当前位置:文档之家› 射线检测-焊缝缺陷图谱

射线检测-焊缝缺陷图谱

射线检测-焊缝缺陷图谱
射线检测-焊缝缺陷图谱

1.外部缺陷

在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。

2.内部缺陷

位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。

焊缝缺陷的危害性:

1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。

2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。

3、缺陷可能穿透焊缝,发生泄漏,影响致密性。

焊缝纵向裂纹示意图

一、焊缝纵向裂纹X光底片

焊缝纵向裂纹1 焊缝纵向裂纹2

焊缝纵向裂纹3 焊缝纵向裂纹4

焊缝纵向裂纹5 焊缝纵向裂纹6

焊缝纵向裂纹7 焊缝纵向裂纹8

焊缝纵向裂纹9 焊缝纵向裂纹10

焊缝纵向裂纹11 焊缝纵向裂纹12

焊缝纵向裂纹13 焊缝纵向裂纹14

焊缝纵向裂纹15 焊缝纵向裂纹16

焊缝纵向裂纹17 焊缝纵向裂纹18

焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。

二、热影响区纵向裂纹X光底片

热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。

焊缝横向裂纹示意图

三、焊缝横向裂纹X光底片

焊缝横向裂纹1 焊缝横向裂纹2

5

焊缝横向裂纹3 焊缝横向裂纹4

焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。

四、母材裂纹X光底片

母材裂纹1 母材裂纹2

裂纹:

材料局部断裂形成的缺陷。

裂纹的分类方法:

按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;

按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;

按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。

1、热裂纹产生的机理:

发生于焊缝金属凝固末期,敏感温度区间大致在固相线附近的高温区,最常见的热裂纹区是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓“液态薄膜”,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。

结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹。有时也发生在焊缝内部两个柱状晶体之间,为横向裂纹。

孤坑裂纹是另一种形态的常见的热裂纹。

热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料焊缝中。

6

2、冷裂纹产生的机理:

①、焊接拉应力的作用:

金属在焊后冷却至马氏体转变温度(大致在300℃-200℃)以下时被冷却过程中的过度热应力拉开,常发生在热影响区熔合线附近的过热区中。

②、氢的聚集作用:

在焊接高温作用下,氢以原子状态进入熔池中,随着熔池温度的不断降低,氢在金属中的溶解度急剧下降;在金属发生相变时其溶解度将发生突变。焊接时冷却速度很快,氢来不及逸出而残留在焊缝中,过饱和的氢就向热影响区扩散,聚集在熔合线附近,氢原子结合成氢分子,以气体状态进入到金属的细微孔隙中,并造成很大的压力,使局部产生很大的应力而形成冷裂纹。

氢的扩散在不同材料中速度不同,因此这类冷裂纹产生的时间也不同,有时在焊接后立即出现,有时在焊后几天,几周甚至更长的时间才出现,这就是冷裂纹的延迟性,具有更大的危险性。

3、再热裂纹产生的机理:

是指某些含钼、钒、铬、铌、钛等沉淀强化元素的低合金高强钢和耐热钢,焊接冷却后又重新加热(通常是消除应力热处理)的过程中,在焊接热影响区的粗晶区产生的裂纹。产生裂纹的原因是再加热时焊接残余应力松弛,导致较大的附加变形,与此同时热影响区的粗晶部位会析出合金碳化物组成的沉淀硬化相,如果粗晶部位的蠕变塑性不足以适应应力松弛所产生的附加变形,则沿晶界发生裂纹。再热

裂纹的敏感温度区间为550℃-650℃。

产生裂纹的三大因素:

拘束应力、淬硬组织和扩散氢。

延迟裂纹发生的部位:

热影响区,少数在焊缝上,纵向和横向都有发生。常出现在低合金高强钢和中、高碳钢的焊接接头。焊趾裂纹、热影响区裂纹、焊道下裂纹、根部裂纹等都是延迟裂纹常见的形态。

裂纹微观形态:

穿晶开裂,也有沿晶开裂。

裂纹是危害性最大的一种焊接缺陷:

裂纹是一种面积型缺陷[具有三维尺寸的缺陷称为体积型缺陷,具有二维尺寸(第三维尺寸极小)的缺陷称为面积性缺陷],它的出现将显著减少承载面积,更严重的是裂纹端部形成尖锐缺口,应力高度集中,很容易扩展导致破坏。

防止裂纹的措施:

1)焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够高温度区间内进行,避免淬硬组织的产生,同时也有减少焊接应力的作用。

2)焊接后即时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去。

3)选用低氢型焊条和碱性焊剂等;焊材按规定烘干,并严格清理坡口。

4)加强焊接时的保护和被焊处表面的清理,避免氢的侵入。

5)选用合理的焊接规范(例如:焊接速度过大或过小均易产生淬硬组织),采用合理的对口组装焊接顺序,以改善焊件的应力状态。

7

未熔合示意图

焊缝未熔合X光底片

未熔合1 未熔合2

未熔合3 未熔合4

未熔合5 未熔合6

8

未熔合7 未熔合8

未熔合9

坡口咬边(未熔)示意图

坡口咬边(未熔)X光底片

坡口咬边(未熔)1 坡口咬边(未熔)2

9 坡口咬边(未熔)影像的表面特征是较黑的细长起伏宽度不一的黑线{线内常含有熔渣},可以是一根黑线,也可以是多根黑线,它产生的原因是长条形空腔出现在焊缝坡口的两侧。

未熔合影像的表面特征为一根或多根长条形的平行黑线,未熔合线较直,有时较黑的密集斑点会沿未熔合线散布。它产生的原因是由焊接金属与母材金属之间长条形的间隙而引起的。

未熔合:

熔焊时,焊缝金属与母材金属、或焊缝金属之间未熔化结合在一起的部分,对口点焊时,母材与母材之间未完全熔化结合的部分。

未熔合的种类:

按其所在部位,未熔合可分为坡口未熔合、根部未熔合、层间未熔合三种。

未熔合产生的原因:

焊接电流过小;焊接速度过快;焊接角度不对;产生了弧偏吹现象;焊接处于下坡焊位置,母材未

熔化时已被铁水覆盖;母材表面有污物或氧化物影响熔敷金属与母材间的熔化结合等。

未熔合的危害:

未熔合也是一种面积型缺陷,坡口未熔合和根部未熔合对承载截面积的减小非常明显,应力集中也比较严重,其危害性仅次于裂纹。

防止措施:

正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。

10

未焊透示意图

未焊透X光底片

未焊透1 未焊透2

未焊透3 未焊透4

未焊透影像表面特征为焊缝中心部分呈规则性的边缘整齐的直线,成连续的或间断的黑色条纹,产生的原因是焊缝坡口钝边的根部未完全溶化。

11

未焊透:

母材根部钝边金属之间没有熔化,焊缝金属没有进入接头的根部或根部未完全熔透的现象叫未焊透。

未焊透类型:

可分为双面焊未焊透和单面焊未焊透两种。

未焊透型状:

可分为双边未焊透与单边未焊透两种。

未焊透产生的原因:

焊接电流过小或运条速度过快,焊接速度过快;坡口角度太小;根部钝边太厚;组对间隙太小;焊条角度不当;电孤太长及电弧偏吹等。

未焊透的危害:

未焊透也是一种比较危险的缺陷,其危害性取决于缺陷的形状、深度和长度。

未焊透缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷,在受压焊缝中,这类缺陷一般是不允许存在的。

防止措施:

合理选用坡口型式,装配间隙和采用正确的焊接工艺等。

12

内凹示意图

焊缝内凹X光底片

13

夹钨示意图

焊缝夹钨X光底片

夹钨1 夹钨2

夹钨3 夹钨4

夹钨5 夹钨6

14

夹钨7 夹钨8

夹钨影像的表面特征为焊缝中出现一些不规则的白色斑点,它们是由焊接过程中残留的小块钨渣引起的。

夹渣示意图

焊缝夹渣X光底片

夹渣1 夹渣2

夹渣3 夹渣4

15

夹渣5 夹渣6

夹渣7

夹渣在焊缝中呈现的形态是点状或条状的宽度不一、黑度不一的影像,它们产生的原因是焊接过程中焊药熔渣或其它低密度杂质清理不干净而留存在焊缝中。

夹渣:

焊缝金属中残留有外来固体物质所形成的缺陷。

夹渣:是指焊后残留在焊缝中的熔渣。

夹杂物:是指由于焊接冶金反应产生的,焊后残留在焊缝金属中的非金属杂质(如氧化物,硫化物等)。

夹渣的形状:

条状和点状,外形不规则。

夹渣的分类:

按形态,夹渣可分为点状夹渣、块状夹渣、条状夹渣;

按残留固体物质种类,夹渣可分为非金属夹渣和金属夹渣。

非金属夹渣的主要成分是硅酸盐,也有一些是氧化物和硫化物,它们主要来自焊条药皮和焊剂熔渣。

金属夹渣最常见的是钨夹渣(偶见钢质夹珠),它是由钨极氩弧焊中的钨极烧损,熔入焊缝中形成。

产生非金属夹渣的主要原因:

焊接电流过小,焊接速度太快;熔池金属凝固过快熔渣来不及浮起;运条不正确;铁水与熔渣分离不好;边缘和层间清渣不彻底;基本金属和焊接材料化学成分不当,含硫,磷量较多等。

产生金属夹渣的主要原因:

焊接电流过大或钨极直径太小,氩气保护不良引起钨极烧损,钨极触及熔池或焊丝而剥落。

夹渣的危害:

夹渣是一种体积性缺陷,容易被射线照相检出。夹渣会减少焊缝受力载面。夹渣的棱角容易引起应力集中,成为交变载荷下的疲劳源。

防止措施:

正确选用焊接电流,焊接件的坡口角度不要太小,焊前必须把坡口清理干净,多层焊时必须层层清除干净焊渣,并合理选择运条角度和焊接速度等。

16

密集气孔示意图

一、焊缝密集气孔X光底片

密集气孔1 密集气孔2

密集气孔3 密集气孔4

密集气孔5 密集气孔6

17

密集气孔7 密集气孔8

密集气孔9 密集气孔10

密集气孔11 密集气孔12

密集气孔13 密集气孔14

密集气孔15 密集气孔16

18

密集气孔17 密集气孔18

密集气孔19 密集气孔20

密集气孔21 密集气孔22

密集气孔23 密集气孔24

密集气孔25 密集气孔26

19

密集气孔27 密集气孔28

密集气孔29 密集气孔30

密集气孔31 密集气孔32

二、焊缝链状气孔X光底片

链状气孔1 链状气孔2

链状气孔3 链状气孔4

20

链状气孔5 链状气孔6

密集气孔或链状气孔的表征为出现在簇中的圆形或长条形的黑色斑点,它产生的原因是焊缝中滞留气体的聚集。

分散气孔示意图

三、焊缝分散气孔X光底片

分散气孔1 分散气孔2

21

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

焊缝X射线探伤施工工艺

焊缝X射线探伤 1、一般要求 (1)射线检测人员 1)从事射线检测人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证。 2)射线检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0),测试方法应符合GB 11533的规定。从事评片的人员应每年检查一次视力。 (2)观片灯 1)观片灯的最大亮度应能满足评片的要求。 2)观片灯的主要性能指标除了亮度以外还包括:亮度的均匀性、外壳温度、噪声、绝缘程度等应满足标准要求。底片评定范围内的黑度≤2.5时,观片灯的亮度不应低于9400 cd/m2 、当底片评定范围内的黑度2.5<D≤4.0时观片灯的亮度不应低于100000 cd/m2 。 (3)黑度计 1)黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。 2)黑度计至少每6个月校验一次。校准黑度计用的标准黑度片必须在有效期内,并通过计量部门的鉴定(2年)新购置的标准黑度片只要在有效期内也允许。 (4)增感屏 1)X射线照相和Ir-192射线源时选用铅屏增感屏。 2)Ir-192射线源时铅屏增感屏的前屏和后屏的厚度均不能小于0.1mm。

3)前屏和后屏的厚度可以相同也可以不同。 (5)像质计 1)底片影像质量采用线型像质计测定。线型像质计的型号和规格应符合JB/T 7902的规定,JB/T 7902中未包含的丝径、线号等内容,应符合HB 7684的有关规定。 2)像质计的材料可选择碳钢或奥氏体不锈钢。 (6)表面要求和射线检测时机 1)在射线检测之前,对接焊接接头的表面应经外观检测并合格。表面的不规则状态在底片上的影像不得掩盖或干扰缺陷影像,否则应对表面作适当修整。 2)为防止延迟裂纹倾向射线检测应在焊接完成24h后进行射线检测。 (7)辐射防护 1)现场进行X射线检测时,应按GB16357的规定划定控制区和管理区、设置警告标志。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2)现场进行γ射线检测时,应按GB18465的规定划定控制区和监督区、设置警告标志,检测作业时,应围绕控制区边界测定辐射水平。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2、透照布置 (1)透照方式选择中心法和双壁单影法。 (2)透照时射线束中心一般应垂直指向透照区中心,需要时也可选用有利于发现缺陷的方向透照。 (3)一次透照长度应以透照厚度比K进行控制。焊接接头所需的透照次数可按照透照方式计算确定。

焊缝缺陷图片

Radiograph Interpretation - Welds In addition to producing high quality radiographs, the radiographer must also be skilled in radiographic interpretation. Interpretation of radiographs takes place in three basic steps which are (1) detection, (2) interpretation, and (3) evaluation. All of these steps make use of the radiographer's visual acuity. Visual acuity is the ability to resolve a spatial pattern in an image. The ability of an individual to detect discontinuities in radiography is also affected by the lighting condition in the place of viewing, and the experience level for recognizing various features in the image. The following material was developed to help students develop an understanding of the types of defects found in weldments and how they appear in a radiograph. Discontinuities Discontinuities are interruptions in the typical structure of a material. These interruptions may occur in the base metal, weld material or "heat affected" zones. Discontinuities, which do not meet the requirements of the codes or specification used to invoke and control an inspection, are referred to as defects. General Welding Discontinuities The following discontinuities are typical of all types of welding. Cold lap is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding. Porosity is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark

焊缝射线探伤检验规范R

1.前言 本规范规定了在焊缝透照过程中,为获得合格透照底片所遵循的程序和要求. 2.目的 采用射线的照相技术要求及通过射线摄影的底片来检验缺陷,并对缺陷进行分类定级. 3.适用范围 本规范主要用于本公司及其外协厂碳素钢、低合金钢的对接焊缝及钢管的对接环焊缝的射线透照的检测. 4.参考标准 QA-I-101 焊工培训考核程序 GB3323-82 钢焊缝射线照相及底片等级分类法 JB4730-94 压力容器无损检测 5.射线透照的一般要求 5.1 射线对人体有不良影响,应尽量避免射线的直接照射和散射线的影响. 5.2 在现场进行射线检测时应设置安全线,安全线上应有明显的警告标志. 5.3 从事射线探伤的人员必须经过培训,按照《锅炉压力容器无损检测人员资格考核规则》执行. 6.射线透照的技术要求 6.1 焊缝表面的要求: 焊缝需经表面检验合格后才能进行射线照相.焊缝表面的不规则程度应不 妨碍底片上缺陷的辨认,如咬边,焊瘤等.否则应在射线照相前修整. 6.2 工件的表面应采用永久性的标记作为对每张射线底片重新定位的依据,产品上不适合打印标 记时,应采用透视部位草图或其他标记方法. 6.3 底片上必须有工件编号、底片编号、定位记号等标志,这些标志应离焊缝边缘至少5mm,并应 与工件上的标志相符. 7.射线透照 射线透照的具体步骤和内容应参照GB3323-82 《钢焊缝射线照相及底片等级分类法》或JB4730-94《压力容器无损检测》. 8.焊缝质量评级 8.1 焊缝质量根据缺陷数量的规定分成四级: 优等焊缝----- Ⅰ级焊缝,焊缝内部不准有裂纹、未熔合、未焊透、条状夹渣. 一级焊缝---- Ⅱ级焊缝,焊缝内部不准有裂纹、未熔合以及双面焊和加垫板的单面焊中的未焊透. 合格焊缝---- Ⅲ级焊缝,焊缝内部不准有裂纹、未熔合以及双面焊和加垫板的单面焊中的未焊透. 不合格焊缝--- Ⅳ级焊缝,焊缝内部的缺陷数量超过Ⅲ级者为Ⅳ级. 8.2 对于焊缝内部的不同尺寸的气孔(包括点状夹渣)按表1换算. 表1 气孔换算表

焊缝X射线检测及其结果的评判方法综述

焊缝X射线检测及其结果的评判方法综述 周正干, 滕升华, 江 巍, 李和平 (北京航空航天大学机械工程及自动化学院,100083 北京) 摘 要:分析了焊缝X射线检测方法的现状,指出了目前存在的主要问题;介绍了焊缝X射线检测结果的人工评定和计算机辅助评定方法,论述了国内外焊缝X 射线检测结果计算机辅助识别的研究现状。研究结果表明,X射线数字实时成像技术是焊缝射线 检测的发展方向,焊缝射线数字图像的计算机自动分析与识别技术是射线实时成像技 术成功应用的基础。 关键词:无损检测;图像处理;模式识别;焊接 中图分类号:TP391.6 文献标识码:A 文章编号:0253-360X(20002)03-85-04周正干0 序 言 目前,焊接已作为一种基本工艺方法,应用于航 空、航天、舰船、桥梁、车辆、锅炉、电机、电子、冶金、 能源、石油化工、矿山机械、起重机械、建筑及国防等 各个工业部门[1]。由于焊接过程中各种参数的影 响,焊缝有时不可避免地会出现熔合不良、裂纹、气 孔、夹渣、夹钨、未熔合和未焊透等缺陷。为了保证 焊接构件的产品质量,必须对其中的焊缝进行有效 的无损检测和评价。射线检测是常规无损检测的重要方法之一,是保证焊接质量的重要技术,其检测结果将作为焊缝缺陷分析和质量评定的重要判定依据[2]。对X射线检测结果的评定方法有两种:人工评定和计算机辅助评定。当人工评定检测结果时,评定人员的工作量大,眼睛易受强光损伤,效率较低,而且缺陷分析受评定人员的技术素质、经验以及外界条件的影响,结果往往会因人而异 。采用计算机对X射线检测结果进行分析和识别,可以大大提高工作效率,有效地克服人工评定中由于评判人员技术素质和经验差异以及外界条件的不同而引起的误判或漏判,使评判过程客观化、科学化和规范化。 1 焊缝X射线的检测方法 目前,焊缝X射线检测最常用的方法是胶片照相法。X射线胶片照相的成像质量较高,能正确提供焊缝缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便等缺点。随着电子技术及计算机技术的发展,一 收稿日期:2001-11-01种新兴的X射线检测技术———基于X射线图像增强器(X ray image intensifier)的实时成像技术(Ra2 dioscopy)应运而生,其工作原理如图1所示,图2是一种典型的图像增强器。X射线图像增强实时成像检测技术的出现使焊缝X射线检测的效率大大提高。但是,与胶片照相法相比,由于图像增强实时成像法成像环节较多,信噪比低,图像容易产生畸变,故成像质量相对较低,检测结果的图像对比度和空间分辨率均不是很高。 图1 图像增强实时成像检测系统原理图 Fig.1 Sketch of im age2intensifier2b ased radioscopy system 为了解决上述问题,20世纪90年代末出现了X 射线数字实时成像检测技术(Digital radioscopy,DR),亦称为X射线数字照相(Digital radiography,DR),其工作原理如图3所示。X射线数字实时成像系统中使用的平板探测器(Flat panel detector)如图4所示,其像元尺寸最小可达0.127mm,因而成像质量及分辨率明显优于X射线图像增强器系统,几乎可与胶片照相媲美,同时还克服了胶片照相中 第23卷 第3期2002年6月 焊接学报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON Vol.23 No.3 June 2002

焊缝缺陷图谱

焊缝缺陷图谱 焊接基本知识 1、焊接的冶金特点 什么叫焊接: 两个分离的物体(同种或异种材料)通过原子或分子之间的结合和扩散造成永久性联接的工艺过程叫焊接。 熔化焊是金属材料焊接的主要方法: 熔化焊接时,被焊金属在热源作用下被加热,发生局部熔化,同时熔化了的金属、熔渣、气相之间进行着一系列影响焊缝金属的成分、组织和性能的化学冶金反应,随着热源的离开,熔化金属开始结晶,由液态转为固态,形成焊缝。 熔化焊的冶金特点: ⑴、温度高 以手工电弧焊为例,电弧温度高达6000℃~8000℃,熔滴温度约1800℃~2400℃,在如此高温下,外界气体会大量分解,溶入液态金属中,随后又在冷却过程中析出,所以焊缝易形成气孔缺陷。 ⑵、温度梯度大 焊接是局部加热,熔池温度在1700℃以上,而其周围是冷态金属,形成很陡的温度梯度,从而会导致较大的内应力,引起变形或产生裂纹缺陷。 ⑶、熔池小,冷却速度快 熔池的体积,手工焊约2cm3~10 cm3,自动焊约9 cm3~30 cm3,金属从熔池到凝固只有几秒钟,在这样短的时间里,冶金反应是不平衡的,因此焊缝金属成分不均匀,偏析较大。 2、焊缝的结晶特点 焊接熔池从高温冷却到常温,其间经历过两次组织变化过程;第一次是液态金属转变为固体金属的结晶过程,称为一次结晶;第二次是温度降低到相变温度时,发生组织转变,称为第二次结晶。 一次结晶从熔合线上开始,晶体的生长方向指向溶池中心,形成柱状晶体,当柱状晶生长至相互接触时,结晶过程即告结束。焊缝表面形态以及热裂纹、气孔等缺陷的成因、形态、位置均与一次结晶有关。 对低碳钢及低合金钢,一次结晶的组织为奥氏体,继续冷却到低于相变温度时,奥氏体分解为铁素体和珠光体,冷却速度影响着铁素体和珠光体的比率和大小,进而影响焊缝的强度、硬度和塑性韧性,当冷却速度很大时,有可能产生淬硬组织马氏体,冷裂纹的形成与淬硬组织有关。 3、焊缝的组成及热影响区组织 焊接接头由焊缝和热影响区两部分组成。 二次结晶不仅仅发生在焊缝,也发生在靠近焊缝的基本金属区域,该区域在焊接过程中受到不同程度的加热,在不同温度下停留一段时间后又以不同速度冷却下来,最终获得各不相同的组织和机械性能,称为热影响区。根据组织特征可将热影响区划分为熔合区、过热区、相变重结晶区和不完全重结晶区四个小区,其中熔合区和过热区组织晶粒粗大,塑性很低,是产生裂纹、局部脆性破坏的发源地,是焊接接头的薄弱环节。 1 焊缝缺陷的分类

常用焊缝检测方法

常用焊缝检测方法 常用焊缝检测方法 常用焊缝无损检测方法: 1.射线探伤方法(RT) 目前应用较广泛的射线探伤方法是利用(X、γ)射线源发出的贯穿辐射线穿透焊缝后使胶片感光,焊缝中的缺陷影像便显示在经过处理后的射线照相底片上。主要用于发现焊缝内部气孔、夹渣、裂纹及未焊透等缺陷。焊缝检测方法 2.超声探伤(UT) 利用压电换能器件,通过瞬间电激发产生脉冲振动,借助于声耦合介质传人金属中形成超声波,超声波在传播时遇到缺陷就会反射并返回到换能器,再把声脉冲转换成电脉冲,测量该信号的幅度及传播时间就可评定工件中缺陷的位置及严重程度。超声波比射线探伤灵敏度高,灵活方便,周期短、成本低、效率高、对人体无害,但显示缺陷不直观,对缺陷判断不精确,受探伤人员经验和技术熟练程度影响较大。例如:HF300,HF800焊缝检测仪等 3.渗透探伤(PT) 当含有颜料或荧光粉剂的渗透液喷洒或涂敷在被检焊缝表面上时,利用液体的毛细作用,使其渗入表面开口的缺陷中,然后清洗去除表面上多余的渗透液,干燥后施加显像剂,将缺陷中的渗透液吸附到焊缝表面上来,从而观察到缺陷的显示痕迹。液体渗透探伤主要用于:检查坡口表面、碳弧气刨清根后或焊缝缺陷清除后的刨槽表面、工卡具铲除的表面以及不便磁粉探伤部位的表面开口缺陷。焊缝检测方法

4.磁性探伤(MT) 利用铁磁性材料表面与近表面缺陷会引起磁率发生变化,磁化时在表面上产生漏磁场,并采用磁粉、磁带或其他磁场测量方法来记录与显示缺陷的一种方法。磁性探伤主要用于:检查表面及近表面缺陷。该方法与渗透探伤方法比较,不但探伤灵敏度高、速度快,而且能探查表面一定深度下缺陷。例如:DA310磁粉探伤等焊缝检测方法 其他检测方法包括:大型工件金相分析;铁素体含量检验;光谱分析;手提硬度试验;声发射试验等。

焊缝探伤超声波探头的选择方案参考

编号被测工件厚度选择探头和斜率14 —5mm6< 6 K3 不锈钢: 1.25MHz 铸铁: 0.5— 2.5 MHz 普通钢:5MHz 26—8mm8< 8 K3 39—10mm9< 9 K3 411 —12mm9< 9 K 2.5 513—16 mm9< 9 K2 617—25 mm13< 13 K2 726—30 mm13< 13 K 2.5 831 —46 mm13< 13 K 1.5 947—120 mm13< 13( K—2K1) 10121—400 mm18< 18 ( K—2K1) 20 X 20 ( K—K1)

超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1, 外观检查. 2, 致密性试验和水压强度试验. 3, 焊缝射线照相. 4, 超声波探伤. 5, 磁力探伤. 6, 渗透探伤.关于返修规定: 具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。 至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20 千赫兹高的声波叫超声波。用于探伤的超声波,频率为 0.4-25兆赫兹,其中用得最多的是1 -5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。下面介绍一下超声波探伤在实际工作中的应用。 接到探伤任务后,首先要了解图纸对焊接质量的技术要求。目前钢结构的

焊缝等级分类及无损检测要求(仅限借鉴)

焊缝等级分类及无损检测要求 焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质量等级, 1. 在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质量等级为 1) 作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级; 2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。 2 .不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级 3 .重级工作制和起重量Q≥50t吊车梁的腹板与L冀缘之间以及吊车析架上弦杆与节点板之间的T形接头焊缝均要求焊透.焊缝形式一般为对接与角接的组合焊缝,其质量等级不应低于二级 4 .不要求焊透的’I'形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为: 1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50t的中级工作制吊车梁,焊缝的外观质量标准应符合二级; 2) 对其他结构,焊缝的外观质量标准可为二级。 外观检查一般用目测,裂纹的检查应辅以5 倍放大镜并在合适的光照条件下进行,必要时可采用磁粉探伤或渗透探伤,尺寸的测量应用量具、卡规。

焊缝外观质量应符合下列规定: 1 一级焊缝不得存在未焊满、根部收缩、咬边和接头不良等缺陷,一级焊缝和二级焊缝不得存在表面气孔、夹渣、裂纹和电弧擦伤等缺陷; 2 二级焊缝的外观质量除应符合本条第一款的要求外,尚应满足下表的有关规定; 3 三级焊缝的外观质量应符合下表有关规定 焊缝质量 等级 检测项目 二级三级 未焊满≤0.2+0.02t 且≤1mm,每 100mm 长度焊缝内未焊满累积 长度≤25mm ≤0.2+0.04t 且≤2mm,每 100mm 长度焊缝内未焊满累积长度 ≤25mm 根部收缩≤0.2+0.02t 且≤1mm,长度 不限 ≤0.2+0.04t 且≤2mm,长度不 限 咬边≤0.05t 且≤0.5mm,连续长 度≤100mm,且焊缝两侧咬边总 长≤10%焊缝全长 ≤0.1t 且≤1mm,长度不限 裂纹不允许允许存在长度≤5mm 的弧坑裂纹电弧擦伤不允许允许存在个别电弧擦伤 接头不良缺口深度≤0.05t 且≤ 0.5mm, 每1000mm 长度焊缝内不得超过 1 处 缺口深度≤0.1t 且≤1mm,每 1000mm 长度焊缝内不得超过1 处 表面气孔不允许每50mm 长度焊缝内允许存在直径≤0.4t 且≤3mm 的气孔2 个;孔距应≥6倍孔径 表面夹渣不允许 深≤0.2t,长≤0.5t 且≤ 20mm 设计要求全焊透的焊缝,其内部缺陷的检验应符合下列要求: 1 一级焊缝应进行100%的检验,其合格等级应为现行国家标准《钢焊缝手工超声波探伤方法及质量分级法》(GB 11345)B 级检验的Ⅱ级及Ⅱ级以上;

焊缝质量检测方法

一外观检验 用肉眼或放大镜观察是否有缺陷,如咬边、烧穿、未焊透及裂纹等,并检查焊缝外形尺寸是否符合要求。 二密封性检验 容器或压力容器如锅炉、管道等要进行焊缝的密封性试验。密封性试验有水压试验、气压试验和煤油试验几种。 1水压试验水压试验用来检查焊缝的密封性,是焊接容器中用得最多的一种密封性检验方法。 2气压试验气压试验比水压试验更灵敏迅速,多用于检查低压容器及管道的密封性。将压缩空气通入容器内,焊缝表面涂抹肥皂水,如果肥皂泡显现,即为缺陷所在。 3煤油试验在焊缝的一面涂抹白色涂料,待干燥后再在另一面涂煤油,若焊缝中有细微裂纹或穿透性气孔等缺陷,煤油会渗透过去,在涂料一面呈现明显油斑,显现出缺陷位置。 三焊缝内部缺陷的无损检测 1渗透检验渗透检验是利用带有荧光染料或红色染料的渗透剂的渗透作用,显示缺陷痕迹的无损检验法,常用的有荧光探伤和着色探伤。将擦洗干净的焊件表面喷涂渗透性良好的红色着色剂,待渗透到焊缝表面的缺陷内,将焊件表面擦净。再涂上一层白色显示液,待干燥后,渗入到焊件缺陷中的着色剂由于毛细作用被白色显示剂所吸附,在表面呈现出缺陷的红色痕迹。渗透检验可用于任何表面光洁的材料。 2磁粉检验磁粉检验是将焊件在强磁场中磁化,使磁力线通过焊缝,遇到焊缝表面或接近表面处的缺陷时,产生漏磁而吸引撒在焊缝表面的磁性氧化铁粉。根据铁粉被吸附的痕迹就能判断缺陷的位置和大小。磁粉检验仅适用于检验铁磁性材料表面或近表面处的缺陷。 3射线检验射线检验有X射线和丫射线检验两种。当射线透过被检验的焊缝时,如有缺陷,则通过缺陷处的射线衰减程度较小,因此在焊缝背面的底片上感光较强,底片冲洗后,会在缺陷部位显示出黑色斑点或条纹。X射线照射时间短、速度快,但设备复杂、费用大,穿透能力较丫射线小,被检测焊件厚度应小于30mm。而丫射线检验设备轻便、操作简单,穿透能力强,能照投300mm的钢板。透照时不需要电源,野外作业方便。但检测小于50mm以下焊缝时,灵敏度不咼。 4超声波检查超声波检验是利用超声波能在金属内部传播,并在遇到两种介质的界面时会发生反射和折射的原理来检验焊缝内部缺陷的。当超声波通过探头从焊件表面进入内

焊缝射线法探伤检测规程

焊缝射线法探伤检测操作技术规程 1.主题内容与适用范围 本标准规定了射线照明检验中应遵守的基本操作方法。 本标准规程适用于X射线对金属材料内在缺陷的质量检验。 2.引用标准 ZBJ04 004《射线照相探伤方法》 3.防护 3.1 X射线对人体健康有不良影响,应尽量避免射线的直接照射和散射的影响。 3.2从事射线探伤的工作人员应配备有剂量仪或其它剂量测试设备,以测定工作环境中的射线照射量和个人所受到的累积剂量。 3.3 在射线探伤现场,进行射线照相检查时,应设置安全线,在安全线上应有明显标志,要设置红灯,在非探伤人员易于到达安全线的通道上应设置警告牌,并写明在安全线上的射线照射量。 3.4 非探伤人员,每年允许接受的最大剂量当量为5毫希沃特。 4 射线照相等效系数 材料的射线照相等效系数是将该材料的厚度乘此系数,得到它相当于多少厚度钢的吸收效果。 1

5透照方法 射线源,被检工件以及装有X射线胶片和增感屏的暗盒,在透照时通常按下图布置。 双壁穿透检查单壁 S—射线源 B—X光底片 f—焦点至工件距离 t—工件厚度 b—胶片至工件表面距离 6 对工件表面要求 工件表面由于铸造焊接或其它原因产生不规则状态,均应加以消除,表面存在缺陷也要消除,必要时加以修补,不能因表面质量和不规则状态影响底片的评定。 7 定位标记和底片上的标志 工件表面应采用永久性和半永久性标志,作为每张底片重新定位的标志,如有不适合打印标记时,应采用详细定位图,每张底片上应有编号和表示工 2 件被检范围定位标志的影象,定位标志一般放置在面向射线源一侧的工件表面上,如果焊缝余高加工去除,则应在焊缝边缘处放置定位标志。 8 象质计 象质计技术规范符合GB5618《线型象质计》的规定。 9 射线照相质量等级及底片黑度 射线照相等级分为A级(普通级)和B级(高灵敏度级) A级射线照相底片的黑度应等于或大于1.5级。

焊缝射线检测工艺卡题

焊缝射线检测工艺卡工艺卡编号:XXXXX 月日审核人(资格

工艺题解析 某化工厂工艺管道B1焊缝应进行100%射线检测(管道不能拆卸),周围无障碍无阻挡,按JB/T4730-2005标准Ⅱ级验收,规定编制工艺卡。 1、管道规格:φ377×8 材质:12CrMo 图号:工制-2315。 2、焊缝采用:氩弧焊打底,手工焊盖面,余高2mm 3、现有定向X射线机一台,曝光曲线见下图一。Ir-192γ射线机一台 (初始活度为80Ci,现已刚到一个半衰期),曝光曲线见下图二。 4、胶片:天津Ⅲ型、Ⅴ型(规格:300×80、360×80、360×120)曝光曲线 图一

图二 1)透照方式选择:管道不能拆卸,不能实现单壁透照,采用源在外双壁单影法透照。 射线机型号:XXQ2505 胶片:天津Ⅲ型 增感屏:Pb0.03mm ×2 焦距:700mm 显影:20℃ 5min.(槽式) 底片黑度:D =3.0

2)透照厚度:W=8×2=16mm 3)射线机选择:∵W=16mm ∴选择X射线机,Ir-192γ射线机JB/T4730规定≥20mm。 4)像质计与像质计灵敏度:∵W=16 mm,双壁单影透照,像质计置于胶片侧,查JB/T4730表七应识别像质计丝号为12号,宜选FeⅢ型。5)胶片与增感屏:X射线透照宜选天津Ⅲ型,增感屏前后均为0.03mm。6)焦距:D0+140+2=519≈520mm (140为2005靶到窗口距离)。7)透照次数与一次透照长度:按JB/T4730表三规定,K值可取1.2,则T/D0=8/377=0.0213 D0/F=377/520=0.725 查JB/T4730图D.6为四张8)胶片规格:360×80(mm) 9)曝光时间确定:JB/T4730规定,焦距=700mm时,曝光量≥15mA.min 因为:I.t1/F21= I.t2/F22 得:15/7002=E X/5202 E X=15×(520/700)2=8.2785(mA.min) t=8.2785÷5≈1.66min 10)查管电压:从曝光曲线上查W=16mm E=15 mA.min对应的Kv 值为170 Kv。 11)底片黑度:从曝光曲线可知,按此曝光焊缝区域黑度值应为3.0,JB/T4730规定底片黑度应控制在2.0-4.0范围内。

射线检测-焊缝缺陷图谱

1.外部缺陷 在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。 2.内部缺陷 位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。 焊缝缺陷的危害性: 1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。 2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。 3、缺陷可能穿透焊缝,发生泄漏,影响致密性。 焊缝纵向裂纹示意图 一、焊缝纵向裂纹X光底片 焊缝纵向裂纹1 焊缝纵向裂纹2 焊缝纵向裂纹3 焊缝纵向裂纹4

焊缝纵向裂纹5 焊缝纵向裂纹6 焊缝纵向裂纹7 焊缝纵向裂纹8 焊缝纵向裂纹9 焊缝纵向裂纹10 焊缝纵向裂纹11 焊缝纵向裂纹12 焊缝纵向裂纹13 焊缝纵向裂纹14

焊缝纵向裂纹15 焊缝纵向裂纹16 焊缝纵向裂纹17 焊缝纵向裂纹18 焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。 二、热影响区纵向裂纹X光底片 热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。

焊缝横向裂纹示意图 三、焊缝横向裂纹X光底片 焊缝横向裂纹1 焊缝横向裂纹2 5 焊缝横向裂纹3 焊缝横向裂纹4 焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。 四、母材裂纹X光底片

焊缝射线探伤施工工艺

焊缝X射线探伤 1、一般要求? (1)射线检测人员? 1)从事射线检测人员上岗前应进行辐射安全知识的培训,并取得放射工作人员证。? 2)射线检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0),测试方法应符合GB?11533的规定。从事评片的人员应每年检查一次视力。?? (2)观片灯? 1)观片灯的最大亮度应能满足评片的要求。 2)观片灯的主要性能指标除了亮度以外还包括:亮度的均匀性、外壳温度、噪声、绝缘程度等应满足标准要求。底片评定范围内的黑度≤2.5时,观片灯的亮度不应低于9400?cd/m2 、当底片评定范围内的黑度2.5<D≤4.0时观片灯的亮度不应低于100000?cd/m2 。 (3)黑度计? 1)黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。 2)黑度计至少每6个月校验一次。校准黑度计用的标准黑度片必须在有效期内,并通过计量部门的鉴定(2年)新购置的标准黑度片只要在有效期内也允许。? (4)增感屏 1)X射线照相和Ir-192射线源时选用铅屏增感屏。? 2)Ir-192射线源时铅屏增感屏的前屏和后屏的厚度均不能小于0.1mm。 3)前屏和后屏的厚度可以相同也可以不同。 (5)像质计?

1)底片影像质量采用线型像质计测定。线型像质计的型号和规格应符合JB/T?7902的规定,JB/T?7902中未包含的丝径、线号等内容,应符合HB?7684的有关规定。? 2)像质计的材料可选择碳钢或奥氏体不锈钢。 (6)表面要求和射线检测时机? 1)在射线检测之前,对接焊接接头的表面应经外观检测并合格。表面的不规则状态在底片上的影像不得掩盖或干扰缺陷影像,否则应对表面作适当修整。? 2)为防止延迟裂纹倾向射线检测应在焊接完成24h后进行射线检测。 (7)辐射防护? 1)现场进行X射线检测时,应按GB16357的规定划定控制区和管理区、设置警告标志。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2)现场进行γ射线检测时,应按GB18465的规定划定控制区和监督区、设置警告标志,检测作业时,应围绕控制区边界测定辐射水平。检测工作人员应佩带个人剂量计,并携带剂量报警仪。 2、透照布置? (1)透照方式选择中心法和双壁单影法。? (2)透照时射线束中心一般应垂直指向透照区中心,需要时也可选用有利于发现缺陷的方向透照。? (3)一次透照长度应以透照厚度比K进行控制。焊接接头所需的透照次数可按照透照方式计算确定。 1)双壁单影法:100%透照焊缝时的最小曝光次数N和一次透照长度L3由下式求出:α=θ+η? ? 当D0>>T时,θ≈cos-1K-1 ?

01焊缝射线检测通用工艺规程

压力容器射线检测通用工艺规程

1、总则 1.1、本规程规定了钢制压力容器主要受压元件的熔化焊对接接头的χ射线检测技术和质量分级要求。 1.2、本规程适用于本企业的钢制压力容器制造过程中所有A、.B类焊缝的射线照相检测。本规程规定的射线检测技术分为三级:A级—低灵敏度技术;AB级—中灵敏度术;B级—高灵敏度技术。 1.3、本规程不适用于钢制压力容器制造、安装过程中C、D类焊缝的射线照相。 2、引用标准 GB11533 标准对数视力表 GBZ117 工业χ射线探伤放射卫生防护标准 GB18871 电离辐射防护与辐射源安全基本标准 GB/T19348.1 无损检测工业射线照相胶片第1部分: 工业射线胶片系统的分类GB/T19348.2 无损检测工业射线照相胶片第2部分:用参考值方法控制胶片处 理 GB/T19802 无损检测工业射线照相底片观片灯最低要求 JB/T7902射线照相用线型象质计 NB/T47013.1 承压设备无损检测第1部分: 通用要求 NB/T47013.2 承压设备无损检测第2部分: 射线检测 3、一般要求 3.1、射线检测人员 3.1.1、从事射线检测的人员必须符合NB/T47013.1-2015的有关要求 3.1.2、从事射线检测的人员上岗前应进行辐射安全知识的培训,并取得放射工作人员 证。 3.1.3、从事评片的人员未经矫正或经矫正的近距视力和远距视力应不低于5.0(小数记录值为1.0),测试方法应符合GB11533的规定,应每年检查一次。 3.2、射线胶片 3.2.1、A级和AB级射线检测技术应采用C5类或更高类的胶片,B级射线检测技术应采用C4类或更高类的胶片 3.3、观片灯 3.3.1、观片灯的主要性能应符合JB/T19802的有关规定,最大亮度应能满足评片的要求。 3.4、黑度计 3.4.1、黑度计可测的最大黑度应不小于4.5,测量值的误差应不超过±0.05。

射线检测工艺

xxxx工程射线检测工艺 编制: 审核: 批准: 郑州石油天然气华龙无损检测有限公司

目录 目录 (1) 1、编制目的 (2) 2、适用范围 (2) 3、编制依据 (2) 4、探伤人员要求 (2) 5、检测流程 (2) 6、几何条件 (6) 7、射线机及参数 (7) 8、透照片数 (7) 9、检测时机 (7) 10、射线能量的选择 (7) 11、散射线的屏蔽 (7) 12、曝光 (7) 13、检测比例 (7) 14、暗室处理 (7) 15、底片质量 (8) 16、底片评定及报告 (8) 17、安全防护 (8)

射线检测工艺 1.编制目的: 使检测人员正确、熟练掌握与本工程有关的X射线检测的检验标准、验收规范及各项技术要求,从而在焊缝透照检测过程中,获得合格透照底片,确保工程X射线检测质量。2.适用范围: 本工艺适用于xxx市天然气庭院管网工程及石嘴山市其他天然气管网工程对接环焊缝的射线无损检测。 3.编制依据: 3.1《金属熔化焊焊接接头射线照相》(GB/T3323-2005) 3.2《放射性同位素与射线装置放射线防护条例》 4.探伤人员要求: 4.1从事射线探伤的人员必须经专业技术培训,掌握一定探伤基础知识和操作技能及安全、卫生防护知识,并持有关部门颁发的相应技术资格证书。 除具有良好的身体素质外,矫正视力不低于1.0。 4.2无损检测人员按技术等级分为高、中、初(Ⅲ、Ⅱ、Ⅰ)级。取得不同无损检测方法的各技术等级人员,只能从事与该等级相应的无损检测工作,并负相应的技术责任。 4.3探伤人员应该树立“质量第一”的观念,时刻牢记自己的职责。认真做到严格检验每一道焊口,以确保工程的安全运营。 4.4评片人员应该认真仔细,做到不误判、不漏判,真正站在杜绝隐患的基础上严格依照标准进行底片评定。 5.检测流程。 5.1无损检测程序: 从统筹方法及各个环节相协调的角度出发,为了能够做到及时、准确、快速的报出正确检测结果,必须按照无损检测流程进行工作。无损检测的整个过程主要包括:接受监理指令、探伤准备,现场检测,暗室处理,底片评定,报告签发等。 其流程图如图5-1。 5.2工件表面要求 焊缝及热影响区的表面质量(包括焊缝余高)应经外观检查合格。表面的不规则状态在底片上的影象应不掩盖焊缝中的缺陷或与之相混淆,否则通知施工单位修理。 5.3透照方式 根据实际情况及钢管直径,按照标准的要求,选择透照方式,双壁单影法或双壁双影法。 5.3.1采用定向X射线机双壁单影法透照,胶片应置在远离射线源一侧管道外表面相应焊缝处,并紧贴管壁(如图5-2)。

常见的焊接缺陷及缺陷图片

常见得焊接缺陷(1) 常见得焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)得钝边未完全熔合在一起而留下得局部未熔合。未焊透降低了焊接接头得机械强度,在未焊透得缺口与端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时得焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内得气体 或外界侵入得气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成得空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别就是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生得气体、液态金属吸收得气体,或者焊条得焊剂受潮而在高温下分解产生气体,甚至就是焊接环境中得湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它得缺陷其应力集中趋势没有那么大,但就是它破坏了焊缝金属得致密性,减少了焊缝金属得有效截面积,从而导致焊缝得强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时得冶金反应产物,例如非金属杂质(氧化物、硫化物

等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状与条状,其外形通常就是不规则得,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落得碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中得夹渣断口照片 钢板对接焊缝X射线照相底片 型坡口,手工电弧焊,局部夹渣 V. 钢板对接焊缝X射线照相底片 型坡口,手工电弧焊,两侧线状夹渣V 钢板对接焊缝X射线照相底片 手工电弧焊,夹钨型坡口,钨极氩弧焊打底+V(5)裂纹:焊缝裂纹就是焊接过程中或焊接完成后在焊接区域中出现得金属局部破裂得表现。 焊缝金属从熔化状态到冷却凝固得过程经过热膨胀与冷收缩变化,有较大得冷收缩应力存在,而且显微组织也有从高温到低温得相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大得温差,从而产生热应力等等,这些应力得共同作用一旦超过了材料得屈服极限,材料将发生塑性变形,超过材料得强度极限则导致开裂。裂纹得存在大大降低了焊接接头得强度,并且焊缝裂纹得尖端也成为承载后得应力集中点,成为结构断裂得起源。 裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近得母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生得时间与温度得不同,可以把裂纹分为以下几类:

管道环焊缝数字射线检测技术探析

管道环焊缝数字射线检测技术探析 科技的发展给工业生产检测领域带来了新型的技术和方法,X射线检测技术就是其中的一种。X射线与渗透检验,射线检验等检测方法被人们大量的应用在工业生产领域,为工业产品质量的检测提供了快速有效的手段。与传统的检测方法相比较,新型数字射线技术具有不可比拟的优点,在工业焊接行业,这种方法能够有效的检测出管道焊接缝的质量是否合格,其检测成像也十分清晰,为人们改进成品质量提供了依据。文章主要介绍了数字X射线检测技术的优良性能及特点,并列举了目前用于射线检测的主要设备,最后还分析了成像的影响因素,旨在扩大这一新技术的推广和应用范围。 标签:检测设备;成像效果;噪声影响 1 新型射线检测技术的优点 X射线检测给管道环焊缝质量检测带来了极大的便利,其检测方法也在向科技化方向演变。X射线检测技术实际上就是一种光波技术,主要是利用光能穿透和照射物体作为基本操作原理,这种光波与普通的光线有所区别,由于射线所散发出的光学粒子具有极大的能量,所以,它可以穿透物质表面,反映出物质内部结构上的缺陷,其检测结果要通过一定的媒介来呈现出来,包括开始的射线检测结果都反映在胶片上,胶片成像的缺点显而易见:不方便图像的保存与使用。随着科技的发展,检测成像手段也越来越先进,新型的数字化射线检测技术逐渐替代了传统的检测方法,检测的结果也不必局限于胶片成像,取而代之的是数字化图像存储手段,对于检测的过程也更为自动化和智能化。在管道环焊接检测过程中,数字X射线检测方法具有较大的优势:首先,采用数字化手段使得检测图像的成像质量大为提高,提高了成像的准确性,避免了资源的浪费;其次,先进技术的应用延长了检测设备的使用年限,检测结果实现了数字化的处理和存储方式,更方便了图像修改和删减;再次,X射线检测设备的成像介质不再使用胶片,极大的降低了成本消耗,也避免了胶片所引发的环境污染问题;最后一点,由于检测结果的数字化技术处理,使检测图像的传输变得更加容易,也方便了人们对于资源的共享与评价,拓宽了问题的解决途径,提高了问题的解决效率。 2 常见的射线检测机器的特点和性能介绍 2.1 基本检测条件 适用于管径≥500mm;其灵敏度优于 2.0%,而探测器的空间分辨率是0.127mm;探测器的成像分辨率是1024×1024;系统的分辨率≥3Lp/mm;同时沿焊缝的最大动态扫查速度是2m/min;X射线管电压是40~225kV;图像的灰度等级是4096。 2.2 设备使用方法

相关主题
文本预览
相关文档 最新文档