语口语。我在语法上犯错误。我读得很慢。1b我不知道怎么使用逗号。 2a 1、不能正确发音。 2、忘记很多生词。 3、人们和我说话时我不能每次都听懂。 4、不能理解杂志中的单词。 5、没有获得很多写作训练。 2B A、你可以一直将生词写在你的笔记本里,并在家学习它们。B、你应该找一个笔友。C、听力能起作用。D、为什么不加入一个英语俱乐部来练习说英语呢? 2C A:我没有搭档来练习英语。B、也许我应该加入一个英语俱乐部。 3a我是怎样学习英语的 去年英语课对我来说很难。首先,对我来说听懂老师说话很难。开始,她说的太快,我不能听懂每个单词,后来,我意识到如果你听不懂每个单词并没有关系。而且我害怕在班上说话,因为我认为同学们可能会嘲笑我。我也不是总能造出完整的句子。然后我开始看英文电视。那很有用。我认为做大量听力练习是成为一个好的语言学习者的秘决之一。另一件我觉得很难的事是英语语法。所以我决定在每节课上记大量语法要点。然后我开始用我正在学的语法自己写新句子。这样作用处之大令人惊奇。现在我很喜欢学英语并且这学期我得了个A。我的老师对我印象很深。作者觉学英语很难是因为……1、老师发音差。2、她说话时人们总是嘲笑她。3、她在造完整的句子方面有困难。4、英语语法很难。当她开始…她的英语提高了。5、和说英语的朋友一起出去。6、大量的听力练习。7、在自己组织的句子里使用语法。 3b 亲爱的,我知道学英语不容易,但我有一些想法可能有用。你说你不能理解说话太快的人。那么,你可以尽量听最重要的单词,而不是每个单词。 4 1、关于学英语什么不容易。2、就这一点你作了什么?3、你最喜欢的学习更多英语的方式是什么?韩文说如果人

世界名著及作者英文名表达

世界名著及作者英文名表达 《安娜·卡列尼娜》ANNA KARENINA ------列夫·托尔斯泰Tolstoy,Leo 《环绕地球80天》AROUND THE WORLD IN 80 DAYS ------儒勒·凡尔纳Verne,Jules 《忏悔录》A CONFESSION ------列夫·托尔斯泰Tolstoy,Leo 《双城记》A TALE OF TWO CITIES ------查尔斯·狄更斯Dickens, Charles 《茶花女》CAMILLE ------小仲马Dumas, Alexandre, fils 《罪与罚》CRIME AND PUNISHMENT ------费奥多尔·陀思妥耶夫斯基Dostoevsky, Fyodor 《大卫·科波菲尔》DAVID COPPERFIELD ------查尔斯·狄更斯Dickens, Charles 《堂·吉诃德》DON QUIXOTE ------米盖尔·台·塞万提斯Cervantes, Miguel de 《欧也妮·葛朗台》EUGENIE GRANDET ------奥诺瑞·德·巴尔扎克Balzac,Honore de 《高老头》FATHER GORIOT ------奥诺瑞·德·巴尔扎克Balzac,Honore de 《巨人传》GARGANTUA AND PANTAGRUEL ------拉伯雷Rabelais, Francis 《远大前程》GREAT EXPECTATIONS ------查尔斯·狄更斯Dickens, Charles 《格列佛游记》GULLIVER'S TRAVELS ------琼纳森·斯威夫特Swift,Jonathan 《简·爱》JANE EYRE ------夏洛蒂·勃朗特Bronte,Charlotte

杂志刊登广告合同协议书

杂志刊登广告合同协议 书 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甲方(广告客户)填写内容单位名称、地址:______________________ 广告内容:____________________________ 广告类别、版面、刊期:_________________ 广告费合计:___________________________ 汇款时间:_____________________________ 经办人(签名、联系电话):_____________ 甲方(盖章)、填写合同日期:__________乙方(杂志社)填写内容 要求汇入广告费时间:___________________ 拟安排刊期:___________________________ 经办人(签名、联系电话):_____________ 开户银行:_____________________________ 户名:_________________________________ 帐号:_________________________________ 乙方(盖章)、填写合同日期:__________ 单期广告价目表 类别 版面

位置 收费(元/次) 彩色 全版 封面 6000 ? ? 封底 5000 ? ? 封二 4000 ? ? 封三 封三 3500 ? ? 插页 3500 ? 2个全版 插页 7000 黑白 全版 插页 1500 ? 1/2版 正文内页 800 ? 1/2版以内 正文内页 600 说明:? 1.客户需至少提前________天预定版面,可通过电话、传真、E-mail等方式与我们联系。

九年级上册课文翻译

九年级上册文言文翻译 陈涉世家 陈胜是阳城县人,表字叫涉。吴广是阳夏县人,表字叫叔。陈胜年轻的时候,曾经同别人一道被雇佣耕地,(有一天,)他停止耕作走到田畔高地上(休息),因失望而叹恨了好久,对同伴们说:“如果有朝一日谁富贵了,可别忘记咱穷哥儿们。”同伴们笑着回答他:“你给人家耕地当牛马,哪里谈得上富贵,陈胜长叹一声,说:“燕雀怎么能知道鸿鹄的志向呢!” 秦二世元年7月.征发贫苦人民九百人去驻守渔阳,停驻在大泽乡。陈胜、吴广都被编入谪戍的队伍,并担任戍守队伍的小头目。恰巧遇到天下大雨,道路不通,估计已经误期。误期,按秦王朝的军法都要杀头。陈胜、吴广就商量说:“如今逃走(抓了回来)也是死,起义也是死,同样是死,为国事而死好吗?”陈胜说:“全国人民苦于秦(的统治)很久了。我听说秦二世是小儿子,不该立为国君,该立的是长子扶苏。扶苏因为屡次劝谏的缘故,皇上派(他)在外面带兵。最近有人听说他没有罪,,二世就杀了他。老百姓大多听说他很贤明,却不知道他已经死了。项燕担任楚国将领时,屡次立功,爱护士卒,楚国人很爱戴他,有人认为他战死了,有人认为他逃走了。现在如果把我们的人冒充公子扶苏、项燕的队伍,向全国发出号召,应当(有)很多响应的人。”吴广认为(这个见解)很正确。就去占卜。那占卜的人知道他俩的意图,说:“你们的事都能办成,能建功立业。不过你们还是把事情向鬼神卜问一下吧!”陈胜、吴广很高兴,考虑卜鬼的事,说:“这是教我们先威服众人啊。”就(用)丹砂(在)绸子上写了“陈胜王”(三个字),放在别人所捕的鱼的肚子里,士兵买鱼回来烹食,发现鱼肚子里的字条,自然就诧怪这事了。(陈胜)又暗使吴广往驻地旁边的丛林里的神庙中,用篝火装作“鬼火”,作狐狸嗥叫的凄厉声音,喊道:“大楚复兴,陈胜为王。”士兵一整夜又惊又怕。第二天,士兵中到处谈论这件事,都指指点点,互相以目示意陈胜。 吴广平时很关心周围的人,戍卒们多愿听吴广的差遣。(那天,)押送(戍卒)的军官喝醉了,吴广故意屡次说要逃走,使尉恼怒,使尉责辱他,来激怒士兵。那军官果然鞭打吴广。军官剑拔出鞘,吴广一跃而起,夺过剑来杀死了他。陈胜协助吴广,一齐杀了两个军官。陈胜召集并号令所属的人说:“你们诸位遇到大雨,都已经误期。误期就要杀头。即使仅能免于斩刑,而戍守边塞的人十个中也得死去六七个。况且大丈夫不死则已,死就要干出一番大事业啊。王侯将相难道有天生的贵种吗!”众戍卒齐声应道:“一定听从(你的)号令。”于是冒充公子扶苏、项燕的队伍,依从人民的愿望。露出右臂(作为起义的标志),打出大楚旗号。(用土)筑台,并(在台上)宣誓。用(两)尉的头祭天。陈胜自立为将军,吴广任都尉。攻打大泽乡,收集大泽乡的军队,攻打蕲县。攻克蕲县后,就派符离人葛婴带兵攻占蕲县以东的土地。攻打铚、酂、苦、柘、谯等县,都

杂志刊登广告合同范文(基础版)

杂志刊登广告合同范文(基础版) Model advertisement contract in magazine (Basic Edition) 甲方:___________________________ 乙方:___________________________ 签订日期:____ 年 ____ 月 ____ 日 合同编号:XX-2020-01

杂志刊登广告合同范文(基础版) 前言:合同是民事主体之间设立、变更、终止民事法律关系的协议。依法成立的合同,受法律保护。本文档根据合同内容要求和特点展开说明,具有实践指导意义,便于学习和使用,本文档下载后内容可按需编辑修改及打印。 甲方(广告客户)填写内容 单位名称、地址:__________ 广告内容:__________ 广告类别、版面、刊期:__________ 广告费合计:__________ 汇款时间:__________ 经办人(签名、联系电话):__________ 甲方(盖章) 、填写合同日期:__________ 乙方(杂志社)填写内容 要求汇入广告费时间:__________ 拟安排刊期:__________

经办人(签名、联系电话):__________ 开户银行:__________ 户名:__________ 帐号:__________ 乙方(盖章) 、填写合同日期:__________ 单期广告价目表 说明: 1.客户需至少提前________天预定版面,可通过电话、传真、E-mail等方式与我们联系。 2.广告内容符合《广告法》、《广告管理条例》及《施行细则》的规定。 3.广告涉及特定内容和兽药、生物制品、招聘、获奖、专利、鉴定、认证内容时,须提交相关部门的审批文件和相应证明。 4.对连续刊登的广告给予较大的优惠,优惠比例为: ①连续刊登___________期以上按________%收费;

相关主题
文本预览
相关文档 最新文档