现代控制理论-2010-9-19
- 格式:ppt
- 大小:3.96 MB
- 文档页数:49
现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题什么是最小实现说明实现存在的条件。
非线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引入到系统控制理论中,从而标志着现代控制理论研究的开始。
现代控制理论的研究对象是系统的数学模型,它根据人们对系统的性能要求,通过对被控对象进行模型分析来设计系统的控制律,从而保证闭环系统具有期望的性能。
其中,线性系统理论已经形成一套完整的理论体系。
过去人们常用线性系统理论来处理很多工程问题,并在一定范围内取得了比较满意的效果。
然而,这种处理方法是以忽略系统中的动态非线性因素为代价的。
实际中很多物理系统都具有固有的动态非线性特性,如库仑摩擦、饱和、死区、滞环等,这些非线性动态非线性特性的存在常常使系统的控制性能下降,甚至变得不稳定。
这就使得利用线性系统理论处理非线性动态系统面临巨大的困难。
此外,在控制系统运行过程中,环境的变化或者元件的老化,以及外界干扰等不确定因素也会造成系统实际参数和标称值之间出现较大差别。
因此,基于标称数学模型所设计的控制律一般很难达到期望的性能指标,甚至会使系统不稳定。
综上所述,研究不确定条件下非线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。
非线性动态系统是指按确定性规律随时间演化的系统,又称动力学系统,其理论来源于经典力学,一般由微分方程来描述。
美国数学家Birkhoff[1]发展了法国数学家Poincare在天体力学和微分方程定性理论方面的研究,奠定了动态系统理论的基础。
在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型一般不可能精确得到。
因此,我们只能用近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产生。
所谓鲁棒性就是指系统预期非线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在而遭到破坏的特性,鲁棒控制是非线性动态系统控制理论研究的一个非常重要的分支。
现代控制理论的发展促进了对动态系统的研究,使它的应用从经典力学扩大到一般意义下的系统。